Дипломная работа на тему "Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп"
Главная → Математика → Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп
Страшно ошибиться с выбором, кому доверить написание своей дипломной /курсовой работы/диссертации?
МЫ ЗАМОРОЗИЛИ ЦЕНЫ + СКИДКИ!
Для вас:
- только проверенные авторы;
- работа со всеми системами антиплагиата (до 98%);
- соблюдение сроков;
- бесплатные доработки;
- ведение до защиты.
***
Дипломные - с ВЫГОДОЙ 15% - промокод dpl15
***
Курсовые с ВЫГОДОЙ 10% - промокод kyr10
Узнать стоимость и оформить заказ
Профессиональная помощь с диссертацией - кликайте сюда!
Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет им. Ф. Скорины"
Математический факультет
Кафедра алгебры и геометрии
КЛАССЫ КОНЕЧНЫХ ГРУПП , ЗАМКНУТЫЕ ОТНОСИТЕЛЬНО ПРОИЗВЕДЕНИЯ ОБОБЩЕННО СУБНОРМАЛЬНЫХ
-ПОДГРУПП
Курсовая работа
Исполнитель:
Студентка группы М-43 МОКЕЕВА О. А.
Научный руководитель:
доктор ф-м наук, профессор Семенчук В. Н.
Гомель 2008
Содержание
Перечень условных обозначений
Введение
Заказать дипломную - rosdiplomnaya.com
Новый банк готовых защищённых на хорошо и отлично дипломных работ предлагает вам написать любые проекты по желаемой вами теме. Профессиональное написание дипломных проектов по индивидуальному заказу в Новокузнецке и в других городах России.
1 Некоторые базисные леммы
2 Критерий принадлежности факторизуемой группы
классическим классам конечных групп
3 Сверхрадикальные формации
Заключение
Список использованных источников
Перечень условных обозначений
Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].
--- множество всех натуральных чисел;
--- множество всех простых чисел;
--- некоторое множество простых чисел, т. е.
;
---
дополнение к во множестве всех простых чисел; в частности,
;
примарное число --- любое число вида .
Буквами обозначаются простые числа.
Пусть --- группа. Тогда:
--- порядок группы
;
---
множество всех простых делителей порядка группы ;
-группа --- группа
, для которой
;
-группа --- группа
, для которой
;
--- коммутант группы
, т. е. подгруппа, порожденная коммутаторами всех элементов группы
;
--- подгруппа Фиттинга группы
, т. е. произведение всех нормальных нильпотентных подгрупп группы
;
--- наибольшая нормальная
-нильпотентная подгруппа группы
;
--- подгруппа Фраттини группы
, т. е. пересечение всех максимальных подгрупп группы
;
--- наибольшая нормальная
-подгруппа группы
;
---
-холлова подгруппа группы
;
--- силовская
-подгруппа группы
;
--- дополнение к силовской
-подгруппе в группе
, т. е.
-холлова подгруппа группы
;
--- нильпотентная длина группы
;
---
-длина группы
;
--- минимальное число порождающих элементов группы
;
--- цоколь группы
, т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы
;
--- циклическая группа порядка
.
Если и
--- подгруппы группы
, то :
---
является подгруппой группы
;
---
является собственной подгруппой группы
;
---
является нормальной подгруппой группы
;
--
- ядро подгруппы в группе
, т. е. пересечение всех подгрупп, сопряженных с
в
;
--- нормальное замыкание подгруппы
в группе
, т. е. подгруппа, порожденная всеми сопряженными с
подгруппами группы
;
--- индекс подгруппы
в группе
;
;
--- нормализатор подгруппы
в группе
;
--- централизатор подгруппы
в группе
;
--- взаимный коммутант подгрупп
и
;
--- подгруппа, порожденная подгруппами
и
.
Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы
, не содержащая собственных неединичных нормальных подгрупп группы
;
---
является максимальной подгруппой группы
.
Если и
--- подгруппы группы
, то:
--- прямое произведение подгрупп
и
;
--- полупрямое произведение нормальной подгруппы
и подгруппы
;
---
и
изоморфны;
--- регулярное сплетение подгрупп
и
.
Подгруппы и
группы
называются перестановочными, если
.
Группу называют:
-замкнутой, если силовская
-подгруппа группы
нормальна в
;
-нильпотентной, если
-холлова подгруппа группы
нормальна в
;
-разрешимой, если существует нормальный ряд, факторы которого либо
-группы, либо
-группы;
-сверхразрешимой, если каждый ее главный фактор является либо
-группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
разрешимой, если существует номер такой, что
;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.
-замкнутая группа --- группа, обладающая нормальной холловской
-подгруппой.
-специальная группа --- группа, обладающая нильпотентной нормальной холловской
-подгруппой.
-разложимая группа --- группа, являющаяся одновременно
-специальной и
-замкнутой.
Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы
называется такая подгруппа
из
, что
.
Цепь --- это совокупность вложенных друг в друга подгрупп.
Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.
Ряд подгрупп называется:
субнормальным, если для любого
;
нормальным, если для любого
;
главным, если является минимальной нормальной подгруппой в
для всех
.
Класс групп --- совокупность групп, содержащая с каждой своей группой и все ей изоморфные группы.
-группа --- группа, принадлежащая классу групп
.
Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.
Если --- класс групп, то:
--- множество всех простых делителей порядков всех групп из
;
--- множество всех тех простых чисел
, для которых
;
--- формация, порожденная классом
;
--- насыщенная формация, порожденная классом
;
--- класс всех групп
, представимых в виде
где ,
;
;
--- класс всех минимальных не
-групп, т. е. групп не принадлежащих
, но все собственные подгруппы которых принадлежат
;
--- класс всех
-групп из
;
--- класс всех конечных групп;
--- класс всех разрешимых конечных групп;
--- класс всех
-групп;
--- класс всех разрешимых
-групп;
--- класс всех разрешимых
-групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп с нильпотентной длиной
.
Если и
--- классы групп, то:
.
Если --- класс групп и
--- группа, то:
--- пересечение всех нормальных подгрупп
из
таких, что
;
--- произведение всех нормальных
-подгрупп группы
.
Если и
--- формации, то:
--- произведение формаций;
--- пересечение всех
-абнормальных максимальных подгрупп группы
.
Если --- насыщенная формация, то:
--- существенная характеристика формации
.
-абнормальной называется максимальная подгруппа
группы
, если
, где
--- некоторая непустая формация.
-гиперцентральной подгруппой в
называется разрешимая нормальная подгруппа
группы
, если
обладает субнормальным рядом
таким, что
(1) каждый фактор является главным фактором группы
;
(2) если порядок фактора есть степень простого числа
, то
.
---
-гиперцентр группы
, т. е. произведение всех
-гиперцентральных подгрупп группы
.
Введение
Вопросы, посвященные факторизации групп, в теории конечных групп занимают важное место. Под факторизацией конечной группы понимается представление ее в виде произведения некоторых еe подгрупп, взятых в определенном порядке, или попарно перестановочных. Исследуются как способы факторизации заданной группы, так и свойства групп, допускающих ту или иную заданную факторизацию.
Начало исследований по факторизации конечных групп восходит к классическим работам Ф. Холла [62, 63], посвященных изучению строения разрешимых групп. Как известно, Ф. Холлом было доказано [63], что конечная разрешимая группа допускает факторизацию при помощи некоторых своих перестановочных силовских подгрупп различных порядков (составляющих так называемую силовскую базу разрешимой группы).
Следующий важный шаг в данном направлении был сделан С. А.Чунихиным, которым был исследован ряд важных арифметических свойств конечных групп [43]. Вопросами факторизации конечных групп занималось много математиков, и развитию данного направления посвящено много научных работ известных математиков.
Кегель и Виландт [68, 75] установили, что конечная группа, факторизуемая двумя нильпотентными подгруппами разрешима. Теорема Кегеля --- Виландта послужила источником многочисленных обобщений и стимулировала дальнейшее развитие ряда вопросов, связанных с факторизациями конечных групп.
Cреди дальнейших исследований, посвященных факторизации групп, выделяются работы Л. С. Казарина [6, 7, 67], Л. А. Шеметкова [45, 46], В. С. Монахова [13, 14], А. Н. Скибы [12, 61], В. Н. Тютянова [38] и др.
Важную роль для дальнейшего строения факторизуемых групп оказала идея Гашюца о том [59], что внутреннее строение конечной группы удобно исследовать по отношению к некоторому фиксированному классу групп, названному Гашюцем насыщенной формацией.
Напомним, что насыщенной формацией конечных групп называется класс конечных групп, замкнутый относительно гомоморфных образов, подпрямых произведений и фраттиниевых расширений. Такой подход к изучению строения конечных групп привлек внимание многих специалистов по алгебре и исследования, связанные с насыщенными формациями, составили одно из доминирующих направлений современной теории классов групп.
Эффективность метода Гашюца проявилась прежде всего в том, что многие коренные свойства конечных групп имеют инвариантный характер при переходе от одной насыщенной формации к другой.
Известно, что класс нильпотентных групп замкнут относительно произведения нормальных подгрупп. В работе [64] Хоуксом была поставлена задача об описании наследственных разрешимых формаций Фиттинга, т. е. формаций
, замкнутых относительно произведения нормальных
-подгрупп. Брайс и Косси в работе [53] доказали, что любая разрешимая наследственная формация Фиттинга является насыщенной. Полное решение проблемы Хоукса было получено В. Н. Семенчуком в работах [27, 30].
Развивая подход Хоукса, Л. А. Шеметков предложил изучать формации , замкнутые относительно произведения
-подгрупп, обладающих некоторыми заданными свойствами. В настоящее время данная тематика активно развивается математиками Испании, Китая, Беларуси.
В теории классов конечных групп естественным обобщением понятия субнормальности является понятие -субнормальности и
-достижимости. В дальнейшем такие подгруппы будем нызывать обобщенно субнормальными.
Одной из первых классификационных проблем данного направления является проблема Л. А. Шеметкова об описании наследственных насыщенных сверхрадикальных формаций, т. е. формаций с тем свойством, что любая группа
, где
и
--
-субнормальные
-подгруппы, принадлежит
.
Данная проблема сразу привлекла пристальное внимание специалистов по теории классов конечных групп. В работе [28] В. Н. Семенчуком в классе конечных разрешимых групп получено полное решение данной проблемы. Л. А. Шеметковым и В. Н. Семенчуком в работе [33] найдены серии произвольных наследственных насыщенных сверхрадикальных формаций.
Известно, что формация всех сверхразрешимых групп не замкнута относительно произведения нормальных сверхразрешимых подгрупп, но замкнута относительно произведения нормальных сверхразрешимых подгрупп взаимно простых индексов. В связи с этим возникает задача об описании наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных (
-субнормальных,
-достижимых)
-подгрупп, индексы которых взаимно просты.
Классифицировать наследственные насыщенные формации с тем свойством, что любая группа
, где
и
---
-субнормальные
-подгруппы взаимно простых индексов, принадлежит
.
В 1996 году В. Н. Тютянов в работе [38] доказал, что любая конечная группа вида , где
и
---
-нильпотентные подгруппы и индексы
,
не делятся на некоторое простое число
, является
-нильпотентной группой.
Естественно возникает задача об описании наследственных насыщенных формаций , замкнутых относительно произведения
-подгрупп, индексы которых не делятся на некоторое фиксированное простое число.
В попытках решения этих и других классификационных проблем выявилась особая роль критических групп формации ( минимальных не
-групп), т. е. групп, не принадлежащих некоторому классу групп
, но все собственные подгруппы которых принадлежат
. Еще в 1933 году С. А. Чунихин [40] поставил задачу изучения строения группы, в зависимости от свойств ее критических подгрупп. Развивая данную идею С. А. Чунихина, Л. А. Шеметков на восьмом (Сумы, 1982 г.) и девятом (Москва, 1984 г.) Всесоюзных симпозиумах по теории групп отметил особую роль критических групп при изучении не только отдельной группы, но и при описании классов групп.
Таким образом, задача классификации наследственных насыщенных формаций , замкнутых относительно произведения
-подгрупп, обладающих заданными свойствами, занимает важное место в современной теории классов групп. На реализацию этой актуальной задачи и направлено данное диссертационное исследование.
1. Некоторые базисные леммы
В теории конечных групп одним из основных понятий является понятие субнормальности подгрупп, введенное Виландтом в работе [73].
Напомним, что подгруппа называется субнормальной подгруппой группы
, если существует цепь подгрупп
такая, что для любого подгруппа
нормальна в
.
Естественным обобщением понятия субнормальности является понятие -субнормальности, которое для произвольных конечных групп впервые введено Л. А. Шеметковым в монографии [44].
Пусть --- непустая формация. Подгруппу
группы
называют
-субнормальной, если либо
, либо существует максимальная цепь
такая, что для всех
.
Несколько другое понятие -субнормальности введено Кегелем в работе [69]. Фактически оно объединяет понятие субнормальности и
-субнормальности в смысле Шеметкова.
Подгруппу называют
-субнормальной в смысле Кегеля или
-достижимой, если существует цепь подгрупп
такая, что для любого либо подгруппа
нормальна в
, либо