Дипломная работа на тему "Организация дорожного движения на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана"

ГлавнаяТранспорт → Организация дорожного движения на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Организация дорожного движения на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана":


Введение

Рост автомобильного парка и объема перевозок ведет к увеличению интенсивности движения, что в условиях городов с исторически сложившейся застройкой приводит к возникновению транспортной проблемы. Особенно остро она проявляется в узловых пунктах улично-дорожной сети. Здесь увеличиваются транспортные задержки, образуются очереди и заторы, что вызывает снижение скорости сообщения, неоправданный перерасход топлива и повышенное изнашивание узлов и агрегатов транспортных средств. Пе ременный режим движения, частые остановки и скопления автомобилей на перекрестках являются причинами повышенного загрязнения воздушного бассейна города продуктами неполного сгорания топлива. Городское население постоянно подвержено воздействию транспортного шума и отработавших газов. Рост интенсивности транспортных и пешеходных потоков непосредственно сказывается также на безопасности дорожного движения. Свыше 60% всех дорожно-транспортных происшествий (ДТП) приходится на города и другие населенные пункты. При этом на перекрестках, занимающих незначительную часть территории города, концентрируется более 30% всех ДТП. Обеспечение быстрого и безопасного движения в современных городах требует применения комплекса мероприятий архитектурно-планировочного и организационного характера. К числу архитектурно-планировочных мероприятий относятся строительство новых и реконструкция существующих улиц, проездов и магистралей, строительство транспортных пересечений в разных уровнях, пешеходных тоннелей, объездных дорог вокруг городов для отвода транзитных транспортных потоков и так далее.

Организационные мероприятия способствуют упорядочению движения на уже существующей (сложившейся) улично-дорожной сети. К числу таких мероприятий относятся введение одностороннего движения, кругового движения на перекрестках, организация пешеходных переходов и пешеходных зон, автомобильных стоянок, остановок общественного транспорта и другие. В то время как реализация мероприятий архитектурно-планировочного характера требует, помимо значительных капиталовложений, довольно большого периода времени, организационные мероприятия способы провести хотя и к временному, но сравнительно быстрому эффекту. В ряде случаев организационные мероприятия выступают в роли единственного средства для решения транспортной проблемы. Речь идет об организации движения в исторически сложившихся кварталах старых городов, которые чисто являются памятниками архитектуры и не подлежат реконструкции. Кроме того, развитие улично-дорожной сети нередко связано с ликвидацией зеленых насаждений, что не всегда является целесообразным. При реализации мероприятий по организации движения особая роль принадлежит внедрению технических средств: дорожных знаков и дорожной разметки, средств светофорного регулирования, дорожных организаций и направляющих устройств. При этом светофорное регулирование является одним из основных средств обеспечения безопасности движения на перекрестках. Количество перекрестков, оборудованных светофорами, в крупнейших городах с высоким уровнем автомобилизации непрерывно возрастает и достигает в некоторых случаях соотношения: один светофорный объект на 1,5-2 тыс. жителей города. За последние годы в нашей стране и за рубежом интенсивно ведутся работы по созданию сложных автоматизированных систем с применением управляющих ЭВМ, средств автоматики, телемеханики, диспетчерской связи и телевидения для управление движением в масштабах крупного района или целого города. Опыт эксплуатации таких систем убедительно свидетельствует об их эффективности в решении транспортной проблемы.

1. Обзор состояния организации дорожного движения на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана

Дорожное движение является сложной динамической системой. Основными показателями эффективности дорожного движения являются скорости и безопасность. Чтобы обеспечить эффективность дорожного движения, необходима совместимая деятельность специалистов и организаций различного профиля. По сложившейся терминологии под организацией дорожного движения понимают весь комплекс деятельности, направленный на обеспечение оптимальной скорости и безопасности дорожного движения на объектах УДС.

Места УДС, где пересекаются в одном уровне дороги, а следовательно, транспортные и пешеходные потоки называют перекрестками. Существуют и другие термины для определения этих мест: транспортные узлы, развилки, пересечения и т. д. эти три термина охватывают и пересечения в разных уровнях, поэтому имеют более широкое значение.

Перекрестки являются местами, где, как правило наиболее часто возникают ДТП и задержки движения. Поэтому именно в этих местах в первую очередь требуется применение мер по организации движения и, в частности, введение принудительного регулирования.

В зависимости от наличия и характера управления движением, перекрестки разделяют на регулируемые и нерегулируемые.

К регулируемым относят такие перекрестки (и пересечения), где предусмотрено светофорное регулирование, разделяющее во времени движение транспортных средств и пешеходов по конфликтующим направлениям.

По условиям движения нерегулируемые перекрестки существенно различают в зависимости от применяемых мер организации движения. Нерегулируемые перекрестки можно разделить на следующие группы: с неорганизованным движением; с обозначенным приоритетом для транспортных средств; с круговой схемой движения.

В условиях современной организации движения перекрестки с неорганизованным движением допускаются только на второстепенных улицах и дорогах, где интенсивность движения незначительна. В этих местах порядок разъезда регламентируется Правилами дорожного движения.

1.1 Изучение схемы организации движения на перекрестке ул. Карла Маркса – ул. 10 лет независимости Казахстана

Изучение схемы организации движения начинается с составления планировочной схемы перекрестка. Далее изучается схема движения, т. е. разрешенные направления движения транспортных средств и пешеходов. На схеме приводим схему организации движения транспортных средств и пешеходов, а также дорожные знаки и разметку, применяемые на перекрестке.

Сложность перекрестка определяется числом и степенью опасности конфликтных точек. Конфликтными точками называют места УДС, где проходит взаимодействие траекторий движения транспортных средств между собой или транспортных средств и пешеходов. Конфликтные точки на перекрестке подразделяются на точки отклонения, точки слияния и точки пересечения траекторий движения.

Характерной особенностью каждой конфликтной точки является не только потенциальная опасность столкновения транспортных средств, но и вероятность задержки транспортных средств.

Сложность перекреста определяется по формуле:

m = n0 + 3nc + 5nn,

где, m – показатель сложности перекрестка;

n0 – конфликтная точка отклонения;

Заказать дипломную - rosdiplomnaya.com

Уникальный банк готовых успешно сданных дипломных проектов предлагает вам приобрести любые проекты по необходимой вам теме. Профессиональное выполнение дипломных проектов по индивидуальному заказу в Саратове и в других городах России.

nc - конфликтная точка слияния;

nn - конфликтная точка пересечения.

m = 8 + 3 * 8 + 5 * 16 = 112

Каждая конфликтная точка в зависимости от степени сложности оценивается определенным баллом. Так каждая конфликтная точка отклонения оценивается в 1 балл, слияния – в три балла, а пересечения – в пять баллов.

Если число m<40, то перекресток считается простым. При 80>m>40 перекресток считается средней сложности, при 150>m>80 – перекресток сложный, а при m>150 перекресток относится к очень сложным.

Так как рассматриваемый перекресток является четырехсторонним, со всеми разрешенными маневрами для однорядных потоков транспортных средств встречного направления, мы выявили 32 конфликтные точки. А перекресток имеющий 32 конфликтные точки, и характеризующийся m*112, относится к сложному.

1.2 Обоснование необходимости введения светофорного регулирования

Введение светофорного регулирования ликвидирует наиболее конфликтные точки, что способствует повышению безопасности движения. Вместе с тем появление светофора на перекрестке вызывает транспортные задержки даже на главной дороге, порой весьма значительные из-за характерной для этой дороги высокой интенсивности движения и господствующего в настоящее время жесткого и программного регулирования. Таким образом, введение светофорного регулирования является не всегда оправданным и зависит прежде всего от интенсивности конфликтующих потоков и от числа и тяжести ДТП.

В соответствии с ГОСТ-23457-86 "Технологические средства организации дорожного движения, Правила применения" транспортные светофоры, а также пешеходные светофоры следует устанавливать на перекрестках и пешеходных переходах при наличии хотя бы одного из следующих условий:

Условие 1. Задано в виде сочетаний критических интенсивностей движения на главной и второстепенной дорогах. Введение светофорного регулирования считается оправданным, если наблюдаемая на перекрестке интенсивность конфликтующих транспортных потоков в течении каждого из любых 8 ч. обычного рабочего дня не менее заданных сочетаний.

Условие 2. Задано в виде сочетаний критических интенсивностей конфликтующих транспортного и пешеходного потоков. Введение светофорного регулирования считается оправданным, если в течение каждого из любых 8 ч. обычного рабочего дня по дороге в двух направлениях движется не менее 600 ед/ч транспортных средств и в то же время эту улицу в одном, наиболее загруженном направлении не менее 150 чел/ч.

Условие 3. Заключается в том, что светофорное регулирование вводится, когда условие 1 и 2 целиком не выполняется, но оба не выполняются не менее чем на 80%.

Условие 4. Задано определенным числом ДТП. Введение светофорного регулирования считается оправданным, если за последние 12 мес. На перекрестке произошло не менее 3 ДТП (которые могли быть предотвращены при наличии светофорной сигнализации) и хотя бы одно из условий 1 и 2 выполняется не менее чем на 80%.

По данным УДП ГУВД Карагандинской области по городу Абаю за первые три месяца 2004 года на данном перекрестке было совершено 3 крупных ДТП с нанесением материального ущерба и ранением людей. Таким образом, в данном случае присутствует условие 4. И введение светофорного регулирования является обоснованным.

2. Исследование дорожного движения и разработка мероприятий по совершенствованию ОДД на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана

2.1 Классификация и характеристика методов

В отечественной и зарубежной практике исследований дорожного движения известно много способов, начиная от простейших, выполнение которых доступно одному человеку без специального оснащения, и кончая сложными и трудоемкими, выполнение которых возможно лишь при применении электронно-вычислительной техники. Многообразие методов объясняется, с одной стороны, большим количеством задач, входящих в организацию движения, и параметров, влияющих на характеристики движения, а с другой стороны, постоянным совершенствованием аппаратуры, применяемой как для получения первичных данных, так и для последующей их обработки. Коренные изменения в практику исследований параметров дорожного движения и их использования вносит применение кибернетических систем управления движением, основой которых является постоянный автоматический сбор и анализ информации о состоянии транспортных потоков. Однако для решения отдельных оперативных задач организации движения даже на территориях включенных в систему автоматизированного управления, необходимы и более простые способы исследования, предусматривающие непосредственное участие человека.

На рис. 1 представлена классификация наиболее распространенных методов исследования характеристик и условий дорожного движения, в основу которой положен способ получения необходимой информации. По этому признаку методы можно подразделить на три основные группы:

1) документальное изучение, 2) натурные исследования и 3) моделирование.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 3 - Структурная схема классификации основных методов исследования дорожного движения

2.2 Документальное изучение

Основным признаком этого метода является изучение материала в кабинетных условиях, поэтому этот метод иногда называют камеральным. Документальное изучение можно осуществлять как на базе специально собранных данных, так и обработкой существующих и предназначенных для других целей материалов. Так, достаточно подробные сведения об ожидаемых транспортных потоках в зонах предполагаемого крупного строительства могут быть составлены на основе изучения проектных и плановых материалов в соответствующих организациях. Другим примером может служить анализ документов, характеризующих работу маршрутного пассажирского транспортна, которые можно получить в соответствующем транспортном предприятии. При этом можно составить характеристики движения подвижного состава в различные периоды суток, не подводя непосредственного наблюдения. Специальный сбор материалов о размерах и направлениях перевозок (и по другим вопросам) часто осуществляют организацией анкетного обследования. Типичным примером анкетного обследования является опрос владельцев личных автомобилей в городе о величине совершаемых ими пробегов и наиболее характерных маршрутах поездок по дням недели, месяцам и в течение года. Основным элементом такого обследования является анкета, содержащая необходимый минимум вопросов. В современных условиях анкета, как правило, разрабатывается так, чтобы ее данные могли быть перенесены на перфокарты для последующей машинной обработки.

Анкета обследования промышленных предприятий для установления ожидаемого грузооборота, а следовательно, и размеров движения может содержать вопросы о количестве выпускаемой продукции, потребляемом сырье, топливе, полуфабрикатах, намечаемом строительство и его потребностях.

Сведения должны запрашиваться, естественно, только по тем грузам, которые перевозятся автомобильным и городским электрическим транспортом посуточным, месячным и квартальным планам. Один из возможных вариантов анкеты для сбора такого рода материала представлен в форме 1.

При заполнении анкеты рекомендуется всех отправителей и получателей грузов подразделить на три группы: а). расположенные на городской территории; б). пригородные и в). иногородние. Расстояние перевозок грузов определяется по фактическим маршрутам, соответствующим имеющейся улично-дорожной сети. Анкетный опрос может быть использован также для организации движения или дорожных условий, которые характерны для конкретного маршрута или участка улично-дорожной сети.

Форма 1

Анкета

Изучение грузовых автомобильных перевозок

Наименование предприятия______________________

Сведения по грузообороту на 20__г. Адрес_______________________________

--------------------------------------------------

Категория

и наимено-вание груза

| Наименование и адрес | Расстояние, км | Объем перевозок, тыс. т | Оборот в год, тыс. км | Объем перевозок по кварталам, т | Характеристика эксплуатируемых автомобилей |
---------------------------------------------------------
Отправи-теля груза |

Получа-

теля груза

| I | II | III | IV |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Важным разделом камеральных исследований является прогнозирование размеров движения. Такой расчет основывается на гипотезе пропорциональности роста размеров движения и парка автомобилей. Соответствующее изучение картотеки учета ДТП в аппаратах ГАИ позволяет выполнить их всесторонний анализ и дать обобщенную характеристику причин и факторов, способствующих возникновению ДТП без выезда на места происшествий.

Анализ имеющейся проектной документации на улично-дородной сети позволяет подготовить предварительную характеристику дорог (общей ширины, числа полос, радиусов закруглений и того типа), необходимых для разработки решений по организации движения. По мере необходимости эти документальные данные могут уточняться натурным обследованием.

2.3 Натурные исследования

Натурные исследования заключаются в фиксации конкретных условий и показателей дорожного движения, фактически происходящего в течение заданного периода времени. Эта группа методов в настоящее время наиболее распространена и отличается большим многообразием. Натурные исследования являются единственным способом получения достоверной информации о состоянии дорог и позволяют дать точную характеристику существующих транспортных и пешеходных потоков.

Натурные исследования характеристик дорожного движения могут быть с точки зрения метода получения и характера получаемой информации подразделены на две подгруппы: 1) изучение на стационарных постах, позволяющие получить многие характеристики и их изменение во времени, однако только в тех сечениях улично-дорожной сети, где они расположены; 2) изучение с помощью подвижных средств, позволяющее получить пространственную и пространственно - временную характеристику различных факторов дорожного движения.

Исследования, относящиеся ко 2-й группе, чаще всего осуществляют при помощи автомобиля-лаборатории или так называемого автомобиля, "плавающего" в потоке. Общим условием для всех натурных исследований является необходимость присутствия наблюдателя (или автоматического датчика) в обследуемой точке улично-дорожной сети. Натурные исследования дорожного движения могут осуществляться пассивными или активными методами.

При пассивном методе (простом наблюдении) фиксируются лишь фактически сложившиеся режимы движения, и экспериментатор не вмешивается и не изменяет их, то есть получает "фотографию" существующего положения. Вместе с тем во многих случаях определенные показатели транспортного и пешеходного потока могут существенно изменяться даже при относительно небольшом улучшении организации движения, например, при введении необходимой информации для участников движения. Поэтому во многих случаях необходимо проведение активного эксперимента, то есть не только ограничивающегося фиксацией существующего положения, но и обеспечивающего проверку вариантов при частичном изменении условий движения.

Эффективность натурных исследований может быть существенно повышена путем применения методов планирования эксперимента.

2.4 Моделирование движения

Моделирование движения заключается в искусственном воспроизведении процесса движения физическими или математическими методами, например, с помощью ЭВМ.

В качестве примеров физических методов моделирования могут быть названы исследования движения на различных макетах элементов дороги или полигонные испытания, где создаются искусственные условия имитирующие реальное движение транспортных средств. Простейшим примером физического моделирования может служить распространенный метод проверки возможностей маневрирования и постановки на стоянку различных транспортных средств с помощью их моделей на заданной площади, изображенной в уменьшенном масштабе.

Наибольшее значение имеет математическое моделирование (вычислительный эксперимент), основывающееся на математическом описании транспортных потоков. Благодаря быстродействию ЭВМ, на которых осуществляется такое моделирование, удается в минимальное время провести исследование влияния многочисленных факторов на изменения различных параметров и их сочетания и получить данные для оптимизации управления движением (например, для регулирования на пересечении), которые невозможно обеспечить натурными исследованиями.

В основу вычислительного эксперимента с применением ЭВМ легло понятие модели объекта, то есть математическое описание, соответствующее данной конкретной системе и отражающее с требуемой точностью поведение ее в реальных условиях. Вычислительный эксперимент дешевле, проще натурного, легко управляем. Он открывает путь к решению больших комплексных проблем и оптимальному расчету транспортных систем, научно обоснованному планированию исследований. Недостаток вычислительного эксперимента состоит в том, что применимость его результатов ограничена рамками принятой математической модели, построенной на основе закономерностей, выявленных с помощью натурного эксперимента.

Изучение результатов натурного эксперимента позволяет получить функциональные соотношения и теоретические распределения, исходя из которых строится математическая модель. Математическое моделирование в вычислительном эксперименте целесообразно разделить на аналитическое и имитационное. Процессы функционирования систем при аналитическом моделировании описываются с помощью некоторых функциональных отношений или логических условий. Учитывая сложность процесса дорожного движения, для упрощения приходится прибегать к серьезным ограничениям. Однако, несмотря на это, аналитическая модель позволяет находить приближенное решение задачи. При невозможности получения решения аналитическим путем модель может исследоваться с применением численных методов, позволяющих находить результаты при конкретных начальных данных. В этом случае целесообразно использовать имитационное моделирование, подразумевающее применение ЭВМ и алгоритмическое описание процесса вместо аналитического.

Широкое применение имитационное моделирование может найти для оценки качества организации движения, а также при решении различных задач, связанных с проектированием автоматизированных систем управления дорожным движением, например, при решении вопроса об оптимальной структуре системы. К числу недостатков имитационного моделирования относят частный характер получаемых решений, а также большие затраты машинного времени для получения статически достоверного решения.

Следует отметить, что в настоящее время область моделирования транспортных потоков находится в стадии формирования. Различные аспекты моделирования исследуются в МАДИ, ВНИИБД, НИИАТ и других организациях.

2.5 Организационные и методические задачи

Организационные и методические задачи исследований, которые необходимо решать для того, чтобы получить достаточный объем достоверных данных, зависят от цели, масштабов и возможностей инструментального оснащения проводимых исследовательских работ. Однако во всех случаях следует придерживаться некоторых общих принципов при подготовке и проведении исследования.

Каждое исследование, как правило, состоит из четырех основных этапов:

1-й этап - разработка проекта программы и методики исследования (обследования);

2-й этап - подготовка исследования;

3-й этап - непосредственное проведение исследования;

4-й этап - обработка полученных данных и составление отчета.

На 1-м этапе формируются цели и задачи исследования, определяются место, время и объем наблюдений, необходимое оборудование и аппаратура, количество исполнителей работы.

На 2-м этапе проводится подготовка аппаратуры и исполнителей работы, а также проводятся пробные обследования (репетиции).

Общий успех исследования во многом зависит от тщательности выполнения 1 и 2-го этапов, то есть детальности разработки программы и достаточной предварительной подготовки всех участков работы.

При разработке программы исследования важно определить не только методы получения изучаемых показателей, но и формы для их регистрации, которые должны быть заранее заготовлены. При подготовке натуральных исследований особенности условий и режимов движения и соответственно методику работы во всех деталях трудно предусмотреть, особенно если такого рода исследование проводится впервые. Поэтому окончательно уточнять программу и методику следует после предварительного эксперимента, в процессе которого осуществляется и тренировка участников предстоящей работы. При определении объема информации, которую намечается собрать в ходе исследования, обязательно следует также учитывать реальные возможности последующей обработки материала в приемлемые сроки с учетом применения машинных методов.

Типовое натурное исследование, проводимое с целью получения исходных данных для улучшения организации движения, должно дать следующий минимум данных по исследуемой магистрали, району или городу: интенсивность и состав транспортных потоков в характерных сечениях и узловых пунктах по часам суток в будние и воскресные дни; пиковые периоды движения; распределение транспортных потоков в узлах по направлениям; характеристики скоростных режимов и задержек по важнейшим магистралям и направлениям в свободных условиях движения и в часы пик.

Эти результаты обследования должны быть дополнены также характеристикой аварийности получаемой на основе топографического и качественного анализа статистики ДТП.

2.6 Транспортный поток

Разработка инженерных мероприятий по организации дорожного движения возможна лишь при информации о характере транспортных и пешеходных потоков и условиях, в которых происходит движение.

На основе исследований дорожного движения и практики его организации выработаны многочисленные измерители и критерии для его описания, однако до сих пор еще нет общепризнанного единого комплекса характеристик. Более того, в связи с многочисленными теоретическими и экспериментальными исследованиями постоянно предлагаются новые показатели для формирования информации по отдельным аспектам дорожного движения, что, в частности, связано с совершенствованием методов изучения дорожного движения.

При рассмотрении показателей дорожного движения следует выделить те из них, которые являются первичными. К ним следует отнести показатели, определяемые потребностями в перевозках пассажиров и грузов, а также в пешеходных сообщениях. В отличие от них все другие показатели являются вторичными или производными, так как они отражают не потребности народного хозяйства и населения в транспортном сообщении и передвижении, а фактически условия дорожного движения. К первичным показателям относятся суммарная интенсивность движения транспортных средств и пешеходов за относительно длительный отрезок времени и состав транспортного потока. Некоторые авторы называют этот показатель объемом движения. Именно этот показатель определяется размерами осуществляемых по тому или иному направлению автомобильных перевозок. Все остальные показатели можно считать производными, так как они будут в основном определяться этим первичным параметром и совокупностью условий дорожного движения. К наиболее часто применяемым для характеристики дорожного движения показателям относятся: интенсивность движения; состав транспортного потока; плотность потока транспортных средств; скорость движения; продолжительность задержек движения.

Интенсивность движения Nа - это количество транспортных средств, проходящих через сечение дороги за единицу времени. В качестве расчетного периода времени для определения интенсивности движения принимают год, месяц, сутки, час и более короткие промежутки времени (минуты, секунды) в зависимости от поставленной задачи наблюдения. На дорожно-уличной сети можно выделить отдельные участки и зоны, где движение достигает максимальных размеров, в то время как на других участках оно в несколько раз меньше. Такая пространственная неравномерность отражает, прежде всего, неравномерность размещения грузо - и пассажирообразующих пунктов и их функционирования.

Наиболее часто интенсивность движения транспортных средств и пешеходов в практике организации движения характеризуют ее часовым значением. При этом наибольшее значение имеет показатель интенсивности в часы пик, так как именно в этот период возникают наиболее сложные задачи организации движения. Необходимо, однако, иметь в виду, что интенсивность (объем движения) в часы пик в различные дни недели, месяца и года может иметь неодинаковое значение.

На дорогах с более высоким уровнем интенсивности движения транспортных средств меньше неравномерность движения и стабильнее значение интенсивности пикового часа.

Для двухполосных дорог со встречным движением обычно интенсивность движения характеризуют суммарной величиной встречных потоков, так как условия движения и, в частности, возможность обгонов определяются загрузкой обеих полос. Если же дорога имеет разделительную полосу и встречные потоки изолированы друг от друга, то суммарная интенсивность встречных направлений не определяет условия движения, а характеризует лишь суммарную работу дороги как сооружения. Для таких дорог самостоятельное значение имеет интенсивность движения в каждом направлении.

Во многих случаях, особенно при решении вопросов регулирования движения в городских условиях, имеет значение не суммарная интенсивность потока по данному направлению, а интенсивность, приходящая на полосу, или так называемая удельная интенсивность движения, которую можно обозначить как Ма. Величина Ма характеризует, в частности, время, которое необходимо потоку транспортных средств с интенсивностью движения Nа для прохождения зоны перекрестка при наличии нескольких полос движения. Если известно конкретное распределение интенсивности движения по полосам и оно существенно неравномерно, то в качестве удельной интенсивности Ма следует принимать величину интенсивности движения по наиболее загруженной полосе. Величиной, обратной интенсивности движения, является временной интервал между следующими друг за другом по одной полосе транспортными средствами ti.

Состав транспортного потока характеризуется соотношением в нем транспортных средств различного рода. Состав транспортного потока оказывает значительное влияние на все параметры, характеризующие дорожное движение.

Состав транспортного потока влияет на загрузку дорог, что объясняется прежде всего существенной разницей в габаритных размерах автомобилей. Если длина отечественных легковых автомобилей массового производства составляет 4-5м, грузовых 6-8, то длина автобусов достигает 11, а автопоездов 24 м. Сочлененный автобус Икарус имеет длину 16,5 м. Однако разница в габаритных размерах не является единственной причиной необходимости специального учета состава потока при анализе интенсивности движения.

При движении в транспортном потоке важна не только разница в статическом габарите, но также в динамическом габарите длины автомобиля, который зависит в основном от времени реакции водителя и тормозной динамики транспортных средств. Под динамическим габаритом Lд подразумевается отрезок полосы дороги, минимально необходимый для безопасности движения автомобиля с заданной скоростью, длина которого включает длину автомобиля lа и дистанцию d, называемую дистанцией безопасности.


Формулы для определения тормозного пути.

Таблица 1

--------------------------------------------------
Тип транспортных средств |

Величина установившегося замедления, м/с2

| Формула для определения тормозного пути |
---------------------------------------------------------

1 Легковые автомобили

2 Автобусы с полной массой свыше 5 т

3 Грузовые автомобили

4 Автопоезд с общей массой более 15 т

|

7.0

6.0

5.5

5.5

|

Sт = 0.1 vа + vРисунок убран из работы и доступен только в оригинальном файле./182

Sт = 0.15 vа + vРисунок убран из работы и доступен только в оригинальном файле./156

Sт = 0.15 vа + vРисунок убран из работы и доступен только в оригинальном файле./143

Sт = 0.18vа + vРисунок убран из работы и доступен только в оригинальном файле./143

|
--------------------------------------------------------- --------------------------------------------------

Фактический динамический габарит автомобиля зависит также от обзорности, легкости управления, маневренности автомобиля, которые влияют на величину дистанции, избираемую водителем. При этом следует обратить внимание на следующее обстоятельство. При движении колонны легковых автомобилей каждый водитель благодаря большой поверхности остекления, а также небольшим габаритным размерам впереди идущих автомобилей может достаточно хорошо видеть и прогнозировать обстановку впереди нескольких автомобилей. В то же время, если перед легковым автомобилем движется грузовой автомобиль или автобус, то водитель лишен возможности оценивать и прогнозировать обстановку впереди этого транспортного средства и его действия по управлению становятся менее уверенными. В этом случае из-за невозможности достаточного прогнозирования обстановки впереди резко возрастает опасность при обгоне, а также в случае экстренной обстановки колонны автомобилей.

Особое влияние на формирование потока в городе оказывают троллейбусы, которые, кроме названных имеют еще одно специфическое свойство – связь с контактной линией.

2.7 Расчет интенсивности движения и состава транспортного потока на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана

Разработка инженерных мероприятий по организации дорожного движения возможна лишь при информации о характере транспортных и пешеходных потоков и условиях, в которых происходит движение. На основе исследований дорожного движения и практики его организации выработаны многочисленные измерители и критерии для его описания. При рассмотрении показателя дорожного движения следует выделить те из них, которые являются первичными. К ним относятся интенсивность движения и состав транспортного потока, а также плотность потока транспортных средств, продолжительность задержек движения. Интенсивность движения Nа – это количество транспортных средств, проходящих через сечение дороги за единицу времени. В качестве расчетного периода времени для определения интенсивности движения принимают год, месяц, сутки, час и более короткие промежутки времени в зависимости от поставленной задачи наблюдения. Состав транспортного потока характеризуется соотношением в нем транспортных средств различных типов, отражает общий состав парка и оказывает большое влияние на все параметры, характеризующие дорожное движение. Методом сплошного наблюдения по всем направлениям движения одновременно в течении одного часа. Относящегося к периоду наиболее интенсивного движения, собирается исходная информация и заносится в "Карточку учета интенсивности движения". На основе собранной информации производится расчет часовой интенсивности движения транспортных средств по направлениям.

Nпр = NлКл + NгрКгр + NавКав + NтрКтр,

где, Nпр – приведенная интенсивность движения за 60 мин. ед/ч; Nл, Nгр, Nав, Nтр – соответственно количество легковых, грузовых автомобилей, автобусов, троллейбусов в транспортном потоке за время наблюдения, авт.; Кл, Кгр, Кав, Ктр – коэффициенты приведения смешанного транспортного потока к однородному потоку легковых автомобилей соответственно для легковых автомобилей, грузовых автомобилей, автобусов и троллейбусов (Кл=1; Кгр=2; Кав=3; Ктр=4)

Карточка учета интенсивности движения. По ул. Карла Маркса в направлении "из города"

--------------------------------------------------
Вид транспорта | Отметка о прохождении транспорта |
---------------------------------------------------------
налево | прямо | направо | всего |
---------------------------------------------------------
Легковые | 87 | 168 | 164 | 419 |
---------------------------------------------------------
Грузовые | - | - | - | - |
---------------------------------------------------------
Автобусы | 1 | 8 | 4 | 13 |
---------------------------------------------------------
Итого | 88 | 176 | 168 | 432 |
--------------------------------------------------------- --------------------------------------------------

Карточка учета интенсивности движения.

По ул. Карла Маркса в направлении "в город" --------------------------------------------------
Вид транспорта | Отметка о прохождении транспорта |
---------------------------------------------------------
налево | прямо | направо | всего |
---------------------------------------------------------
Легковые | 99 | 162 | 76 | 337 |
---------------------------------------------------------
Грузовые | - | - | - | - |
---------------------------------------------------------
Автобусы | 6 | 4 | 7 | 17 |
---------------------------------------------------------
Итого | 105 | 166 | 83 | 354 |
--------------------------------------------------------- --------------------------------------------------

Карточка учета интенсивности движения.

По ул. 10 лет Независимости Казахстана в направлении "из города" --------------------------------------------------
Вид транспорта | Отметка о прохождении транспорта |
---------------------------------------------------------
налево | прямо | направо | всего |
---------------------------------------------------------
Легковые | 144 | 176 | 148 | 468 |
---------------------------------------------------------
Грузовые | - | 6 | - | 6 |
---------------------------------------------------------
Автобусы | 8 | 4 | 1 | 13 |
---------------------------------------------------------
Итого | 152 | 186 | 149 | 487 |
--------------------------------------------------------- --------------------------------------------------

Карточка учета интенсивности движения.

По ул. 10 лет Независимости Казахстана в направлении "в город" --------------------------------------------------
Вид транспорта | Отметка о прохождении транспорта |
---------------------------------------------------------
налево | прямо | направо | всего |
---------------------------------------------------------
Легковые | 136 | 17 | 104 | 418 |
---------------------------------------------------------
Грузовые | - | 13 | - | 13 |
---------------------------------------------------------
Автобусы | 3 | 5 | 14 | 22 |
---------------------------------------------------------
Итого | 139 | 196 | 118 | 453 |
--------------------------------------------------------- --------------------------------------------------

Производим расчет интенсивности движения по направлениям по вышеуказанной формуле: По ул. Карла Маркса в направлении "из города"

N 1.1 налево = 87 + 3 * 1 = 90 ед/ч

N 1.2 прямо = 168 + 3 * 8 = 192 ед/ч

N 1.3 направо = 164 + 3 * 4 = 176 ед/ч

По ул. Карла Маркса в направлении "в город"

N 3.1 налево = 99 + 3 * 6 = 117 ед/ч

N 3.2 прямо = 162 + 3 * 4 = 174 ед/ч

N 3.3 направо = 76 + 3 * 7 = 97 ед/ч

По ул. 10 лет Независимости Казахстана в направлении "из города"

N 2.1 налево = 144 + 3 * 8 = 168 ед/ч

N 2.2 прямо = 176 + 2 * 6 + 3 * 4 = 200 ед/ч

N 2.3 направо = 148 + 3 * 1 = 151 ед/ч

По ул. 10 лет Независимости Казахстана в направлении "в город"

N 4.1 налево = 136 + 3 * 3 = 145 ед/ч

N 4.2 прямо = 178 + 2 * 13 + 3 * 5 = 219 ед/ч

N 4.3 направо = 104 + 3 * 14 = 146 ед/ч

Далее производим расчет общей часовой интенсивности движения по общему направлению:

NI = 419 + 3 * 13 = 458 ед/ч

NII = 337 + 3 * 17 = 388 ед/ч

NIII = 468 + 2 * 6 + 3 * 13 = 519 ед/ч

NIV = 418 2 * 13 + 3 * 22 = 510 ед/ч

где, NI - интенсивность движения по ул. Карла Маркса в направлении "из города"

NII - интенсивность движения по ул. Карла Маркса в направлении "в город"

NIII - интенсивность движения по ул. 10 лет Независимости Казахстана в направлении "из города"

NIV - интенсивность движения по ул. 10 лет Независимости Казахстана в направлении "в город"

Важное значение в проблеме организации дорожного движения имеет неравномерность распределения интенсивности движения в пространстве и во времени. Неравномерность распределения интенсивности движения в пространстве оценивается на основе анализа картограммы интенсивности движения.

Типичную кривую распределения интенсивности движения в течении суток на заданном перекрестке мы показываем на рисунке :

Внутричасовая неравномерность распределения интенсивности движения оценивается коэффициентом временной неравномерности Кв, характеризующим колебания интенсивности движения для данного направления в целом в течении часа. Он определятся как отношение наблюдаемой интенсивности движения за рассматриваемый промежуток времени (5 мин., 20 мин., 40 мин.) для каждого направления к часовой интенсивности движения.

Кв (t) = Nпр (t) / Nпр (60)

I. По ул. Карла Маркса в направлении "из города"

Кв (5) = 46 / 458 = 0,1

Кв (20) = 135 / 458 = 0,29

Кв (40) = 317 / 458 = 0,69

II. По ул. Карла Маркса в направлении "в город"

Кв (5) = 51 / 388 = 0,13

Кв (20) = 179 / 988 = 0,46

Кв (40) = 256 / 388 = 0,66

III. По ул. 10 лет Независимости Казахстана в направлении "из города"

Кв (5) = 59 / 519 = 0,11

Кв (20) = 183 / 519 = 0,35

Кв (40) = 347 / 519 = 0,67

IV. По ул. 10 лет Независимости Казахстана в направлении "в город"

Кв (5) = 53 / 510 = 0,1

Кв (20) = 168 / 510 = 0,33

Кв (40) = 313 / 510 = 0,61

Результаты расчета заносим в таблицу 2

Таблица 2

--------------------------------------------------
№ направ. | Коэффициенты временной направленности |
---------------------------------------------------------

Кв (5)

|

Кв (20)

|

Кв (40)

|
---------------------------------------------------------
I | 0.1 | 0.29 | 0.69q |
---------------------------------------------------------
II | 0.13 | 0.46 | 0.66 |
---------------------------------------------------------
III | 0.11 | 0.35 | 0.67 |
---------------------------------------------------------
IV | 0.1 | 0.33 | 0.61 |
--------------------------------------------------------- --------------------------------------------------

2.8 Плотность транспортного потока

Плотность транспортного потока qа является пространственной характеристикой, определяющей степень стесненности движения (загрузки полосы дороги). Ее измеряют количеством транспортных средств, приходящихся на 1 км протяженности полосы дороги. Предельная плотность может наблюдаться при неподвижном состоянии колонны автомобилей, расположенных вплотную друг к другу на полосе дороги. Для современных легковых автомобилей такая предельная величина составляет около 200 авт/км. Естественно, что при такой плотности движение невозможно даже при автоматическом управлении автомобилями, так как отсутствует дистанция безопасности. Поэтому указанная величина плотности потока имеет чисто теоретическое значение. Наблюдения показывают, что для малолитражных легковых автомобилей при колонном движении с малой скоростью плотность потока может достигать 100 авт/км, что и следует принимать как максимально возможную плотность потока в движении (qa max). При использовании показателя плотности потока необходимо учитывать коэффициент приведения для различных типов транспортных средств, рассмотренных в предыдущем параграфе, так как в противном случае результаты сравнения qa для различного по составу потока могут привести к несопоставимым результатам. Так, если принять, что по дороге движется колонна автобусов с плотностью 100 авт/км (возможной, как указано выше, для легковых автомобилей), то длина такой колонны вместо километра практически составит 2.0-2.5 км. Если же учесть минимальный из рекомендуемых Кпр для автобусов, равный 3, то максимальная плотность колонны автобусов в физических единицах может составлять 33 автобуса на километр, что является реальным.

Чем меньше плотность потока на полосе дороги, тем свободнее себя чувствуют водители, тем выше скорость, которую они развивают. Наоборот, по мере повышения qa, то есть стесненности движения, от водителей требуется повышение внимательности, точности действий, а следовательно, и психологического напряжения. Одновременно увеличивается вероятность ДТП в случае ошибки, допущенной одним из водителей, или отказа механизмов автомобиля.

В зависимости от плотности потока можно условно подразделить условия движения по степени стесненности на следующие: свободное движение, частично связанное движение, насыщенное движение, колонное движение, перенасыщенное движение.

Численные величины qa в физических единицах транспортных средств, характерные для каждого из условий, весьма существенно зависят от характеристики дорого и, в первую очередь от плана и профиля дороги, скоростей движения и состава потока транспортных средств на ней.

2.9 Скорость движения

Скорость движения является важнейшим показателем дорожного движения, так как характеризует его целевую функцию. Наиболее объективной характеристикой скорости транспортного средства на дороге может служить кривая, характеризующая ее изменение на протяжении всего маршрута движения.

Однако получение таких пространственных характеристик для множества движущихся автомобилей является сложным. В практике организации движения принято характеризовать скорость движения транспортных средств мгновенными ее значениями va, зафиксированными в отдельных типичных точках дороги. Измерителем скорости доставки грузов и пассажиров является скорость сообщения vc, которая определяется как отношение расстояния между точками сообщения к времени нахождения транспортного средства в пути. Величиной, обратной скорости сообщения, является темп движения, который измеряется временем, затрачиваемым на преодоление единицы длины пути (мин/км). Этот измерить весьма удобен для расчетов времени доставки пассажиров и грузов на различные расстояния. Мгновенная скорость транспортного средства и соответственно скорость сообщения зависят от многих факторов и подвержены значительным колебаниям.

Скорость транспортного средства в пределах его тяговых возможностей и современном дорожном движении определяет водитель, являющийся управляющим звеном в системе АВД. Водитель постоянно стремится выбрать наиболее целесообразный режим скорости, исходя из двух главных критериев: 1) минимально возможной затраты времени и 2)обеспечения безопасности движения. В каждом случае на принятие решения оказывает характеристика водителя: его квалификация, психофизиологическое состояние, цель движения. Так, исследования, проведенные в одинаковых условиях на типе автомобилей, показали, что скорость движения автомобиля для разных водителей высокой квалификации может колебаться в пределах ± 10% от среднего значения, для малоопытных водителей эта разница намного больше.

Рассмотрим влияние параметров транспортных средств и дороги на скорость движения. Верхний предел скорости определяется его максимальной конструктивной скоростью vmax, которая зависит главным образом от удельной мощности двигателя. Максимальная скорость vmax современных автомобилей колеблется в широких пределах в зависимости от их типа. Она составляет (примерно): 200 км/ч для легковых автомобилей большого и среднего класса; 150-для легковых автомобилей малого класса; 100-для грузовых автомобилей средней грузоподъемности; 85-для грузовых автомобилей большой грузоподъемности и 75 км/ч –для тяжелых автопоездов.

Опыт показывает, что водитель ведет автомобиль с оптимальной скоростью лишь в исключительных случаях и кратковременно, так как это сопряжено с чрезмерно напряженным режимом работы агрегатов автомобиля; кроме того, имеющиеся на дороге даже незначительные подъемы требуют для поддержания стабильной скорости запаса мощности. Поэтому даже при благоприятных дорожных условиях водитель ведет автомобиль с максимальной скоростью длительного движения или крейсерской скоростью. Крейсерская скорость для большинства автомобилей составляет 0.7 – 0.85 vmax. Таким образом, на прямолинейных и горизонтальных участках благоустроенных дорог ожидаемых диапазон мгновенных скоростей для различных типов современных автомобилей при их свободном движении составляет 60-160 км/ч.

Однако реальные дорожные условия вносят существенные поправки в фактический диапазон наблюдаемых скоростей движения. Уклоны, криволинейные участки и неровности покрытия дороги обычно вызывают снижение скорости как вследствие большой затраты мощности и ограниченности динамических свойств автомобилей, так и в связи с необходимостью обеспечения устойчивого движения транспортных средств. Эти объективные факторы особенно сказываются на скорости наиболее быстроходных автомобилей. В связи с этим фактический диапазон мгновенных скоростей свободного движения автомобилей на горизонтальных участках магистральных улиц и дорог нашей страны составляет 50-120 км/ч. Эти цифры не относятся к дорогам, не имеющим надлежащего покрытия или с разрушенным покрытием, где скорость может понизиться до 10-15 км/ч и даже достичь еще меньшего значения.

Существенное влияние на скорость движения оказывают те элементы дорожных условий, которые связаны с особенностями психофизического восприятия водителя и уверенностью управления. Здесь вновь необходимо подчеркнуть неразрывность элементов системы АВД и решающее влияние водителей на характеристики современного дорожного движения.

Важнейшим фактором, оказывающим влияние на режимы движения через восприятие водителя, являются расстояние видимости SB на дороге и ширина полосы движения В. Под расстоянием видимости понимается протяженность участка дороги перед автомобилем видимого водителем. Величина SB определяет возможность для водителя заблаговременно оценить условия движения и прогнозировать обстановку. Обязательным условием безопасности движения является превышение величины SB над величиной остановочного пути Sо данного транспортного средства в конкретных дорожных условиях, то есть условие SB > S0.

При малой дальности видимости водитель лишается возможности прогнозировать обстановку, испытывает неуверенность и снижает скорость автомобиля. В таблице 2 даны примерные величины снижения скорости движения по сравнению со скоростью, которая обеспечивается при дальности видимости 700 м и более.

Величина снижения скорости движения при расстоянии видимости дороги.

Таблица 3

--------------------------------------------------
Уровень доверительной вероятности, % | Тип автомобилей | Снижение скорости, %, при расстоянии видимости дороги, м |
---------------------------------------------------------
100 | 200 | 300 | 400 | 500 | 600 |
---------------------------------------------------------

50

85

95

|

Грузовые

Легковые

Грузовые

Легковые

Грузовые

Легковые

|

12.2

20.0

13.5

17.5

13.9

19.2

|

8.1

13.7

9.8

12.7

9.8

14.6

|

4.9

8.6

5.8

8.3

5.9

10.2

|

2.8

4.9

3.3

4.9

3.3

6.3

|

1.5

2.3

2.0

2.5

2.0

2.5

|

0.8

0.4

1.0

0.9

1.0

1.0

|
--------------------------------------------------------- --------------------------------------------------

Ширина полосы движения, предназначенная для движения одного ряда автомобилей и выделенная обычно продольной разметкой, определяет требования к точности траектории движения автомобиля. Чем меньше ширина полосы, тем более жесткие требования предъявляются к водителю и тем больше его психическое напряжение при обеспечении точного положения автомобиля на дороге. Поэтому при малой ширине полосы, а также при встречном разъезде на узкой дороге водитель подсознательно снижает скорость.

3. Расчет предлагаемых мероприятий по совершенствованию ОДД на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана

3.1 Основы жесткого программного управления

Структура светофорного цикла. Поочередное предоставление права на движение прелагает периодичность или цикличность работы светофорного объекта. Для количественной и качественной характеристики его работы существуют понятия такта, фазы и цикла регулирования. Тактом регулирования называется период действия определенной комбинации светофорных сигналов. Такты бывают основные и промежуточные. В период основного такта разрешено (а в конфликтующем направлении запрещено) движение определенной группы транспортных и пешеходных потоков. Во время промежуточного такта выезд на перекрестках запрещен, за исключением транспортных средств, водители которых не смогли своевременно остановиться у стоп - линии. Идет подготовка перекрестка к передаче права на движение следующей группе потоков. Указанная подготовка означает освобождение перекрестка от транспортных средств и пешеходов, имевших право на движение во время предыдущего такта. Целью применения промежуточного такта является обеспечение безопасности движения в пешеходный период, когда движение предыдущей группы потоков уже запрещено, а последующая группа разрешение на движение через перекресток еще не получила. Фазой регулирования называется совокупность основного и следующего за ним промежуточного такта. Минимальное число равно двум (в противном случае отсутствуют конфликтующие потоки, и необходимость в применении светофоров отпадает). Обычно число фаз регулирования соответствует числу наиболее загруженных конфликтных направлений движения на перекрестке. Циклом регулирования называется периодически повторяющаяся совокупность всех фаз. Под режимом светофорного регулирования (светофорной сигнализации рис.1) понимается длительность цикла, а также число, порядок чередования и длительность составляющих цикл тактов и фаз.

3.2 Расчет длительности цикла светофорного регулирования и его элементов

Определение длительности цикла и основных тактов регулирования основного на сопоставлении фактической интенсивности движения на подходах к перекрестку и пропускной способности (потокам насыщения) этих подходов. Поэтому эти параметры следует рассматривать в качестве основных исходных данных для расчета.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 8 - Последовательность расчета длительности цикла и его элементов.

3.3 Расчет потоков насыщения

Поток насыщения для каждого направления данной фазы регулирования определяют путем натурных наблюдений в периоды, когда на подходе к перекрестку формируются достаточно большие очереди транспортных средств.

Поток насыщения является показателем, зависящим от многих факторов: ширины проезжей части, состояние дорожного покрытия, видимости перекрестка водителем и т. д. Поэтому для каждого перекрестка поток насыщения мы определяем экспериментально по приведенной методике.

Для ориентировочных расчетов мы используем приближенный эмпирический метод определения потоков насыщения, сущность которого заключается в следующем.

Для случая движения в прямом направлении по дороге без продольных уклонов поток насыщения рассчитываем по эмпирической формуле, которая связывает этот показатель с шириной проезжей части, используемой для движения транспортных средств в данном направлении рассматриваемой фазы регулирования.

Мнij прямо = 525 Впч

где, Мнij – поток насыщения, ед/ч

Впч – ширина проезжей части в данном направлении данной фазы, м.

Мн 1.2 прямо = 525 * 6 = 3150 ед/ч

Мн 3.2 прямо = 525 * 6 = 3150 ед/ч

Мн 2.2 прямо = 525 * 6 = 3150 ед/ч

Мн 4.2 прямо = 525 * 6 = 3150 ед/ч

Так, как на данном перекрестке движение транспортных средств прямо, а также налево и направо осуществляется по одним и тем же полосам движения и интенсивность лево- и правостороннего потоков составляет более 10% от общей интенсивности движения в рассматриваемом направлении данной фазы, поток насыщения, полученный по вышеуказанной формуле, мы корректируем:

Рисунок убран из работы и доступен только в оригинальном файле.

где, а, в, с - интенсивность движения транспортных средств соответственно прямо, налево и направо в % от общей интенсивности в рассматриваемом направлении данной фазы регулирования.

Рисунок убран из работы и доступен только в оригинальном файле.

Для право - и левосторонних потоков поток насыщения Мнij пов определяется в зависимости от процентного соотношения к общей интенсивности рассматриваемого направления данной фазы регулирования

Рисунок убран из работы и доступен только в оригинальном файле.

Так как условия на данном перекрестке относятся к средним, то поправочный коэффициент равен 1,0. При умножении значений потока насыщения на 1,0, они не изменяются.

3.4 Расчет фазовых коэффициентов

Фазовые коэффициенты определяют для каждого из направлений движение на перекрестке в данной фазе регулирования

уij = Nij / Mij ;

где, уij – фазовой коэффициент данного направления;

Nij и Mij - соответственно интенсивность движения для рассматриваемого периода суток и поток насыщения в данном направлении данной фазы регулирования, ед/ч.

Фаза № 1

у1.1 = 90 / 1058 = 0,09

у1.2 = 192 / 2520 = 0,08

у1.3 = 176 / 958 = 0,18

у3.1 = 117 / 1092 = 0,11

у3.2 = 174 / 2426 = 0,07

у3.3 = 97 / 607 = 0,16

Фаза № 2

у2.1 = 168 / 934 = 0,18

у2.2 = 200 / 2394 = 0,08

у2.3 = 151 / 694 = 0,22

у4.1 = 145 / 1057 = 0,14

у4.2 = 219 / 2457 = 0,09

у4.3 = 146 / 713 = 0,20

3.5 Расчет промежуточного такта

В соответствии с назначением промежуточного такта его длительность должна быть такой, чтобы автомобиль, подходящий к перекрестку на зеленый сигнал со скоростью свободно движения, при смене сигнала с зеленого на желтый смог либо остановиться у стопе - линии, либо успеть освободить перекресток.

Остановится у стоп – линии автомобиль сможет только в том случае, если расстояние от него до стоп – линии на проезжей части будет ровно или больше остановочного пути.

Таким образом, если рассматривать крайний случай, когда автомобиль в момент смены сигналов находился от стоп – линии на расстоянии остановочного пути, то длительности промежуточного такта должна включить в себя не только время, необходимое для освобождения автомобилем перекрестка, но и время его движения в пределах расстояния, равного остановочному пути. С другой стороны, автомобилю, начинающему движение в следующей фазе также необходимо определенное время, чтобы достигнуть точки конфликта с автомобилем предыдущей фазы. Это способствует уменьшению длительности промежуточного такта. Учитывая, что время проезда расстояния, равного остановочному пути, состоит из времени реакции водителя на смену сигналов светофора и времени торможения, можно в общем виде представить формулу промежуточного такта

Рисунок убран из работы и доступен только в оригинальном файле.,

где, Рисунок убран из работы и доступен только в оригинальном файле. - длительность промежуточного такта в данной фазе регулирования, с;

Рисунок убран из работы и доступен только в оригинальном файле. - время реакции водителя на смену сигналов светофора, с;

Рисунок убран из работы и доступен только в оригинальном файле. - время необходимое автомобилю для проезда расстояния, равного тормозному пути, с;

Рисунок убран из работы и доступен только в оригинальном файле. - время движения автомобиля до самой дальней конфликтной точки, ДКТ, с;

Рисунок убран из работы и доступен только в оригинальном файле. - время, необходимое для проезда от стоп – линии до ДКТ автомобилю, начинающему движение в следующей фазе.

Так как составляющие Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. в большинстве случаев по значению близки друг к другу, на практике обычно их исключают из расчета. С учетом этого обстоятельства, формулу для определения длительности промежуточного такта можно представить в следующем виде:

Рисунок убран из работы и доступен только в оригинальном файле.,

где, Рисунок убран из работы и доступен только в оригинальном файле.- средняя скорость транспортных средств при движении на подходе к перекрестку и зоне перекрестка без торможения (с ходу), км/ч;

Рисунок убран из работы и доступен только в оригинальном файле.-среднее замедление транспортного средства при включении запрещающего сигнала (для практических расчетов Рисунок убран из работы и доступен только в оригинальном файле.=3Рисунок убран из работы и доступен только в оригинальном файле.4 м/с2);

Рисунок убран из работы и доступен только в оригинальном файле. - расстояние от стоп – линии до самой ДКТ, м;

Рисунок убран из работы и доступен только в оригинальном файле. - длина транспортного средства, наиболее часто встречающегося в потоке, м.

Рисунок убран из работы и доступен только в оригинальном файле.,

Также вычисляем максимальное время, которое потребуется для этого пешеходу:

Рисунок убран из работы и доступен только в оригинальном файле.(пш) = Впш / (4*uпш),

где, Впш – ширина проезжей части, пересекаемой пешеходами в i – фазе регулирования, м;

uпш – расчетная скорость движения пешеходов (обычно принимается 1.3 м/с)

Рисунок убран из работы и доступен только в оригинальном файле.(пш) = 6 / (4*1.3) » 2 с

Обычно промежуточный такт обозначается желтым сигналом в направлении, где ранее (во время основного такта) осуществлялось движение. Учитывая, что в период его действия возможно движение транспортных средств, водители которых, находясь в непосредственной близости от стоп – линии, не смогли своевременно остановиться в момент его включения, длительность желтого сигнала tж не должен быть менее 3с. С другой стороны, с позиции безопасности движения (для предотвращения злоупотребления водителями правом проезда на желтый сигнал) его длительность не делают 4с.

В качестве промежуточного такта выбирают наибольшее значение из

tn = 4с

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 9 - Составляющие промежуточного такта.

3.6 Расчет цикла регулирования

В простейшем случае при равномерном прибытии транспортных средств к перекрестку (через равные интервалы времени) минимальная длительность цикла может быть определена из следующих соображений. Транспортные средства, которые прибывают к перекрестку в j-м направлении за период, равный циклу регулирования ТЦ, покидают перекресток в течение основного такта i-й фазы с интенсивностью, равной потоку насыщения МHij.

На практике равномерное прибытие транспортных средств к перекрестку является весьма редким случаем. Чаще для изолированного перекрестка характерным является случайное прибытие. Случайному прибытию транспортных средств соответствует формула цикла:

ТЦ = (1.5 *Тп +5)/(1-Y ),

Суммарный фазовый коэффициент находим по формуле:

Y = S уij мах

Y = 0,18 + 0,22 = 0,4

Определяем суммарную длительность промежуточных тактов:

Тn = S tni

Тn = 4 + 3 + 2 = 9c

Tц = (1,5 * 9 + 5) / (1 – 0,4) = 31с

По соображениям безопасности движения длительность цикла больше 120с считается недопустимой, так как водители при продолжительном ожидании разрешающего сигнала могут посчитать светофор неисправным и начать движение на запрещающий сигнал. Если расчетное значение ТЦ превышает 120с, необходимо добиться снижения длительности цикла путем увеличения числа полос движения на подходе к перекрестку, запрещение отдельных маневров, снижение числа фаз регулирования, организации пропуска интенсивности потоков в течение двух и более фаз. По тем же соображениям нецелесообразно принимать длительность цикла менее 25с.

3.7 Расчет основных тактов

Длительность основного такта ta в i–й фазе регулирования пропорциональна расчетному фазовому коэффициенту этой фазы. Поэтому, если сумма основных тактов равна ТЦ – Тп, то

T0i= [(ТЦ - Тп) Yi ] / Y = с;

t01= [(31 - 9) * 0,18 ] / 0,4 = 10с

t02= [(31 - 9) * 0,22 ] / 0,4 = 13с

Таким образом структура цикла имеет вид:

Тц = 10 + 4 + 13 + 4 = 31с

По соображениям безопасности движения t0i обычно принимают не менее 7с. В противном случае повышается вероятность цеп

Здесь опубликована для ознакомления часть дипломной работы "Организация дорожного движения на перекрестке ул. Карла Маркса и ул. 10 лет Независимости Казахстана". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 738

Другие дипломные работы по специальности "Транспорт":

Организация мероприятий по повышению безопасности движения в городе Йошкар-Ола

Смотреть работу >>

Эффективность деятельности современного транспортного предприятия

Смотреть работу >>

Ремонт и техническое обслуживание ходовой части ГАЗ-3102

Смотреть работу >>

Анализ эффективности использования основных производственных фондов ОАО "Северный порт" и разработка предложений по её повышению

Смотреть работу >>

Разработка оборудования для дозировки балласта

Смотреть работу >>