Дипломная работа на тему "Жаропрочные сплавы"




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Жаропрочные сплавы":


Аннотация

ЖАРОПРОЧНЫЕ СПЛАВЫ, ДЕФОРМАЦИЯ, СТЕПЕНЬ ДЕФОРМАЦИИ, ГОРЯЧАЯ ОБЪЕМНАЯ ШТАМПОВКА, ОБЪЕМ ЗАГОТОВКИ, ОБЛОЙ, УСИЛИЕ ШТАМПОВКИ, ЭКОНОМИЧЕСКИЙ ЭФФЕКТ.

Данная дипломная работа направлена на разработку нового технологического процесса изготовления детали типа "фланец" из жаропрочного и жаростойкого сплава на никелевой основе ЭИ868 в условиях серийного производства. Деталь типа "фланец" применяется в компрессорной и форсажной камерах современных газотурбинных двигателей. К изделию предъявляются повышенные требования по жаропрочности материала, надежности детали, точности изготовления, качественной проработки структуры и т.д. В работе проанализирован существующий технологический процесс и предлагается создание нового технологического процесса, заключающегося в изготовлении заданного изделия горячей объемной штамповкой на фрикционном прессе. Проведены основные технологические расчеты нового процесса: проектирование формы и размеров горячей поковки, определение размеров исходной заготовки, определение потребного усилия штамповки, расчет усилия обрезки и правки полуфабриката, определение коэффициента использования материала. Рассчитана и сконструирована штамповая оснастка для горячей объемной штамповки детали типа "фланец" и обрезки облоя у отштампованного полуфабриката. Разработана система автоматизации и механизации процесса производства заданного изделия. Рассчитана себестоимость изготовления единицы продукции по старому и новому варианту технологического процесса. Определен ожидаемый годовой экономический эффект от внедрения нового технологического процесса. Предложены мероприятия по безопасности труда и промышленной экологии.

Оглавление

ВВЕДЕНИЕ

1. Задание на технологическое проектирование

2. Сведения о материале изделия

2.1. Основные жаропрочные сплавы на никелевой основе

2.2. Химический состав и механические свойства сплава ЭИ868

2.3. Термическая обработка сплава ЭИ868

3. КРАТКОЕ ОПИСАНИЕ БАЗОВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ИЗГОТОВЛЕНИЯ ДЕТАЛИ ТИПА "ФЛАНЕЦ"

4. РАЗРАБОТКА НОВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ИЗГОТОВЛЕНИЯ ДЕТАЛИ ТИПА "ФЛАНЕЦ"

4.1. Технологическая схема разрабатываемого процесса производства детали типа "фланец" из сплава ЭИ868

4.2. Анализ чертежа чистовой детали "фланец" из сплава ЭИ868

4.3. Проектирование чертежа горячей штамповки детали "фланец" из сплава ЭИ868

4.3.1. Назначение допусков и припусков

4.3.2. Назначение напусков

4.3.3. Назначение радиусов скругления

4.4. Расчет размеров и массы заготовки

4.5. Обоснование выбора нового оборудования.

4.6. Разделка исходного материала

4.7. Нагрев заготовок под штамповку

4.8. Горячая объемная штамповка

4.8.1. Определение потребного усилия пресса и

4.8.2. Технология изготовления штампа и материалы для

изготовления штампов

4.8.3. Смазка штампов

4.9. Обрезка облоя

4.10. Пескоструйная обработка

4.11. Зачистка дефектов

4.12. Правка

4.13. Контроль качества готовой продукции

5. Разработка чертежЕЙ штамповой оснастки

6. Автоматизация технологического процесса

Выводы по технологической части работы

7. Организационно-экономический раздел

7.1. Технико-экономическое обоснование темы дипломной работы

7.2. Расчет полной себестоимости изготовления единицы продукции по базовому и новому варианту технологического процесса

7.2.1. Расчет расходов на основные материалы для изготовления единицы (штуки) продукции

7.2.2. Расчет расходов на вспомогательные материалы

7.2.3. Расчет основной и дополнительной заработной платы основных производственных рабочих

Расчет тарифной зарплаты основных производственных рабочих.

7.2.4. Расчет единого социального налога

7.2.5. Расчет расходов на электроэнергию для технологических целей.

7.2.6. Расчет затрат на возмещение износа специальной оснастки

7.2.7. Расчет расходов на содержание и эксплуатацию

производственного оборудования

7.2.8. Расчет цеховых расходов

7.2.9. Расчет общезаводских расходов

7.2.10. Расчет потерь от брака

7.2.11. Расчет внепроизводственных расходов

7.2.12. Расчет полной себестоимости

7.3. Расчет ожидаемого годового экономического эффекта от внедрения нового технологического процесса

8. Экология и безопасность

8.1. Безопасность производства

8.1.1. Идентификация опасных и вредных факторов в технологическом процессе

8.1.1.1. Микроклимат рабочей зоны

8.1.1.2. Воздух рабочей зоны

8.1.1.3. Производственное освещение

8.1.2. Разработка мер защиты от выявленных ОВФП в ТП

8.2. Устойчивость производства в чрезвычайных ситуациях

8.2.1. Факторы, влияющие на формирование ЧС в ТП

8.2.2. Разработка мер по повышению устойчивости ТП в ЧС

8.3. Промышленная экология

8.3.1. Материальный баланс выбросов и сбросов от производства

Выводы по главе

Выводы по дипломной работе

БИБЛИОГРАФИЧЕСКИЙ СПИСОК


Введение

На современном этапе, при работе в достаточно сложной экономической ситуации, основная цель, стоящая перед любым производителем заключается в снижении себестоимости изготовления единицы продукции при условии сохранения прежнего качества изделий или улучшения их качества. Это касается и предприятий авиастроительного комплекса, так как снижение себестоимости продукции позволяет снижать цены на конечную продукцию, что позволяет последней быть конкурентно-способной как на внутреннем, так и на внешнем рынках. Применительно к металлургическому заготовительному производству авиационной отрасли, к которому относиться производство полуфабрикатов и деталей двигателей самолетов, элементов фюзеляжа и планера и т.д., также необходимо стремиться к снижению отходов металла, увеличению коэффициента использования материала, так как стоимость материалов, используемых в процессе производства, играет основную роль в формировании затрат на производство тех или иных деталей [1,2].

Безусловно, детали современных газотурбинных двигателей можно изготовить многими способами – литьем, механической и слесарной обработкой и т.д. Однако наиболее оптимальными способами изготовления деталей ответственного назначения в условиях серийного или массового производства, обеспечивающими высокую точность размеров и проработку структуры материала, относительно низкую себестоимость продукции, являются методы обработки давлением и в первую очередь горячая объемная штамповка.

При горячей объемной штамповке в условиях деформационного формоизменения, нагретая заготовка деформируется в штампованный полуфабрикат, заполняя внутреннюю, рабочую полость штампа. Пи этом форма штампованного полуфабриката должна быть максимально приближена к форме готовой детали, для того чтобы минимизировать отходы материала при последующей механической обработке штампованного полуфабриката.

В условиях серийного и массового производства деталей из сталей и сплавов цветных металлов, процессы обработки металлов давлением, и в частности горячая объемная штамповка имеют ряд существенных преимуществ перед остальными металлургическими процессами:

1. При изготовлении деталей штамповкой форма и размеры штампованного полуфабриката максимально приближены к форме и размерам готовой детали, что позволяет не только уменьшить трудоемкость последующей механической обработки, но и максимально снизить объемы отходов материала при обработке резанием.

2. Процессы обработки металлов давлением, по сравнению с обработкой металлов резанием, отличаются максимальным значением коэффициента использования материала при изготовлении подобных изделий.

3. Детали, изготовленные процессами обработки металлов давлением, отличаются высоким качеством структуры материала по сравнению с процессами изготовления полуфабрикатов литьем, так как в процессе деформации неоднородная, дендритная структура литого материала, с большим количеством литых пор и интерметаллидов, превращается в мелкозернистую, равно осную деформационную структуру, что крайне важно при изготовлении деталей ответственного назначения [2].

4. Процессы обработки металлов давлением легко подвергаются автоматизации и механизации, что в свою очередь снижает трудоемкость выполнения технологических операций.

5. При изготовлении деталей штамповкой имеется возможность использовать низко квалифицированную рабочую силу, за исключением случаев изготовления, установки и наладки штампов [1,2].


15547089263145364">1. Задание на технологическое проектирование

Разработать новый технологический процесс изготовления детали типа "фланец" представленной на рис.1 из жаропрочного и жаростойкого сплава на никелевой основе ЭИ868 методами горячей объемной штамповки. Деталь относится к группе ответственных изделий авиационной промышленности. Применяется в компрессорной и форсажной камерах современных газотурбинных двигателей. К детали предъявляются повышенные требования по жаропрочности и жаростойкости, качеству структуры материала, надежности длительной эксплуатации и т.д. Учесть тот факт, что имеется серийное производство детали с годовой программой выпуска 200 000 шт./год.


|
---------------------------------------------------------
| Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------
Эскиз чистовой детали.

Рис.1.


155470893 63145365">2. Сведения о материале изделия

155470894 63145366">2.1 Основные жаропрочные сплавы на никелевой основе

При изготовлении ответственных деталей современных газотурбинных двигателей довольно часто, в качестве материалов, используют жаропрочные и жаростойкие сплавы на никелевой основе. Легированные сплавы на никелевой основе широко применяются при изготовлении газотурбинных двигателей для рабочих и сопловых лопаток и в меньшей степени — для турбинных дисков и колец [1,3].

Все жаропрочные сплавы на никелевой основе целесообразно подразделить на следующие две группы:

1.      Сплавы ЭИ437, ЭИ617, ЭИ826, ЭИ929, ЭП57, ЭП220, ЖСЗ,ЖС6, ЖС6К, ЭП539, ЭИ698, содержащие Ti и А1 и упрочняющиеся вследствие образования интерметаллидной фазы γ' [N3(Ti, A1)].

2.      Сплавы ЭИ827, ЭИ828, ЭИ867, ЭП109, ЭП238, содержащие только алюминий и упрочняющиеся фазой Т3А1. К этой группе сплавов относиться и сплав ХН60ВТ, имеющий обозначение ЭИ 868. Сплавы такого типа в деформированном состоянии раньше за рубежом практически не применялись. Для легирования основного твердого раствора отечественных сплавов используют одновременно молибден и вольфрам, в то время как в серийные зарубежные сплавы вводили только молибден.

Исследованиями показано, что разупрочнение сплавов с вольфрамом и молибденом меньше, чем при наличии только одного молибдена. В Англии никельхромотитанистые сплавы известны под марками нимоник 80, 80А, 90, 95, 100, 105 и 115; в США — под марками инконель X, инко 550, 700, 71ЗС, удимет 500, удимет 700, рене 41, никротанг [3].

В результате сложного легирования у сплавов этой группы достигнуты более высокие жаропрочные свойства по сравнению со сплавами на железной и даже кобальтовой основах.

Металлический никель при 800 0С имеет 100-ч длительную прочность 40 МПа. Присадка 20% Сг к никелю сравнительно мало упрочняет твердый раствор при высоких температурах и повышение предела длительной прочности составляет 25-30%. Хром улучшает окалиностойкость и, кроме того, повышает энергию связи атомов в твердом растворе системы Ni—Cr—Fe.

Введение в сплавы 2,5-3,0 % Ti способствует образованию высокодисперсных интерметаллидных фаз при умеренных температурах, увеличивая тем самым сопротивление сплава пластической деформации и повышая 100-ч длительную прочность при 800 0С до 150 МПа. Внедрение в нихромовые сплавы титана вместе с бором повышает ее до 200 МПа. Еще более значительному росту жаропрочности способствует увеличение содержания титана или алюминия (или их     суммы) вместе с бором и тугоплавкими элементами - W, Мо или Nb. Установлено, что характеристическая температура, пределы длительной прочности и внутреннее трение с внедрением титана в никель и в хромоникелевые (никельхромистые) сплавы повышаются. Известно, что между скоростью роста частиц второй фазы при старении сплава на никелевой основе и длительной прочностью имеется определенное соответствие. Присадка бора ускоряет процессы укрупнения частиц.

Никелевые сплавы марок ЭИ 868, ЭИ 929 и др. обладают высокой стабильностью свойств, определяемых при длительных испытаниях на разрыв, что подтверждено неоднократными испытаниями в лабораторных и промышленных условиях. Между длительной прочностью, твердостью при соответствующей температуре испытания и количеством упрочняющих фаз, образующихся в результате термической обработки хромоникелевых сплавов, наблюдается определенная зависимость. С повышением содержания титана или алюминия или их суммы в никельхромистом сплаве увеличивается количество интерметаллидной фазы типа γ' [Ni (Ti,A1)] или фазы Ni3Al .

С понижением температуры растворимость титана в двойной и в тройной системах резко падает. Так, при 750 0С в двойной системе Ni-Ti растворимость титана составляет уже 10%, а в тройных сплавах с 20% Сг — примерно 4%. По-видимому, при дальнейшем снижении температуры растворимость титана Ni - Сг твердом растворе еще более резко падает и сплавы с содержанием титана меньше 4% при комнатной температуре, возможно, уже являются двухфазными. Однако в состав жаропрочных сплавов, кроме титана, как правило, входит алюминий. Согласно диаграммам состояния системы Ni—Al—Ti, алюминий оказывает значительное влияние на растворимость титана в никеле. Так, при 1150 0С растворимость титана в никеле снижается с 13 до 8% при содержании 5% А1. При 750 0С это явление еще более ярко выражено. Аналогичное действие на растворимость алюминия в никеле оказывает титан.

Насыщенный γ- раствор титана в никеле находится в равновесии с интерметаллидным соединением Ni3Ti (τ)-фаза с гексагональной решеткой в двойной системе без алюминия и в тройной системе при малых концентрациях алюминия. Насыщенный (γ) твердый раствор алюминия в никеле находится в равновесии с у-фазой с гранецентрированной кубической решеткой, построенной на базе соединения N3А1. В тройной системе в области более высокого содержания алюминия, γ'-фаза представляет основную вторую фазу. Растворимость обоих соединений [Ni3Ti (τ)-фаза) и γ'-фазы в твердом растворе в зависимости от температуры из меняется, что сообщает сплавам способность к дисперсионному упрочнению.

При введении хрома в двойные и тройные сплавы системы Ni-Al-Ti механизм превращений в этих сплавах не меняется, но кривые растворимости смещаются в сторону меньших концентраций. Кроме того, изменяется энергия связи атомов в кристаллической решетке и скорости диффузии хрома и титана.

Наиболее распространенной фазой, играющей главную роль в упрочнении жаропрочных сплавов на никелевой основе и ряда сплавов на никелевой основе, является γ'-фаза. Она имеет гранецентрированную кубическую решетку, близкую к решетке γ-твердого раствора, но несколько большего параметра, и по химическому составу приближается к соединению Ni (Ti,Al); γ'-фаза содержит небольшие количества хрома.

Известно, что закаленный пересыщенный твердый γ-раствор по существу не является однородным в отношении распределения атомов алюминия и титана в решетке растворителя. В зависимости от скоростей охлаждения и состава величина этой неоднородности различна. Имеются области, настолько обогащенные титаном и алюминием, что в них возможно образование сверхструктуры с размерами от 80 до 1000 А. Сплавы с большим содержанием алюминия и сложнолегированные сплавы типа ЭИ617 уже при охлаждении на воздухе подвергаются распаду, что отмечается по разнице в твердости сплава, закаленного в воде и на воздухе. В зависимости от температуры и продолжительности выдержки при старении сплава типа ХН77ТЮ (ЭИ437А) наблюдаются следующие изменения. При нагреве до 500 0С в закаленном на твердый раствор сплаве каких-либо структурных изменений не наблюдается. В интервале 500-600 0С [3] изменяется характеристическая температура, которая достигает при этом максимального значения. Величины изменения среднеквадратичных смещений атомов в решетке при тепловых колебаниях становятся минимальными, что указывает на увеличение сил связи атомов в кристаллической решетке. В этом интервале температур период решетки не изменяется, что свидетельствует лишь о подготовительном процессе диффузионного перераспределения атомов титана и алюминия без перестройки решетки.

Усиленная подвижность атомов, характеризуемая изменением динамических и статических смещений, наблюдается при 700 0С, что сопровождается выделением γ'-фазы, обогащенной титаном и алюминием. Уменьшение периода кристаллической решетки также свидетельствует об образовании γ'-фазы. Нагрев при 800 0С сначала вызывает ускорение процессов выделения γ'-фазы, а затем перестройку решетки из кубической в гексагональную. Рост частиц и перерождение кубической γ'-фазы отмечают многие исследователи. Процессы, протекающие при старении в хромоникельтитанистых сплавах с алюминием, сопровождаются изменением физических и механических свойств: изменяются параметр решетки, удельное электросопротивление [3].

Установлено, что предварительное разупрочняющее высокотемпературное старение приводит к значительному развитию сдвиговой деформации. Несмотря на межзеренный характер разрушения, этот сплав сохраняют высокую пластичность. С увеличением содержания титана или алюминия или их I суммы увеличивается количество γ'-фазы или фазы Ni3Al и их термическая стойкость. При этом алюминий оказывает очень сильное влияние на количество γ'-фазы в никельхромотитанистых сплавах. С повышением количества алюминия содержание легирующих элементов в γ'-фазе резко возрастает. Сплавы на никелевой основе (без титана) упрочняются вследствие образования фазы Ni3Al, которая также повышает их жаропрочные свойства. Таким образом, алюминий представляет ценный легирующий элемент в аустенитных сталях с высоким содержанием никеля, особенно в сплавах на никелевой основе. Одновременное введение титана и алюминия действует более эффективно, чем добавка только титана. Алюминий, вводимый в сложнолегированные никельхромистые жаропрочные сплавы, оказывает очень сильное влияние на повышение жаропрочных свойств этих сплавов, причем тем большее, чем выше его содержание. Однако если количество алюминия больше 3- 4%, то возникают затруднения при ковке, что и ограничивает возможность более сильного легирования этим элементом труднодеформируемых жаропрочных сплавов [3, 4].

155470895 63145367

2.2. Химический состав и механические свойства сплава ЭИ868

Жаропрочный и жаростойкий сплав на никелевой основе ЭИ868 относится к группе хромоникелевых сплавов и достаточно широко применяется при изготовлении деталей двигателей, работающих при достаточно высоких температурах и испытывающих повышенные нагрузки. Довольно часто в научной и технической литературе сплав ЭИ868 встречается под своим устаревшим названием - сплав ХН60ВТ [3,4]. Химический состав сплава ЭИ868 (в %) согласно ТУ 14-1-1747-76 [5] представлен в табл.1, механические свойства сплава представлены в табл.2 [5, 6].

Таблица 1

Химический состав хромоникелевого сплава ЭИ868, % по массе

(ТУ 14-1-1747-76) [5].

--------------------------------------------------------------------------------17.8pt'>

155470896 63145368">C

|

155470897 63145369">Cr

|

155470898 63145370">W

|

155470899 63145371">Ti

|

155470900 63145372">Ni

|

155470901 63145373">Al

|

155470902 63145374">Fe

|

155470903 63145375">Mn

|

155470904 63145376">Si

|

155470905 63145377">Cu

|

155470906 63145378">S

|

155470907 63145379">P

|
--------------------------------------------------------- --------------------------------------------------------------------------------7.45pt'>

155470908 63145380">не более

|
--------------------------------------------------------- --------------------------------------------------------------------------------35.6pt'>

155470909 63145381">0,10

|

155470910 63145382">23,5-26,5

|

155470911 63145383">13-16

|

155470912 63145384">0,3-0,7

|

155470913 63145385">Основа

|

155470914 63145386">0,5

|

155470915 63145387">4,0

|

155470916 63145388">0,50

|

155470917 63145389">0,80

|

155470918 63145390">0,07

|

155470919 63145391">0,013

|

155470920 63145392">0,013

|
--------------------------------------------------------- --------------------------------------------------
- - -
Дипломная работа на тему: "Жаропрочные сплавы" опубликована на сайте http://rosdiplomnaya.com/

Здесь опубликована для ознакомления часть дипломной работы "Жаропрочные сплавы". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 788

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>