Дипломная работа на тему "Электроснабжение железнодорожного предприятия (применение аутсорсинга в электроснабжении нетяговых потребителей)"

ГлавнаяТранспорт → Электроснабжение железнодорожного предприятия (применение аутсорсинга в электроснабжении нетяговых потребителей)




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Электроснабжение железнодорожного предприятия (применение аутсорсинга в электроснабжении нетяговых потребителей)":


МПС РОССИИ

РГУПС

Кафедра АСЭл

Автор Свиридов П. М.

Руководитель инженер Ожиганов Н. В..

Дипломный проект

на тему: «Электроснабжение железнодорожного предприятия (применение аутсорсинга в электроснабжении нетяговых потребителей)».

2007

РОСЖЕЛДОР

Государственное образовательное учреждение высшего профессионального образования «Ростовский государственный университет путей сообщения»

Факул ьтет заочныйДопустить к защите в ГАК

Кафедра «АвтоматизированныеЗав. кафедрой АСЭл

системы электроснабжения»д. т.н.,профессор Ю. И. Жарков

Специальность 190401.65 " ____ " ____________2007 г.

--------------------------------------------------
ЭЛЕКТРОСНАБЖЕНИЕ ЖЕЛЕЗНОДОРОЖНОГО |
---------------------------------------------------------
ПРЕДПРИЯТИЯ |
---------------------------------------------------------
(ПРИМЕНЕНИЕ АУТСОРСИНГА В ЭЛЕКТРОСНАБЖЕНИИ НЕТЯГОВЫХ ПОТРЕБИТЕЛЕЙ) |
--------------------------------------------------------- --------------------------------------------------

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к дипломному проекту

И9. 70. 3. ПЗ

--------------------------------------------------

Дипломник

|

группы ЭМ-6-605

| |

П. М. Свиридов

Заказать дипломную - rosdiplomnaya.com

Новый банк готовых защищённых на хорошо и отлично дипломных работ предлагает вам скачать любые работы по требуемой вам теме. Правильное выполнение дипломных проектов под заказ в Воронеже и в других городах РФ.

|
---------------------------------------------------------

Руководитель проекта

инженер

| |

Н. В. Ожиганов

|
---------------------------------------------------------

Консультанты:

по экономике

к. т.н., доц.

|

Л. В. Санникова

|
---------------------------------------------------------

по охране труда

к. т.н., доц.

| |

Е. Б. Воробьев

|
---------------------------------------------------------

по охране окружающей среды

к. т.н., доц.

| |

Н. Г. Соколова

|
---------------------------------------------------------

Нормоконтроль

Ст. преподаватель.

| |

И В. Платонова

|
--------------------------------------------------------- --------------------------------------------------

2007
Пример задания на дипломный проект

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РОССИИ Государственное образовательное учреждение высшего профессионального образования “Ростовский государственный университет путей сообщения Министерства путей сообщения Российской Федерации”

Факультет вечернийУТВЕРЖДАЮ

Кафедра «АвтоматизированныеЗав. кафедрой АСЭл,

системы электроснабжения»д. т.н., профессор Ю. И. Жарков

Специальность 100400 (101800) « ___» _____________ 2003

ЗАДАНИЕ

на дипломный проект

--------------------------------------------------
Студенту группы |

ВЭЛ – VI – 177 Шишову Михаилу Юрьевичу

|
---------------------------------------------------------
Тема проекта |

Электроснабжение участка железной дороги на переменном токе

(Диагностирование электроустановок по инфракрасному излучению)

|
---------------------------------------------------------
Утверждена приказом по институту от «19» февраля 2003 г. | № 431 |
---------------------------------------------------------
Срок сдачи студентом законченного проекта | «10» июня 2003 г. |
---------------------------------------------------------
Наименование разделов | Процент объема работы | Количество чертежей | Срок выполнения |
---------------------------------------------------------
1 Расчет параметров системы тягового электроснабжения | 40 | 2 |

10.04.

2003

|
---------------------------------------------------------
2 Диагностирование электроустановок по инфракрасному излучению | 40 | 2 |

5.05.

2003

|
---------------------------------------------------------
3 Экономическая эффективность применения инфракрасной техники для контроля электрооборудования | 10 | 1 |

15.05.

2003

|
---------------------------------------------------------
4 Безопасность и экологичность решений проекта | - |

25.05.

2003

|
---------------------------------------------------------
4. 1 Охрана труда при диагностике электрооборудования с применением инфракрасных приборов | 5 |
---------------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------

4. 2 Охрана окружающей среды

Оценка воздействия электромагнитного поля, создаваемого электрооборудованием

| 5 | - |

1.06.

2003

|
---------------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------
Руководитель проекта | Иванов Б. П. |
---------------------------------------------------------

Задание принял к исполнению студент

Дата выдачи задания «9» февраля 2003 г.

| Шишов М. Ю. |
---------------------------------------------------------

---------------------------------------------------------

  |
--------------------------------------------------------- --------------------------------------------------

Кафедра «Автоматизированные системы электроснабжения»

Состав и объём дипломного проекта

Студента Свиридова П. М.. Группы ЭМ – 6 – 605

--------------------------------------------------
Наименование разделов и их содержание | Процент объёма |
---------------------------------------------------------

1 Реконструкция электроснабжения железнодорожного предприятия

1.1  Систематизация и расчет электрических нагрузок

1.2  Расчет электрической сети и выбор оборудования

1.3  Расчет сверхтоков и выбор защитной аппаратуры

2  Применение аутсорсинга при электроснабжении нетяговых потребителей

3  Технико-экономическое обоснование обновления устройств электроснабжения

Консультант Л. В. Санникова

к. э. н., доцент

4 Безопасность и экологичность решений проекта

4.1 Охрана труда Общая характеристика с точки зрения охраны труда и анализ потенциальных опасностей при реконструкции электроснабжения предприятия

Консультант Е. Б. Воробьёв

доцент

4.2 Охрана окружающей среды. Общая характеристика влияния на окружающую среду системы электроснабжения предрприятия

Консультант Г. Н. Соколова

к. т. н., доцент

| 60 |
---------------------------------------------------------
20 |
---------------------------------------------------------
10 |
---------------------------------------------------------
5 |
---------------------------------------------------------
5 |
--------------------------------------------------------- --------------------------------------------------

Руководитель проекта Н. В. Ожиганов

инженер

«6» февраля 2007 г.

Кафедра “Автоматизированные системы электроснабжения”

ИСХОДНЫЕ ДАННЫЕ

для разработки дипломного проекта

Студенту Свиридову П. М. шифр 05/01-ЭМ 3836

1  Реконструкция электроснабжения железнодорожного предприятия

Тип предприятия депо ремонта дизель-поездов и электропоездов

Место расположенияЛискинское отделение Юго-Восточной железной дороги

Категория по надёжности электроснабжения третья

Режим работы предприятия односменный

Основное питание предприятия понижающая подстанция депо

Напряжение питания 6 кВ

Количество источников питания два

Первый питающий фидер подстанции выполненкабель 6 кВ марки ААШВ 3×120, длина 0,90 км

Понижающий трансформатор первой секции шин ТМ-630/6/0,4

Второй питающий фидер подстанции выполненкабель 6 кВ марки АСБ 3×70, длина 0,70 км

Понижающий трансформатор второй секции шин ТМ-320/6/0,4

План расположения технологического оборудованиясогласно приложения «А»

Характеристика электроприёмников согласно приложения «Б»

Сопротивление короткого замыкания на шинах 6 кВ питающей подстанции 0,5 Ом

Посторонние низковольтные потребители подстанции депо:

- пост электрической централизации на 120 стрелок, заявленная мощность

Р = 72,4 кВт, cos φ = 0,85;

- станция перекачки мазута, заявленная мощность Р = 50,0 кВт, cos φ = 0,85.

2  Спецраздел

Применение аутсорсинга при электроснабжении нетяговых потребителей

3Технико-экономические расчеты

Технико-экономическое обоснование обновления устройств электроснабжения

Консультант Санникова Л. В

4 Безопасность и экологичность решений проекта (работы)

4.1 Охрана труда

Разработка технологической карты по обеспечению безопасного производства работ при комплексной проверке состояния, ремонту и испытанию комплектной трансформаторной подстанции (КТП) 6 кВ

Консультант Воробьёв Е. Б.

4.2 Охрана окружающей среды.

Общая характеристика влияния на окружающую среду системы электроснабжения предприятия

Консультант Соколова Г. Н.

Руководитель проекта Ожиганов Н. В.

“10” февраля 2007 г.

Реферат

Дипломный проект содержит 106 страниц пояснительной записки, 10 рисунков, 11 таблиц, 17 использованных источников.

Тема проекта “Электроснабжение железнодорожного предприятия

Объект исследования – электроснабжение железнодорожного предприятия – локомотивного депо на станции «Отрожка».

Цель работы – проведение расчетов параметров электроснабжения локомотивного депо «Отрожка».

В процессе работы выполнен расчет параметров системы электроснабжения локомотивного депо «Отрожка». Рассмотрены мероприятия по охране труда, произведена оценка влияния предприятия на окружающую среду и указаны способы снижения этих влияний.

В результате работы определены характер и мощности нагрузок локомотивного депо «Отрожка», выполнен электрический расчёт питающей сети и токов аварийных режимов. На основе анализа сделан выбор проводников, основного оборудования для электроснабжения локомотивного депо «Отрожка» и мероприятий по защите электрооборудования от сверхтоков и перенапряжений.

Расчетный экономический эффект: На основании сметы затрат определена себестоимость реконструкции электроснабжения локомотивного депо «Отрожка», которая составляет … . Затраты на эксплуатацию электрооборудования депо составляют …. тыс. руб.

Содержание

Введение…………………………………………………………………….….

1 Реконструкция электроснабжения железнодорожного предприятия….....................................................................................................

1.1Систематизация и расчет электрических нагрузок…………………...

1.2Расчет электрической сети и выбор оборудования…………………...

1.3Расчет сверхтоков и выбор защитной аппаратуры……………………

2Применение аутсорсинга при электроснабжении нетяговых потребителей……………………………………………………………….......

3 Технико-экономическое обоснование обновления устройств электроснабжения……………………………………………………………...

4 Безопасность и экологичность решений проекта……………………..

4.1Охрана труда…………………………………………………………….

4.1.1 Общая характеристика и анализ потенциальных опасностей при работах по реконструкции системы электроснабжения локомотивного депо……………………………………………………………………………...

4.1.2 Организационные и технические мероприятия по обеспечению безопасности работ…………………………………………………………….

4.1.3 Технологическая карта по обеспечению безопасного производства работ при комплексной проверке состояния, ремонту и испытанию комплектной трансформаторной подстанции (КТП) 6 кВ………………….

4.2 Охрана окружающей среды…………………………………………….

Заключение……………………………………………………………………..

Список использованных источников…………………………………………

Приложение А………………………………………………………………….

Приложение Б…………………………………………………………………..

Введение

Система электроснабжения промышленного предприятия должна обеспечивать потребителей необходимым количеством электроэнергии при допустимых пределах показателей качества по графику потребления соответствующему плану выпуска продукции. Нормальный режим электроснабжения должен соответствовать условиям длительной работы при минимальных потерях электроэнергии.

Стационарная электроэнергетика железнодорожного транспорта является крупным потребителем электроэнергии. Наиболее крупными потребителями на железнодорожных узлах обычно являются различные депо по ремонту локомотивов и подвижного состава.

Электроэнергетика локомотивных депо является важнейшим элементом подъема производительности труда и улучшения его санитарно-гигиенических и эстетических условий. На современном этапе технического развития депо существенно расширилась область применения электроэнергии. Она используется во всех технологических процессах и способствует комплексной механизации и автоматизации работ по ремонту и эксплуатации локомотивов.

Улучшение использования электроэнергии возможно только в совокупности с осуществлением мероприятий по оптимизации технологического процесса, совершенствованию режима эксплуатации электроприёмников (ЭП) и внедрению более экономичного оборудования. В связи с необходимостью повышения производительности труда в деповском хозяйстве внедряются конвейерные линии, новые устройства и технологические процессы, увеличивается установленная мощность электроприемников, и повышается электровооруженность труда /1/.

В результате работ, проведенных непосредственно в производственных условиях многих депо различных дорог, была получена универсальная энергетическая характеристика, отражающая зависимость удельного расхода электроэнергии на ремонт условного локомотива по энергоемкости от годовой производительности депо в целом. Изменение нагрузки депо существенно влияет на удельный расход электроэнергии. Эксплуатационные характеристики отдельных цехов и отделений (мелких цехов) локомотивного депо существенно отличаются. Наряду с современным оборудованием весьма велика доля морально и физически устаревшего.

За последнее десятилетие созданы новые конструкции и виды электротехнического оборудования силовых и измерительных трансформаторов, реакторов, коммутационных аппаратов, устройств защиты от перенапряжений. Правильное проектирование системы электроснабжения депо, рациональное размещение подстанций в центре электрических нагрузок и равномерное распределение электрических нагрузок, уменьшит потери электроэнергии, повысит уровень надежности электроснабжения, приведет к уменьшению приведенных затрат и снижению удельных норм расхода электроэнергии.

Вместе с тем, в условиях рыночных отношений становится всё более актуальной проблема совершенствования эксплуатации системы электроснабжения нетяговых потребителей железнодорожного транспорта. Всё большее число предприятий используют систему аутсорсинга позволяющую повысить производительность труда и освободить железнодорожные подразделения от выполнения непрофильных функций.

Целью проекта является проведение расчётов для реконструкции системы электроснабжения при модернизации технологического оборудования локомотивного депо находящемся на Лискинском отделении Юго-Восточной железной дороги.

Целью специального вопроса является проблема совершенствования обслуживания нетяговых потребителей путём применения системы аутсорсинга.

1 Реконструкция электроснабжения железнодорожного предприятия

1.1 Систематизация и расчет электрических нагрузок депо

В связи с установкой нового оборудования и возрастанием электропотребления в данном локомотивном депо необходимо произвести реконструкцию системы электроснабжения. При этом ставятся следующие задачи:

- обеспечить электроэнергией заданного качества все электроприёмники;

- создать надёжную и гибкую систему электроснабжения;

- обеспечить выполнение требований новых нормативов по электробезопасности;

- максимально сохранить существующее электрооборудование пригодное для дальнейшей эксплуатации;

- соблюсти требования по экологии и утилизации демонтируемого оборудования.

Проектируемое локомотивное депо имеет следующие характеристики.

Год пуска в эксплуатацию – 1870 г., разрядность депо – внеклассное.

Основные производственные участки расположены возле главного корпуса имеющего три железнодорожных пути. Площадь территории депо 58600 м2, в том числе застроенная – 41170 м2.

Общая полезная длина путей – 4260 м2, из них 2924 м2– на тяговой территории и 1336 м2– в зданиях депо.

Электрифицировано – 1274 м путей.

Общая полезная площадь цехов – 16142,6 м2, в том числе :

- стойловой части – 6728,4 м2

- мастерских и подсобных цехов – 5549,4 м2

- служебно–бытовых помещений – 3864,8 м2

В депо имеется:

- цех для капитального ремонта КР-1 и текущего ремонта ТР-3 электропоездов с прилегающими вспомогательными цехами и отделениями;

- цех текущего ремонта ТР-2, ТР-1 и ТО-3 дизель - поездов;

- пункт технического обслуживания электропоездов открытого типа без смотровой канавы на одно стойло (пять секций);

- пункт технического обслуживания дизель – поездов открытого типа, совмещённый с экипировкой на одно стойло (четыре секции)

- пункт обмывки электропоездов и дизель – поездов открытого типа.

Имеются также экипировочные и другие устройства, в том числе:

- база запаса топлива;

- склад сырого песка на 1000 м3 с пескосушилкой;

- пункт экипировки тепловозов типа ЧМЭ-3 и путевой техники

Электропоезда работают на полигонах Мичуринск - Воронеж – Россошь, протяжённостью 440 км; Валуйки – Воронеж, протяжённостью 260 км, Воронеж – Поворино, протяжённостью 320 км.

Применение вибродиагностического комплекса «Вектор - 2000» позволяет своевременно оценивать техническое состояние подшипников качения, зубчатых передач, тяговых двигателей моторных вагонов электропоездов и снизить количество случаев неисправности мотор-вагонного подвижного состава (МВПС) в эксплуатации.

Восстанавливаются изношенные и изготавливаются новые узлы и детали МВПС. Всего восстанавливается 21 наименований узлов и деталей, изготавливается 65 наименований изделий из капрона и резины, ежемесячно восстанавливается 150 – 200 банок аккумуляторных батарей ПК – 55.

Режим работы основных цехов депо – односменный. Для отдельных участков, занятых подготовкой локомотивов в рейс применяется трёхсменный график работы. Для решения поставленных задач депо имеет высококвалифицированные кадры.

Электропитание цехов и установок осуществляется кабельными линиями (КЛ), отходящими от деповской трансформаторной понижающей подстанции (ТП-Депо). В основном срок эксплуатации КЛ депо составляет более 15…20 лет, в результате чего наблюдается частый выход КЛ из работы. Система электроснабжения локомотивного депо сложилась за предыдущие годы, постоянно претерпевая изменения во внешней и внутренней разводке, причиной которых чаще всего являлись как новые производственные задачи, так и текущие производственные обстоятельства (порывы, аварии и пр.).

Изношенность всей электроснабжающей сети и оборудования депо обусловила постепенную замену ранее проложенных кабелей подземной или внутренней прокладки в наружном исполнении. Изменения, вносимые в прокладку кабелей и разводку по помещениям, зачастую не отражаются в документации и создадут в будущем множество трудностей при организации внутрицехового учета потребления электроэнергии.

Локомотивное депо по надежности электроснабжения относится к потребителям третьей категории. Вместе с тем от низковольтного распределительного устройства с напряжением 0,4 кВ ТП-Депо проложена кабельная линия резервного питания поста электрической централизации (ЭЦ), потребителя первой категории.

Необходимость усиления системы электроснабжения вызвана установкой новых дополнительных мощных нагрузок: второго колёсно-токарного станка с мощностью рН = 80 кВт (ЭП №62) и стенда испытания дизельных двигателей с мощностью рН = 190 кВт (ЭП №136).

Всего в депо установлено 173 единицы стационарного оборудования. В помещениях администрации и бытовых помещениях, расположенных на втором и третьем этажах, над пантографным отделением, применяется 35 единиц офисного оборудования, 12 кондиционеров, а также 20 единиц бытовой техники. Установленная паспортная мощность оборудования депо составляет 1720,4 кВт, в том числе:

- технологическое оборудование, РΣ = 534,1 кВт, или 31,0 %;

- испытательные стенды, РΣ = 277,3 кВт, или 16,1 %;

- компрессоры, насосы, РΣ = 126,9 кВт, или 7,4 %;

- вентиляторы, кондиционеры, РΣ = 160,9 кВт, или 9,4 %;

- краны, манипуляторы, РΣ = 101,5 кВт, или 5,9 %;

- электродомкраты, РΣ = 237,5 кВт, или 13,8 %;

- сварочное оборудование, РΣ = 110,0 кВт, или 6,4 %;

- освещение общее и местное, РΣ = 97,6 кВт, или 5,7 %;

- прочее оборудование, РΣ = 74,6 кВт, или 4,3 %.

Структура установленной мощности всех потребителей депо приведена на рисунке 1.1.

В связи с большим объемом выполняемых расчетов задание на проектирование разделено на две части, поэтому расчет нагрузок в дипломном проекте будет выполнен совместно со студенткой Свиридовой Еленой Ивановной. В данной проектируемой части депо установлено 104 единицы стационарного оборудования.

Исходными параметрами для решения сложных комплексно-технических и экономических расчетов, возникающих при проектировании современных предприятий, являются нагрузки. Расчёт нагрузок необходим для определения места расположения и мощности понижающей подстанции и распределительных шкафов, правильного выбора мощности компенсирующих устройств, выбора сечения проводов и кабелей, шин, выбора и принятия уставок релейной защиты, расчета потерь, отклонения и колебания напряжения. Поэтому правильное определение электрических нагрузок является решающим фактором при проектировании и эксплуатации электрических сетей, электроснабжения предприятий.

Рисунок убран из работы и доступен только в оригинальном файле.Расчет электрических нагрузок выполняется для выбора и проверки токоведущих элементов по пропускной способности (нагреву), расчёта потерь и показателей качества электроэнергии, выбора защитной аппаратуры и устройств компенсации реактивной мощности. Расчёт нагрузок проводится в характерных точках по мере приближения к источнику питания. Поскольку формирование нагрузок зависит от случайных факторов, при проектировании используется теория вероятностей с применением метода упорядоченных диаграмм (метод коэффициента максимума).

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 1.1 – Структура установленной мощности потребителей депо

Расчет силовых электрических нагрузок производится по всему предприятию (депо) по характеристикам режима работы электроприемников (ЭП). Расчет нагрузок на освещение депо будет выполнен студенткой Свиридовой Еленой Ивановной.

Различают три основных режима работы электрических установок: продолжительный, кратковременный и повторно-кратковременный. В длительном режиме машины рассчитаны работать без повышения температуры отдельных частей выше допустимых пределов (вентиляторы, насосы, электропечи) /2/.

В длительном режиме, но с переменной нагрузкой работают различные обрабатывающие станки, прессы, молоты. При кратковременном режиме за период включения температура отдельных частей не успевает достичь недопустимых значений, а период остановки достаточен для остывания. В этом режиме работают вспомогательные механизмы станков, различные заслонки и затворы.

При повторно-кратковременном режиме длительность циклов работы и останова не превышает 10 мин. В этом режиме работают краны и сварочные трансформаторы, создающие также значительные пиковые токи.

Для выполнения проекта электроснабжения депо необходимо определить следующие значения электрических нагрузок: средние нагрузки за максимально загруженную смену, максимальные кратковременные (пиковые) нагрузки, максимальные нагрузки различной продолжительности. В настоящее время принят получасовой расчётный максимум нагрузки MAX = Р30) /2/.

В начальной стадии расчёта паспортные номинальные мощности электроприёмников приводятся к установленной мощности с учётом продолжительности включения (ПВ, %) равной единице и коэффициента мощности по формуле

Рисунок убран из работы и доступен только в оригинальном файле., [1.1]

где рН – установленная номинальная мощность электроприёмника, кВт;

Sпасп – паспортная номинальная мощность электроприёмника, кВ·А;

ПВ - продолжительность включения характеризует время работы электроустановки под нагрузкой в течение часа, отн. ед.;

сos φ – коэффициент мощности, определяющий соотношение активной и реактивной составляющих потреблённой электроэнергии (в некоторых случаях удобнее пользоваться tg j.

Установленная мощность электроприёмников принимается равной:

- для электродвигателей длительного режима работы, силовых и электропечных трансформаторов, электроосветительных и электроотопительных приборов – паспортной мощности;

- для электродвигателей повторно-кратковременного режима работы, сварочных трансформаторов - паспортной мощности, приведённой к относительной продолжительности включения.

Далее определяется суммарная средняя нагрузка электроприёмников, которая даёт возможность оценить нижний предел возможных значений расчётной нагрузки за максимально загруженную смену характерных суток.

При определении электрических нагрузок величины и коэффициенты относящиеся к одному электроприёмнику обозначаются строчными, а к группе электроприёмников – прописными буквами /2/.

Средние активные РСМ и реактивные QСМ нагрузки за максимально загруженную смену необходимые для определения расчётного максимума нагрузки определяются

РСМ = · РН; [1.2]

QСМ = РСМ · tgj,[1.3]

где – коэффициент использования (определяется по справочникам);

tg j- коэффициент мощности, определяется по тригонометрическим таблицам по заданному значению сos φ или по формуле:

tgРисунок убран из работы и доступен только в оригинальном файле. = Рисунок убран из работы и доступен только в оригинальном файле..[1.4]

Коэффициентом использования называется отношение средней активной мощности электроприёмника (или группы), к её номинальному значению.

В начале расчета производится систематизация электрических нагрузок. Приводится таблица, в которой перечислены все электроприемники предприятия с указанием выбранного режима их работы (коэффициента использования и коэффициента мощности, продолжительности включения, отличающегося от 100 %). Данные о режимах работы оборудования принимаются по соответствующим справочникам /1/.

Все электроприемники повторно – кратковременного режима необходимо привести к ПВ = 100 % или 1,00. Для кранов ПВ = 25 %. Для сварочного оборудования ПВ = 65 %, для металлургического оборудования ПВ = 40 % /3/.

Для сварочных трансформаторов и сварочных машин, задается номинальная полная мощность в кВ·А, и для расчета ее необходимо привести к активной по формуле [1.1].

Мостовые краны и кран – балки должны иметь 3 двигателя (подъема, передвижения моста, передвижения тележки (тельфера)). В случае если мощность электродвигателя не разбита, суммарную мощность следует разбить приблизительно в пропорциях 0,45 – 0,45 – 0,1. Электротали имеют два двигателя (подъема, передвижения тележки), поэтому его мощность можно разбить в пропорции 0,7 – 0,3 /2/.

Например, в электромашинном отделении имеется мостовой кран грузоподъёмностью 5 т. (ЭП №116) с установленной суммарной паспортной мощностью двигателей рН. П = 10,0 кВт. следовательно по формуле [1.1] его приведённая мощность определится

рН = 10,0 · √0,25 = 5,0 кВт.

При наличии однофазных нагрузок, к которым относятся, печи сопротивления и сварочные трансформаторы если расчетная номинальная мощность однофазных электроприемников больше 15% мощности трехфазной группы электроприемников, то эквивалентная трехфазная мощность (РНЭ ) определяется в зависимости от количества и схемы включения однофазных электроприемников в трехфазную сеть /2/.

В депо однофазными нагрузками являются освещение и нагрузки офисной техники в административных помещениях. Поскольку они многочисленны и равномерно распределены по фазам трёхфазной сети их можно учитывать как трёхфазные.

Перед расчётом нагрузок проведём предварительное исследование конфигурации электрической сети и определим группы электроприёмников. По территории депо нагрузки распределены в каждом цеху отдельными группами, поэтому будет предпочтительна радиально – магистральная схема их подключения от распределительных шкафов. В связи с этим будем выполнять расчет отдельно по каждому цеху, объединяя данные расчетов в таблице для выбора трансформатора ТП и оборудования сети внешнего электроснабжения.

Произведем расчет электрических нагрузок депо по методу упорядоченных диаграмм. По режиму работы делим электроприемники на две группы:

- электроприемники с переменным графиком нагрузки ( < 0.6);

- электроприемники с постоянным графиком нагрузки ( ≥ 0,6).

Определим средние нагрузки за максимально загруженную смену по группам электроприемников одного режима работы и данные занесём в таблицу 1.1. Всего по депо определилось 14 групп электроприёмников. Мощные электроприёмники и мостовые краны, создающие значительные пиковые нагрузки, а также фидера общего освещения подключаем к распределительному устройству (РУ) питающей подстанции отдельными кабельными линиями.

В качестве примера проведём расчет для электроприёмников электромашинного и пропиточных отделений с переменным графиком нагрузки, питаемых от силового пункта СП-12.

В графу 2 таблицы 1.2 записываем количество электроприемников одного режима работы (с одинаковым и сos φ). В данном примере в группе имеются два сверлильных станка, n = 2.

В графу 3 записывается суммарная установленная мощность электроприемников, для сверлильных станков рН = 6,4 кВт. Суммарная установленная мощность всей группы из 12 ЭП с переменным графиком нагрузки питаемых от СП-12 составит SРН = 61,7 кВт.

В графу 4 и 5 записываются коэффициенты использования и сos φ групп одного режима работы выбранных по справочнику /1/.

Определим коэффициенты мощности по таблице 1.1 и преобразуем их в tgj по формуле [1.3] или по математическим таблицам. По формуле [1.2] определим средние нагрузки по группам электроприемников, например, для сверлильных станков при tg φ = 1,15

РСМ = 0.20 ·×6,4 = 1,3 кВт; QСМ = 1,3 · 1.15 = 1,5 кВ·Ар.

Средние нагрузки заносятся в графы 6 и 7 таблицы 1.1.

Для электроприемников с постоянным графиком нагрузки расчет ведется аналогично как с переменным графиком до графы 6 таблицы 1.1., но для них, а также для осветительных нагрузок:

PМ = PСМ; QМ = QСМ

Рассчитаем итоговую строчку таблицы 1.1.

По результатам граф 6 и 3 определяется групповой коэффициент использования для электроприёмников с переменным графиком нагрузки КИ по формуле

КИ = SРСМ /SРН. [1.5]

Для группы СП-12:

КИ = 15,4/61,7 = 0.25.

Заключительный расчёт максимальных (пиковых) нагрузок необходим для проверки колебаний напряжения в сети и выбора токовых защит, выбора элементов сетей по экономической плотности тока, определения потерь и отклонений напряжения.

Для определения максимальной расчётной мощности по кривым, приведённым в справочниках необходимо определить коэффициент максимума КМ и эффективное число электроприёмников . Под понимается такое число одинаковых по режиму электроприёмников одинаковой мощности, которое создаёт какой же расчётный максимум, что и группа различных электроприёмников /2/.

Точное определение производится по формуле, шт

Рисунок убран из работы и доступен только в оригинальном файле. [1.6]

При большом числе разнообразных ЭП допускается применять упрощённые методы расчёта. При определении эффективного числа электроприёмников с переменным графиком нагрузки необходимо участь характер электроприёмников в группе.

Если число электроприёмников в группе равно четырём и более, то эффективное число ЭП допускается принимать равным фактическому при условии

m ≤ PН. MAX/ MIN ≤ 3, [1.7]

гдеPMAX – номинальная мощность максимального электроприёмника, кВт;

PMIN - номинальная мощность минимального электроприёмника, кВт.

При определении m исключаются мелкие электроприёмники с суммарной мощностью менее 5% /2/.

Если m > 3, то можно определить по формуле

Рисунок убран из работы и доступен только в оригинальном файле. [1.8]

гдеΣРН – суммарная мощность ЭП группы, кВт.

В группе СП-12 PН. MAX = 16,0 кВт, сварочный преобразователь (ЭП №138) и MIN = 3,0 кВт, пресс (ЭП №102), следовательно m = 5,3.

= 2 · 61,7/16,0 = 7,7 шт.

Следовательно, по кривым коэффициентов максимума при коэффициенте использования в группе КИ = 0,25 определяем, что КМ = 1,90.

Максимальная мощность нагрузок группы Р М определится, кВт

Р М = РСМ · КМ. [1.9]

Для группы СП-12

Р М = 15,4 · 1,90 = 29,3 кВт.

Реактивная мощность, необходимая для создания магнитного потока электрических машин, изменяется в получасовой максимум не столь значительно и определяется

- при nЭ ≤ 10, Q М = 1,1 Q СМ;

- при nЭ > 10, Q М = Q СМ

В данном примере у группы с переменным графиком питаемой от СП-12

Q М = 1,1 · QСМ = 1.1 · 17,7 = 19,5 кВ·Ар.

Максимальные нагрузки для электроприёмников длительного режима работы принимаются равными средним нагрузкам за максимально загруженную смену /2/.

Результаты расчета нагрузок приведены в таблице 1.1.

В случае если число электроприемников больше трёх, а nЭ меньше четырёх, то расчет максимальной нагрузки ведется по коэффициенту загрузки kЗ, который для электроприемников: длительного режима работы при kЗ = 0,90 и cos φ = 0,90; принимаем как

PМ = 0,90 · PН; = 0,75 · PМ;

- повторно-кратковременного режима работы kЗ = 0,75; cos j = 0,70; принимаем

PМ = 0,75 · PН; QМ = PН.

Например, таким путём можно определить максимальную нагрузку для ЭП питаемых от СП-9.

В цехе подъёмного ремонта при подъёме кузова локомотива электродомкраты включаются по четыре одновременно, следовательно из можно считать групповым приводом с приведённой мощностью PН. MAX = 15,0 кВт (ЭП №77, ЭП № 78, ЭП № 85, ЭП № 86).

Минимальным групповым ЭП можно считать два привода открывания двери с MIN = 2,2 кВт (ЭП №76, ЭП №84), следовательно m = 6,8. По формуле [1.8]

= 2 · 51,6/15,0 = 6,6, принимаем = 6 шт.

Однако, поскольку для данной группы очень малый КИ = 0,05 для ЭП с переменным графиком нагрузки

PМ = 0,75 · 51,6 = 38,7 кВт; = 38,7 кВ·Ар.

Для ЭП с постоянным графиком нагрузки

PМ = 0,9 · 9,0 = 8,1 кВт; = 0,75 · 8,1 = 6,1 кВ·Ар.

Подсчитываем итог по силовым нагрузкам, складывая итоги соответствующих граф для электроприёмников повторно-кратковременного и длительного режимов (n, PН, PСМ, QСМ, PМ, QМ).

Реактивные нагрузки емкостного характера учитываются со знаком «минус» /2/.

Для группы питаемой от СП-12

ΣPМ = 29,3+ 39,0 = 68,3 кВт; ΣQМ = 19,5 + 14,5 = 34,0 кВ·Ар.

Для выбора силового шкафа питающего группу, подсчитаем среднюю мощность SСМ за максимально загруженную смену, кВ·А

SСМ =Рисунок убран из работы и доступен только в оригинальном файле.. [1.10]

Для группы питаемой от СП-12 без учета компенсации реактивных нагрузок

SСМ =Рисунок убран из работы и доступен только в оригинальном файле. 63,2 кВ·А.

Выбор сечения проводников питающей линии подсчитывается по значению получасовой максимальной нагрузки

SМ =Рисунок убран из работы и доступен только в оригинальном файле. 75,2 кВ·А.

При напряжении питания =0,38 кВ определим максимальный ток питающей линии, А

=Рисунок убран из работы и доступен только в оригинальном файле.. [1.11]

Для СП-12 максимальный ток определится

=Рисунок убран из работы и доступен только в оригинальном файле. = 114,0 А.

Результаты расчета нагрузок приведены в таблице 1.1.

Для выбора мощности трансформаторов деповской понижающей подстанции и питающих её кабельных высоковольтных линии необходимо провести расчёт нагрузок в масштабе всего депо. Для этого необходимо снова произвести расчёт средних и максимальных нагрузок одинакового режима работы /2/. Обобщённые результаты расчёта всех нагрузок цехов и отделов приведены в таблице 1.2.

При расчёте электрических нагрузок необходимо учесть следующее:

- электрооборудование с резко-переменным графиком нагрузки и создающие большие пусковые токи и снижения напряжения выделяется из группы и должно обеспечиваться электропитанием по отдельным кабельным линиям непосредственно от главного распределительного щита (ГРШ) подстанции;

- электрооборудование, включаемое для производства временных и ремонтных работ, а также резервное оборудование, не учитывается при расчёте нагрузок /2/.

Отдельными линиями от ГРШ получают питание щиты управления общего и аварийного освещения

Отдельными кабельными линиями необходимо обеспечить электроснабжение мостовых кранов (ЭП №51, ЭП №53, ), стенда для обкатки колёсных пар (ЭП №20), колёсно токарных станков (ЭП №45, ЭП № 62), генератора токов высокой частоты (ЭП №56), компрессоров (ЭП № 99 и №108), стенда для испытания двигателей (ЭП №136). В качестве резервного оборудования можно учесть один из компрессоров, поскольку они работают попеременно.

При большом числе разнообразных электроприёмников можно прибегнуть к упрощённому определению максимальных нагрузок по формуле [1.9]. По результатам таблицы 1.2 определяем, что в депо с переменным графиком нагрузки работают 149 единиц оборудования с суммарной номинальной приведённой мощностью РН = 832,2 кВт и средней нагрузкой за максимально нагруженную смену РСМ = 218,1 кВт. По формуле [1.5] определим групповой коэффициент использования

КИ = 218,1/832,2 = 0,26.

Определяем, что наиболее мощным ЭП с переменным графиком нагрузки является Стенд для испытания двигателе1 дизель-поездов (ЭП №136) и по формуле [1.8] определим эффективное число электроприёмников, шт

= 2 · 832,2/190,0 = 8,8 шт.

По кривым в справочнике /3/ находим величину коэффициента максимума активной мощности Км в зависимости от величины группового Ки и эффективного числа группы По кривым определяем, для этих условий коэффициент максимума равен: КМ = 1,85..

При наличии в депо электроприемников с переменными и с постоянными графиками нагрузок, расчетная мощность нагрузки определяется, в этом случае, отдельно для каждой группы, а суммарная расчетная нагрузка по питающей подстанции в целом, как сумма максимальных нагрузок. По формуле [1.10] определяем максимальную активную и реактивную мощность за наиболее загруженную смену группы электроприемников с переменным графиком нагрузки

РМ = 1,85 · 218,1 = 403,4 кВт;

при nЭ < 10

QМ = 1,1 · 247,4 = 272,1 кВ·Ар.

Сложив нагрузки всех электроприёмников депо, по формуле [1.10] определяем полную мощность за максимально загруженную смену

ΣРСМ = 528,2 кВт; ΣQСМ = 547,9 кВ·Ар.

SСМ =Рисунок убран из работы и доступен только в оригинальном файле. 761,0 кВ·А.

Далее необходимо участь, что от подстанции депо питаются два посторонних потребителя, пост электрической централизации на 120 стрелок, и станция перекачки мазута. С учётом их заявленной мощности мощность нагрузок питающей подстанции депо определится

ΣРСМ = 650,6 кВт; ΣQСМ = 625,8 кВ·Ар; SСМ = 895,8 кВ·А.

На основании мощности за максимально загруженную смену производится выбор компенсирующего устройства, тип мощность понижающих силовых трансформаторов.

Определяем максимальную мощность нагрузок подстанции депо

ΣРМ = 874,2 кВт; ΣQМ = 640,5 кВ·Ар.

SМ =Рисунок убран из работы и доступен только в оригинальном файле. 1083,7 кВ·А.

Для выбора сечения проводников питающих тоководов по формуле [1.11] определим ток максимальной нагрузки депо для низковольтной питающей сети, и данные занесём в таблицу 1.2

=Рисунок убран из работы и доступен только в оригинальном файле. = 1647,0 А.

1.2 Расчёт электрической сети и выбор оборудования

Предприятия крупных железнодорожных узлов имеют различные категории по надёжности электроснабжения. Для выполнения условий по электроснабжению первой категории необходимо иметь два независимых источника электроснабжения. Согласно ПУЭ /4/ в качестве независимых источников электроснабжения допускается считать две секции шин одной подстанции при выполнении следующих условий:

- каждая из секций шин питается от независимых источников;

- секции или системы шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы на одной из секций шин.

Источником питания электрических нагрузок железнодорожного узла является центральная понизительная подстанция (ЦРП) находящаяся на балансе эксплуатационной ответственности дистанции электроснабжения. ЦРП получает от энергосистемы электроэнергию по двум воздушным линиям на напряжении 110 кВ. На этой подстанции установлены два трёхобмоточных понижающих трансформатора с расщеплёнными обмотками со вторичным напряжением по 6 кВ. Трансформаторы с двумя вторичными обмотками на одинаковое напряжение необходимы для снижения тока короткого замыкания /3/. Обе вторичные обмотки имеют напряжение опыта короткого замыкания ек = 10,5 % /5/. Системы шин на напряжении 110 кВ и 6 кВ секционированы. При этом на напряжении 6 кВ секционированы системы шин от каждой вторичной обмотки.

От ЦРП электрическая энергии на напряжении 6 кВ передаётся другим подстанциям железнодорожного узла и далее по кольцевой или радиальной схеме нескольким железнодорожным понизительным подстанциям среди которых есть потребители разных категорий надёжности электроснабжения. Нагрузки первой категории находятся на вокзале, дистанции сигнализации и связи (дом связи, пост электрической централизации) и др.

На ЦРП системы шин питаются от различных трансформаторов и независимы друг от друга. Для питания электрических нагрузок узла от каждой системы шин к железнодорожным подстанциям проложены кабельные и воздушные линии с рабочим напряжением 6 кВ. Схема электроснабжения предприятий железнодорожного узла строится на основе следующих принципов.

Первый принцип заключается в максимальном приближении источников высокого напряжения к электроустановкам потребителей. Благодаря этому снижаются потери электроэнергии, за счёт сокращения длины низковольтных магистральных токопроводов уменьшается расход цветных металлов на прокладку кабелей и проводов,.

Второй принцип состоит в отказе от «холодного резерва». Число специальных резервных, нормально не работающих линий и трансформаторов должно быть сведено к минимуму.

Третьим принципом является глубокое секционирование всех звеньев системы электроснабжения. На секционных аппаратах рекомендуется предусматривать системы автоматического включения резерва (АВР).

Четвёртым принципом является выбор режима работы элементов системы электроснабжения. Основным является режим раздельной работы, поскольку при этом существенно упрощается схема коммутации сети и уменьшается ток короткого замыкания. Благодаря раздельной работе на большинстве подстанций можно установить только разъединитель или выключатель нагрузки.

Понижающая подстанция, питающая данное депо включена в кольцевую схему железнодорожного узла и получает питание на напряжении 6 кВ по двум кабельным линиям.

Первый питающий фидер подстанции выполнен кабелем 6 кВ марки ААШВ 3×120, длина 0,90 км. На первой секции шин установлен понижающий трансформатор типа ТМ-630/6/0,4.

Второй питающий фидер подстанции выполнен кабелем 6 кВ марки АСБ 3×70, длина 0,70 км. Понижающий трансформатор второй секции шин типа ТМ-320/6/0,4. Системы шин высокого и низкого напряжения секционированы.

Подстанции депо (ТП Депо) имеет следующие посторонние низковольтные потребители: пост электрической централизации (ЭЦ) на 120 стрелок, заявленная мощность Р = 72,4 кВт, cos φ = 0,85 и станцию перекачки мазута, заявленная мощность Р = 50,0 кВт, cos φ = 0,85.

Также от первой секции шин 6 кВ подстанции депо отходит кабельная линия для питания комплектной трансформаторной подстанции (КТП) дистанции пути.

В распределительном устройстве высокого напряжения на существующей ТП Депо установлены комплектные камеры типа КСО 366. Приходящие и отходящие высоковольтные фидеры оснащены масляными выключателями типа ВМГ-10 выработавшими нормативный ресурс. При реконструкции данной подстанции необходимо:

- определить необходимость увеличения мощности или замены силовых понижающих трансформаторов;

- в высоковольтных камерах заменить масляные выключатели на вакуумные стационарного исполнения;

- оснастить распределительное устройство низкого напряжения современными типами панелей с новой коммутационной и защитной аппаратурой.

Трансформаторы питающей подстанции выбирается по условиям окружающей среды. Номинальная мощность трансформатора должна соответствовать средней нагрузке за максимально загруженную смену. Для потребителей первой категории нагрузка трансформатора должна быть не более 70% от номинальной мощности, для второй категории до 80%, третьей до 90% /4/.

При выборе числа и мощности силовых трансформаторов для понизительных подстанций важным критерием является надёжность электроснабжения. Для сокращения складского резерва и возможности взаимозамены следует стремиться выбирать не более двух или трёх стандартных мощностей трансформаторов. Высоковольтное и низковольтное распределительные устройства подстанции депо нуждаются в реконструкции.

Понижающие подстанции оснащается типовыми шкафами и ячейкам и на стороне высшего напряжения 6 кВ для защиты силового трансформатора может иметь предохранитель или выключатель нагрузки, а на стороне низшего напряжения – щит, состоящий из металлических шкафов с автоматическими выключателями (АВ, АВМ, АЕ) или блоками предохранитель – выключатель. Подстанция должна иметь каналы для подвода и вывода кабелей и проводов.

Двухтрансформаторные подстанции позволяют реализовать гибкую и надёжную схему взаимного резервирования и наиболее целесообразны. Обеспечение потребной мощности может быть достигнуто с учётом допустимой перегрузки трансформаторов на время послеаварийного режима.

Проведём сравнение вариантов выбора трансформаторов.

Суммарная рассчитанная мощность нагрузки наиболее нагруженной смены депо составляет: SСМ = 895,8 кВ·А. В настоящее время на ТП-Депо установлены трансформаторы с суммарной номинальной мощностью SН. Т = 950 кВ·А. следовательно, нагрузка за максимально нагруженную смену для них составляет 94,3 %, что превышает норму для потребителей третьей категории. Также трансформатор типа ТМ-320/6/0,4 находится в эксплуатации более 40 лет, выработал нормативный ресурс и по техническому состоянию нуждается в замене. При реконструкции ТП Депо трансформатор типа ТМ-320/6/0,4 может быть заменён на :

- трансформатор типа ТМ-400/6/0,4 мощностью 400 кВ·А;

- трансформаторами типа ТМ-630/6/0,4 мощностью 630 кВ·А.

В первом случае рассчитанная нагрузка потребителей за максимально загруженную смену составит 87,0 % от мощности трансформаторов типа ТМ-630/6/0,4 и ТМ-400/6/0,4 соответствует нормам для потребителей третьей категории.

Во втором случае рассчитанная нагрузка потребителей за максимально загруженную смену составит 71,1% от мощности двух трансформаторов типа ТМ-630/6/0,4. Поскольку среди нагрузок от ТП Депо имеется потребитель первой категории (пост ЭЦ), а также в связи с тем, что энерговооружённость депо и электропотребление будет всё более возрастать, принимаем решение об установке второго трансформатора типа ТМ-630/6/0,4. Схема трансформаторной понижающей подстанции питания депо приведена на рисунке 1.2.

Понижающая подстанция, питающая нагрузки депо расположена на расстоянии 0,1 км от основного корпуса депо. Питание групп электроприёмников производится низковольтными кабельными линиями. Существующая низковольтная кабельная сеть выработала нормативный срок эксплуатации и требует замены.

Цеховые сети распределения электроэнергии должны:

- обеспечивать необходимую надежность электроснабжения приемников электроэнергии в зависимости от их категории;

- быть удобными и безопасными в эксплуатации;

- иметь оптимальные технико-экономические показатели (минимум приведенных затрат);

- иметь конструктивное исполнение, обеспечивающее применение индустриальных и скоростных методов монтажа.

Необходимо определить наиболее рациональную схему построения низковольтной сети и выбрать места для установки силовых пунктов и распределительных щитов низкого напряжения. С этой целью необходимо определить центры нагрузок групп электроприёмников.

Для определения места установки распределительных устройств высокого или низкого напряжения на предприятии (станции) выявляются сосредоточенные нагрузки и определяются центры тяжести групп распределённых нагрузок. Если нагрузки сосредоточены (цех, депо) то объект может иметь один источник питания (понизительную подстанцию), который наиболее целесообразно располагать в центре электрических нагрузок.

При построении сети необходимо сопоставить как материальные затраты на устройство высоковольтной или низковольтной сети, так и надёжность электроснабжения и заданное качество электроэнергии у потребителей. Низковольтные кабельные (а особенно воздушные) линии длиной более 150…200 м значительно увеличивают входное сопротивление питающей сети у потребителей. Это приводит к потерям электроэнергии, снижению напряжения в конце линии и уменьшению надёжности срабатывания защит от сверхтока /3/.

Намечаются места подстанций и производится распределение нагрузок между ними с учётом тяготеющих к ним разбросанных нагрузок При определении центров распределения нагрузок необходимо учесть информацию о местах скопления нагрузок, места возможного расположения источников питания, наличие существующих высоковольтных линий, величину и характер нагрузок. Возможные центры распределения нагрузок должны быть максимально удалены друг от друга и приближены к наиболее крупным электроприёмникам.

При определении центров нагрузок низковольтной сети на схематический генплан предприятия (цеха) наносится картограмма нагрузок /2/. План предприятия необходимо поместить в прямоугольную систему координат с осями Х и Y. При этом каждый электроприёмник (или распределительный шкаф) с нагрузкой Pi, будет иметь координаты Xi, Yi. При таком способе можно по аналогии с центром тяжести материальных точек определить центр электрических нагрузок группы электроприемников или всего предприятия, координаты которого (X0, Y0) могут определиться по формуле

Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле., [1.12]

гдеPi – мощность электроприёмника, кВт;

Xi, Yi - координаты электроприёмника, м.

Далее центры нагрузок групп ЭП определяются по формуле [1.12] и в масштабе цеха, разбивая электроприёмники на группы, можно определить координаты возможных центров групп и принять решение о местах установки распределительных шкафов. На основании выбора места расположения КТП и конфигурации кратчайшей сети выбирается трасса и схема прокладки кабелей. Подстанция и цеховые силовые шкафы должны быть приближены к колоннам и стенам цеха как естественным опорам для выходящих и подходящих к ним участков сети.

Например, по формуле [1.12] определим координаты центра тяжести группы из девяти ЭП, питаемой от распределительного шкафа СП-11. Координаты ЭП по осям Х и Y примем в метрах. Схема предприятия с координатами ЭП приведена на рисунке 1.3. Координаты группы из четырёх электродомкратов можно принять в геометрическом центре их установки.

Рисунок убран из работы и доступен только в оригинальном файле. =

= 73,2 м.

Рисунок убран из работы и доступен только в оригинальном файле. =

= 36,8 м.

В некоторых случаях возле определённого центра нагрузок оказывается движущееся оборудование, технологический проход и т. д. в таком случае силовой пункт необходимо располагать на ближайшем удобном участке площади депо. Для выбора места расположения силового шкафа питания группы нагрузок СП-11 выберем точку с координатами ХСП-11 = 73,0 м и YСП-11 = 37,0 м возле стены здания в помещении цеха подъёмного ремонта. Центр нагрузок оказывается удалён от силового пункта СП-11 на 1,0 м. Подобным образом определим координаты других групп ЭП и распределительных шкафов депо и данные занесём в таблицу 1.3.

С учётом расчётов выполненными студенткой Свиридовой Е. И. по максимальной мощности групп электроприёмников и определим координаты центра тяжести всех нагрузок депо, который оказался в точке с координатами:

ХД = 50,5 м и YД =37,5 м.

Для уменьшения потерь электроэнергии в низковольтной сети питающая подстанция должна быть максимально приближена к центру нагрузок, однако для удешевления проекта при реконструкции системы электроснабжения сохраним существующую подстанцию в отдельном кирпичном строении и расположенную на расстоянии 0,1 км от ввода низковольтных кабелей в помещения депо со стороны кернового отделения. Следовательно, место расположения ТП Депо смещено от центра нагрузок депо на 138,0 м.

Таблица 1.3 – Координаты центра нагрузок и места установки силовых пунктов групп электроприёмников, в метрах

--------------------------------------------------
Координаты | СП-9 | СП-10 | СП-11 | СП-12 | СП-13 | СП-14 |
---------------------------------------------------------

ХЦН

| 13,8 | 45,5 | 73,2 | 88,0 | 17,4 | 49,7 |
---------------------------------------------------------

YЦН

| 31,5 | 32,4 | 36,8 | 26,4 | 19,0 | 16,5 |
---------------------------------------------------------

ХСП

| 16,0 | 38,0 | 73,0 | 94,6 | 15,2 | 52,0 |
---------------------------------------------------------

YСП

| 17,5 | 17,5 | 37,0 | 31,2 | 16.5 | 17,5 |
--------------------------------------------------------- --------------------------------------------------

Схема магистральной низковольтной сети приведена на рисунке 1.3.

Ввод питающей сети на ТП Депо выполнен на напряжении 6 кВ. В зависимости от типа линии и класса напряжения сечение проводников питающей сети выбирается в соответствие с ПУЭ /4/ по допустимому длительному току и проверяется по:

- динамическому и термическому действию токов короткого замыкания;

- допустимой экономической плотности тока по формуле

Рисунок убран из работы и доступен только в оригинальном файле., [1.13]

где SПР – площадь поперечного сечения фазной жилы проводника, мм2;

IM – ток в час максимума, А;

JЭК – нормированное значение экономической плотности тока, А/мм2.

Поведём выбор проводников высоковольтных кабельных линий питающих ТП Депо. Максимальная мощность нагрузки депо согласно данных расчёта в таблице 1.2 составляет: = 1083,7 кВ·А. Максимальный ток при напряжении сети 0,4 кВ составляет: IM = 1647 А. по формуле [1.11] для питающей сети с напряжением 6 кВ – IM = 104 А.

При односменной работе предприятия и числе использования максимума нагрузки до 3000 час. в год экономическая плотность тока для высоковольтных проводов с изоляцией из полиэтилена и алюминиевыми жилами составляет:

JЭК = 1,6 А/мм2 /4/.

Следовательно, сечение провода кабельной линии питания предприятия должно быть:

SКЛ ≥ 104,0/1,6 ≥ 65,0 мм2.

Сечение жил кабеля основного питания марки ААШВ 3×120, трёхжильного алюминиевого кабеля в алюминиевой оболочке составляет 120 мм2, а кабеля для резервного питания марки ААБ 3×70, трёхжильного алюминиевого кабеля в свинцовой оболочке и с бумажной изоляцией - 70 мм2. Следовательно, существующие высоковольтные кабели позволяют выполнить электроснабжение ТП Депо в соответствие с действующими нормативами. При этом по кабелю основного питания имеется запас для транзита электроэнергии на КТП питания дистанции пути.

Сечения проводников высоковольтной сети и питающих группы низковольтных электроприемников, выбираем по длительно – допустимому току /4/ исходя из условия

IРАСЧ ≤ IДЛ. ДОП., [1.14]

где IРАСЧ – расчетный ток, А;

IДЛ. ДОП – длительно – допустимый ток по нагреву для проводника, А.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 1.2 – Схема деповской понижающей подстанции

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 1.3 – Схема деповской низковольтной распределительной сети

Например, в вынужденных режимах электроснабжения кабель марки ААБ 3×70 позволяет пропускать длительно-допустимый ток до IДЛ. ДОП = 175 А.

Низковольтные сети выполняются по системе TN-C-S четырёхжильными кабелями, проложенными в коробах и кабельных каналах. При прокладке нескольких кабелей в расчёт вводятся коэффициенты согласно ПУЭ /4/. Например, для четырёхжильных кабелей вводится коэффициент 0,92 по сравнению с длительно допустимым током для трёхжильных.

Например, максимальный ток СП-11 составляет = 61 А. Следовательно, при прокладке по помещениям цехов в воздухе на желобах и по кабельной каналам можно выбрать кабель типа АВВГ 4×25 с алюминиевыми жилами и длительно допустимым током 69 А.

Данные по магистральной питающей сети приведены в таблице 1.4.

Таблица 1.4 - Кабели питающей низковольтной сети

--------------------------------------------------
Путь питающей сети |

Ток группы ЭП, , А

| Тип кабеля |

Сечение

кабеля, мм2

|

Допустимый ток кабеля, IДЛ. ДОП, А

|
---------------------------------------------------------
ТП – СП-9 | 98 | АВВГ | 3×50 + 1×25 | 101 |
---------------------------------------------------------
ТП – СП 10 | 88 | АВВГ | 4×16 | 55 |
---------------------------------------------------------
ТП – СП-11 | 61 | АВВГ | 4×25 | 69 |
---------------------------------------------------------
ТП – СП-12 | 114 | АВВГ | 3×70 + 1×50 | 128 |
---------------------------------------------------------
ТП – СП-13 | 61 | АВВГ | 4×25 | 69 |
---------------------------------------------------------
ТП – СП-14 | 94 | АВВГ | 3×50 + 1×25 | 101 |
--------------------------------------------------------- --------------------------------------------------

Распределительная низковольтная сеть состоит из присоединений отдельных электроприемников к силовым пунктам (СП).

Она выполняется в виде электропроводок в пластмассовых или тонкостенных водо– газопроводных стальных трубах изолированными одножильными проводами или четырёхжильными кабелями /3/.

Расчетные токи для различных электроприемников определяются в зависимости от типа оборудования.

Для сварочных трансформаторов

Рисунок убран из работы и доступен только в оригинальном файле.. [1.15]

Для электрических приемников повторно – кратковременного режима сечение питающих проводов должно выбираться по ПУЭ /4/. Если в результате выбора сечение алюминиевых проводов получается S ≤ 10 мм2, то провод выбирают по номинальному току электроприемника, IРАСЧ = IПАСП и к ПВ = 100% не приводится, а если ≥ 16 мм2 то расчетный ток определяется по формуле, А

Рисунок убран из работы и доступен только в оригинальном файле.. [1.16]

Этим учитывается тепловая инерция проводников больших сечений.

Для приводов с асинхронными двигателями номинальный ток определится, А

Рисунок убран из работы и доступен только в оригинальном файле. [1.17]

Например, для приводов колёсно-токарных станков питаемых отдельными линиями прямо от шин 0,4 кВ КТП с рН = 80, 0 кВт = 160 А. Следовательно необходимо выбрать кабель с сечением фазных алюминиевых жил 120 мм2 и нулевой жилой 70 мм2 имеющий IДЛ. ДОП 184 А. Для пресса в электромашинном отделениис рН = 3, 0 кВт = 6 А. Следовательно необходимо выбрать четырехжильный алюминиевых провод марки АПРТО с сечением жил по 2,5 мм2 и имеющий IДЛ. ДОП = 19 А /4/.

Расчет и выбор силовых распределительных шкафов проводится по среднему току групп электроприёмников /3/. Выбираются типовые конструкции выпускаемые в настоящее время промышленностью.

Основными потребителями электрической энергии на предприятиях обычно являются асинхронные электродвигатели и трансформаторы. В некоторых режимах они потребляют значительную реактивную мощность. Для компенсации реактивной мощности могут применяться компенсирующие устройства: батареи статических конденсаторов, синхронные компенсаторы, синхронные двигатели.

Конденсаторные батареи могут использоваться практически в любом диапазоне мощностей. Преимуществом конденсаторной установки является простота, небольшая стоимость, малые удельные собственные потери активной мощности, отсутствие движущихся частей. К недостаткам относятся невозможность плавного регулирования реактивной мощности, пожароопасность, наличие остаточного заряда.

Рисунок убран из работы и доступен только в оригинальном файле.Выбор мощности конденсаторных батарей осуществляют по расчетам электрических нагрузок подстанции и заданному входному tg φВХ, с помощью которого определяется входная мощность, компенсацию которой берет на себя энергетическая система. Из расчета электрических нагрузок определяется средняя активная мощность за наиболее загруженную смену PСМ и вычисляется реактивная мощность , кВ·А р которую необходимо компенсировать по

Здесь опубликована для ознакомления часть дипломной работы "Электроснабжение железнодорожного предприятия (применение аутсорсинга в электроснабжении нетяговых потребителей)". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 669

Другие дипломные работы по специальности "Транспорт":

Организация мероприятий по повышению безопасности движения в городе Йошкар-Ола

Смотреть работу >>

Эффективность деятельности современного транспортного предприятия

Смотреть работу >>

Ремонт и техническое обслуживание ходовой части ГАЗ-3102

Смотреть работу >>

Анализ эффективности использования основных производственных фондов ОАО "Северный порт" и разработка предложений по её повышению

Смотреть работу >>

Разработка оборудования для дозировки балласта

Смотреть работу >>