Дипломная работа на тему "Разработка технологии концентрирования серной кислоты"

ГлавнаяПромышленность, производство → Разработка технологии концентрирования серной кислоты




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Разработка технологии концентрирования серной кислоты":


СЛАБАЯ АЗОТНАЯ КИСЛОТА, КОНЦЕНТРИРОВАННАЯ СЕРНАЯ КИСЛОТА, РЕКУПЕРИРОВАННЫЕ И УЛОВЛЕННЫЕ КИСЛОТЫ, ОТРАБОТАННАЯ СЕРНАЯ КИСЛОТА, ТЕХНОЛОГИЯ, ПРОЕКТИРОВАНИЕ, КОНЦЕНТРАЦИОННАЯ КОЛОННА ТИПА БМКСХ, АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ, ОХРАНА ТРУДА, ЭКОНОМИКА, НЕЙТРАЛИЗАЦИЯ ВЫБРОСОВ.

технология концентрирование серная кислота

Объектом проектирования является цех по регенерации отработанной серной кислоты.

Цель проектирования: разработка технологии концентрирования серной кислоты.

В процессе работы проводился аналитический обзор по разрабатываемой теме, выбран оптимальный метод производства. Предложена модернизация концентрационной колонны типа БМКСХ, т. е увеличение числа абсорбционных ступеней, и частичная автоматизация процесса. Представлены материальные и тепловые расчеты, расчеты основного аппарата – колонна типа БМКСХ; экономическое и экологическое обоснование нововведений и проекта в целом. Рассмотрены вопросы автоматизации и охраны труда. Показана возможность уменьшения себестоимости при усовершенствовании основного аппарата и автоматизации технологического процесса.

Проектные предложения рекомендованы к внедрению на ФКП КГКПЗ.

СОДЕРЖАНИЕ

Введение

1Технологическая часть

2.1 Теоретические основы процессов

2.2 Характеристика исходного сырья и готовой продукции

2.3 Операционное описание технологического процесса

2.3.1 Принцип действия и назначение основного оборудования

3 Расчетная часть

3.1.1 Материальные расчеты отделения денитрации и концентрирования азотной кислоты

3.1.2 Материальные расчеты отделения концентрирования серной кислоты

3.2 Тепловые расчеты

3.2.1 Тепловые расчеты отделения денитрации и концентрирования азотной кислоты

3.2.2 Тепловые расчеты отделения концентрирования серной кислоты

4 Производственный контроль

4.1 Порядок допуска материалов в производство

4.2 Прием кислот со стороны

4.3 Технологический контроль

5 Автоматизация и автоматизированные системы управления

5.1 Краткое описание технологического процесса

6 Строительно – монтажная часть

7 Работа предприятия в чрезвычайных ситуациях

7.1 Противопожарные мероприятия

7.2 Предохранительные мероприятия

7.3 Правила при утечке СДЯВ

7.4 Связь и сигнализация

7.5 Меры оказания первой помощи      

8 Стандартизация

9 Безопасность и экологичность проекта

9.1 Общая характеристика участка

9.2 Характеристика веществ, применяемых на участке

9.3 Безопасность ведения процесса

9.4 Средства индивидуальной защиты

9.5 Шум и вибрация

9.6 Вентиляция

9.7 Микроклимат

9.8 Пожарная профилактика средства пожаротушения

9.9 Освещение

9.10 Электробезопасность и статическое электричество

9.11 Молниезащита

9.12 Экологичность проекта

10. Экономическое обоснование проекта

10.1 Режим работы проектируемого производства

10.2 Расчет годового выпуска продукции      

Заключение

Список использованной литературы

Приложения


ВВЕДЕНИЕ

Казанский пороховой завод выпускает пироксилиновые пороха и заряды практически ко всем видам вооружения, лаковые коллоксилины, пластифицированную нитроцеллюлозу, порошковую нитроцеллюлозу, охотничьи и спортивные пороха, лакокрасочные материалы, пиротехническую продукцию, ферросилидовое литье и нестандартное оборудование. Предприятие разрабатывает, изготавливает и монтирует вихревые колонны для рекуперации кислот с характеристиками на уровне лучших мировых аналогов.

Завод является разработчиком и ведущим производителем изделий из высококремнистого чугуна (ферросилида) марок ЧС - 15, ЧС - 17. Предприятие выпускает следующие изделия из ферросилида: трубы, насосы для перекачки агрессивных сред, коррозийно-стойкую запорную арматуру, фасонные изделия, ферросилидовый анод.

На сегодняшний день 10-15 % регенерированной серной кислоты /1/ используется для получения взрывчатых веществ и синтетических красителей, 75-80 % - для получения сульфатов и сложных минеральных удобрений. Значительное количество концентрированной серной кислоты применяется для очистки продуктов перегонки нефти, в текстильной промышленности.

В настоящее время развитие производств, применяющих смесь азотной и серной кислот в качестве нитрующего агента, привело к получению огромных количеств отработанных кислотных смесей. Эти смеси с экономической точки зрения необходимо регенерировать и в необходимых расчетных концентрациях возвращать обратно в производственный цикл, тем самым удешевляя единицу себестоимости готовой продукции. Цех № 3 ФКП КП КПЗ выпускает сырье для производства взрывчатых веществ и лакокрасочной продукции, для чего использует нитрующую смесь, поэтому цех № 2, ранее выпускающий азотную и серную кислоты, сегодня регенерирует возвратные кислотные смеси, так как при этом себестоимость продукта резко снижается, а значит и затраты предприятия.

Состав отработанных кислот, поступающих на регенерацию, колеблется в довольно широких пределах. В одних случаях они представляют сильно разбавленные кислотные смеси с содержанием азотной кислоты 5 – 10%, в других случаях отработанные кислоты содержат 1 – 2% азотной кислоты и 65 – 70% серной кислоты, в которой растворены окислы азота N2O3, образующие нитрозилсерную кислоту HNSO5. Регенерация таких смесей представляет собой определенные трудности и требует изыскания все новых и новых способов, обеспечивающие нормальное ведение процесса разгонки отработанных кислот, а также получение азотной и серной кислот, которые по своим качествам и техническим характеристикам не уступают свежим кислотам применяемым для нитрации.

Начальной ступенью регенерации отработанных кислот является их денитрация. Этот процесс заключается в выделении их кислотной смеси азотной кислоты и окислов азота, содержащихся в смеси. В результате проведения процесса денитрации получается 68 – 70% серная кислота, которая поступает на концентрирование, после чего направляется на производство нитроцеллюлозы или в случае необходимости, может быть снова направлена непосредственно в цикл нитрации.

2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

 

2.1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ

При установившемся в денитрационной колонне ГБХ (поз.1) равновесном процессе, HNO3 из смеси кислот, поступающей в колонну (поз.1) на тарелку испарения, частично уходит на нижележащие тарелки, откуда снова отгоняется на тарелку испарения. В процессе дистилляции, то есть отгонки HNO3 из тройной смеси, поднимающиеся вверх пары обогащаются более летучим компонентом – HNO3, а в движущуюся вниз жидкость переходит менее летучий компонент – вода.

Процесс испарения HNO3 происходит /3/ главным образом в средней части колонны (поз.1). Серная кислота, пройдя эту зону, содержит в себе растворенные окислы азота, переходящие из тройной смеси. Даже если в тройной смеси не было бы растворенных окислов азота, то при частичном разложении HNO3 происходит выделение окислов, которые взаимодействуя с H2SO4, образуют нитрозилсерную кислоту:

 

2H2SO4 + N2O3 = 2HNSO5 + H2O + 86250 Дж  (2.1)

 

Диоксид или четырехоксид азота, реагируя с концентрированной H2SO4, образует нитрозилсерную кислоту и азотную кислоту:

 

2NO2 + H2SO4 = HNSO5 + HNO3     (2.2)

 

Процесс разложения нитрозилсерной кислоты с выделением окислов азота характеризуется как процесс денитрации. Однако термин "денитрация" служит для обозначения процесса, обратного этерификации. В данном случае более правильно процесс разложения нитрозилсерной кислоты называть процессом гидролиза:

2HNSO5 + 2H2O = 2H2SO4 + 2HNO2    (2.3)

2HNO2 = H2O + N2O3 (жид)    (2.4)

N2O3 (жид) = N2O3 (газ)    (2.5)

N2O3 (газ) = NO (газ) + NO2 (газ)   (2.6)

 

Азотистая кислота (HNO2), образующаяся при гидролизе по реакции (2.3) неустойчива и распадается:

 

2HNO2 = H2O + HNO3 + 2NO   (2.7)

 

Нитрозилсерная кислота является довольно стойким соединением, которое при концентрациях H2SO4 выше 70% не разлагается полностью даже при температуре кипения. При разбавлении H2SO4 водой происходит гидролиз нитрозилсерной кислоты, степень которой увеличивается с понижением концентрации H2SO4 и повышением температуры.

 

Таблица 2.1 – Зависимость степени разложения HNSO5 от концентрации H2SO4 при 15-20 ºС

Концентрация H2SO4, % |

Степень разложения HNSO5 , % |

Концентрация H2SO4, % |

Степень разложения HNSO5 , % |
---------------------------------------------------------

98

95

92

90 |

1,1

4,0

7,3

12,4 |

81

80

70

57,5 |

19,4

27,7

49,8

100,0 |
--------------------------------------------------------- --------------------------------------------------

 

Как видно из зависимости, начиная с концентрации 57,5% серной кислоты, нитрозилсерная кислота совершенно отсутствует. Отработанная серная кислота, выходящая из колонны (поз.1), должна содержать минимально возможное количество окислов азота. Это необходимо не только для исключения потерь N2O3, но и устранения нитрозилсерной кислоты, обладающей сильно разрушающими свойствами.

Поэтому гидролиз нитрозилсерной кислоы в колонне ГБХ (поз.1) /1/ является важной стадией процесса. С увеличением температуры, степень гидролиза нитрозилсерной кислоты увеличивается. Образующийся при разложении азотистой кислоты монооксид азота незначительно растворяется в разбавленной серной кислоте. Гидролиз нитрозилсерной кислоты ведут с помощью перегретого до 250 ºС водяного пара, который подается с таким расчетом, чтобы разбавление кислоты конденсатом соответствовало массовой доли H2SO4 68 – 70 %. В отработанной серной кислоте содержится до 0,03% азотной кислоты и растворенных окислов азота. Последние образуют с серной кислотой до 0,01 % нитрозилсерной кислоты.

После стадии денитрации разбавленная серная кислота отправляется на стадию концентрирования /3/. В процессе концентрирования разбавленной серной кислоты, имеющиеся в ней примеси, в частности, продукты неполного сгорания топлива (когда концентрирование ведется непосредственным соприкосновением упариваемой кислоты с топочными газами), вызывают разложение серной кислоты вследствие ее восстановления до SO2. Восстановление в основном идет за счет углерода, содержащегося в примесях и в топливе по реакции:

 

2H2SO4 + С = СО2 + 2SO2 + 2 H2O   (2.8)

 

За счет этого происходят некоторые потери кислоты при ее упаривании. В процессе разгонки тройной смеси в колонне образуются нитрозные газы, которые поступают на поглощение в абсорбер (поз.4). Наиболее распространенный способ поглощения нитрозных газов – водой с образованием слабой HNO3. На поглощение поступают нитрозные газы различной степени окисления. Окислы азота, содержащиеся в нитрозных газах NO2, N2O4, N2O3 реагируют с водой

 

2NO2 + H2O = HNO3 + HNO2 + 116 кДж  (2.9)

N2O4 + H2O = HNO3 + HNO2 + 59,2 кДж  (2.10)

N2O3 + H2O = 2HNO3 + 55,6 кДж   (2.11)

 

Процесс поглощения нитрозных газов водой связан с растворением в ней диоксида азота, четырехоксида и трикосида азота с образованием HNO3 и азотистой кислоты.

В газовой среде вследствие взаимодействия паров воды с нитрозными газами, также получается HNO3 и азотистая кислота. Образовавшаяся при помощи нитрозных газов азотистая кислота – малоустойчивое соединение, которое разлагается по реакции:

 

2HNO2 = HNO3 + 2NO + H2O – 75,8 кДж  (2.12)

 

Суммарная реакция образования HNO3:

 

2NO2 + H2O = HNO2 + HNO3   (2.13)

3HNO2 = HNO3 + 2NO + 2H2O   (2.14)

____________________________________

3NO2 + H2O = 2HNO3 + NO   (2.15)

 

N2O3 + H2O = 2HNO2    (2.16)

3HNO2 = HNO3 + H2O + 2NO   (2.17)

______________________  

3N2O3 + H2O = 2HNO3 + 4NO   (2.18)

 

Так как в нитрозных газах содержится незначительное количество триоксида азота, обычно технологические расчеты производят по NO2. Как видно из реакций (2.12) – (2.18) 2/3 поглощенного диоксида азота идет на образование HNO3, 1/3 его выделяется в виде монооксида азота.

Отсюда следует, что при поглощении водой нитрозных газов невозможно все количество NO2 превратить в HNO3, так как в каждом цикле всегда 1/3 NO х будет выделяться в газовую фазу.

 Однако указанные поглощения не являются совершенными и нитрозные газы перед выбросом в атмосферу следует дополнительно очистить от окислов азота.

Отсюда следует, что в последнем абсорбере орошение ведется не водой, а азотной кислотой с массовой долей 5 %, которая до 0,003% поглощает окислы азоты. Выбрасываемые в атмосферу газы при этом соответствуют санитарным нормам, т.е. не превышают установленных ПДК.

2.2 ХАРАКТЕРИСТИКА СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ

2. Чистая безводная азотная кислота малоустойчива /1/ и разлагается при обычных температурах.

Молекула HNO3 имеет следующее строение:

атом кислорода

атом водорода

атом азота

Рисунок 2.1 – Строение молекулы азотной кислоты

В газовой фазе молекула HNO3 является плоской. Температура кристаллизации HNO3 равна – 41.58 ºС. При этой температуре кристаллы имеют белоснежный вид. Элементарная ячейка кристаллической решетки азотной кислоты содержит 16 молекул HNO3. плотность кристаллической HNO3 1895 кг / м3.

Плотность жидкой HNO3 увеличивается с повышением давления. При 20 ºС и давлении 1, 102 и 340 атм она составляет соответственно 1512.6; 1526.4; 1547 кг / м3 /2/.

Температура кипения чистой азотной кислоты при атмосферном давлении составляет 82.6 ºС.

2. Серная кислота – бесцветная едкая тяжелая маслообразная жидкость /4/ без запаха, плотность 1.84 г / м3, смешивается с водой в любых соотношениях. Безводная серная кислота растворяет до 70% оксида серы (VI). При обычной температуре она не летуча и не имеет запаха. При нагревании отщепляет SO3 до тех пор, пока не образуется раствор, содержащий 98,3 % H2SO4. Безводная H2SO4 почти не проводит электрический ток. Кипит и разлагается при 340 ºС, образуя триоксид серы и водяной пар:

H2SO4 (Ж) → SO3 (Г) + H2O    (2.20)

Высокая температура кипения и большая вязкость серной кислоты обусловлены наличием водородных связей между атомами кислорода соседних молекул. В таблице 2.3 представлены основные характеристики /3/ основных материалов и в таблице 2.4 основные характеристики готовой продукции.

Таблица 2.2 – Характеристика исходного сырья

Наименование сырья и материалов |
Нормативный документ | Показатели, обязательные для проверки | Регламентируемые показатели с допуском |
---------------------------------------------------------
1 | 2 | 3 | 4 |
---------------------------------------------------------

1.Слабая

азотная кислота

|
|

Массовая доля HNO3, % не менее

|
50 |
---------------------------------------------------------

2.Регенериро-

ванная серная

кислота

|
ГОСТ 2184 – 77 |

Массовая доля (H2SO4), %, не менее

|
91 |
---------------------------------------------------------
|
---------------------------------------------------------
| | | |
---------------------------------------------------------
| |

Массовая доля железа (Fe), %, не

более

Массовая доля остатка после прокаливания, %, не более

Массовая доля оксида азота (N2O3), %, не более

|

0,2

0,4

0,01

|
---------------------------------------------------------
| | Массовая доля нитросоединений, %, не более. | 0,2 |
---------------------------------------------------------
3. Техническая вода | |

pH, не менее

Жесткость, мг-

экв/кг, не менее

|

7

20

|
---------------------------------------------------------
4. Пар перегретый | |

Температура на входе, ºС, не менее

Давление на входе, атм., не менее

|

120

1

|
---------------------------------------------------------

5. Отработанная

кислота

|
|

Массовая доля HNO3, %, не

|
16 |
---------------------------------------------------------
|
---------------------------------------------------------
| | | |
---------------------------------------------------------
6. Природный газ | ГОСТ 5542 – 78 |

менее

Массовая доля

H2SO4, %, не менее

-

|

40

-

|
---------------------------------------------------------
| | | | | | | |
--------------------------------------------------------- --------------------------------------------------

Таблица 2.3 – Характеристика готовой продукции

Наименование продукта |
Нормативный документ | Показатели, обязательные для проверки | Регламентируемые показатели с допуском |

  |
---------------------------------------------------------

Марка А | Марка Б |

  |
---------------------------------------------------------

1 | 2 | 3 | 4 | 5 |

  |
---------------------------------------------------------

1. Концентриро-ванная азотная кислота | ГОСТ 701-89 |

Массовая доля HNO3, % не менее

|
98,6 | 97,5 |

  |
---------------------------------------------------------

| |

Массовая доля моногидрата (H2SO4), %, не менее.

|
0,05 | 0,06 |

  |
---------------------------------------------------------

| |

Массовая доля оксида азота (N2O3), %, не вболее.

Массовая

|

0.2

0.014

|

0.3

0.025

|

  |
---------------------------------------------------------

|

  |
---------------------------------------------------------

2. Концент-рированная серная

кислота

|
2184 – 77 |

доля остатка после прокаливания, %, не более. 0,3

Массовая доля (H2SO4), %, не

менее

Массовая доля железа (Fe), %, не более Массовая доля остатка после прокаливания, %, не более

Массовая доля оксида азота (N2O3), %, не более

|

91

0,2

0,01

0.2

|
|
---------------------------------------------------------
| | | | | | | | |
--------------------------------------------------------- --------------------------------------------------

Примечание: 1. Для азотной кислоты марки Б, получаемой методом регенерирования отработанных кислот, допускается норма по показателю 1 не менее 97,0 %.

Норма по показателям 1, 3 установлены на момент отгрузки.

2.3 ОПЕРАЦИОННОЕ ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Технологический процесс получения /3/ концентрированной серной кислоты и денитрации рекуперированных и уловленных кислот состоит из следующих операций:

- концентрирование слабой азотной кислоты;

-денитрация рекуперированных и уловленных кислот;

- абсорбция окислов азота и азотной кислоты;

- концентрирование серной кислоты;

Цех по регенерации отработанной серной кислоты предназначен для получения концентрированной серной кислоты концентрации не менее 92%.

1. Концентрирование слабой азотной кислоты.

Слабая азотная кислота /3/ концентрации не менее 48%; отработанная кислота, которая состоит из 16% HNO3, 40% H2SO4, 44% H2O; серная кислота концентрации не менее 92% при температуре 20 ºС из напорных баков (поз.5) самотеком через щелевые расходомеры поступают в концентрационную колонну ГБХ (поз.1).

Уровень кислот в напорных баках (поз.5) поддерживается постоянным с помощью щелевых расходомеров.

Концентрированная серная кислота поступает на 4 – 6 царги колонны (поз.1), слабая азотная кислота в 8 – 9 царги, отработанная кислота поступает в десятую царгу колонны (поз.1).

Одновременно с подачей кислот в дно колонны (поз.1), в противоток стекающей смеси кислот для отгонки азотной кислоты из отработанной серной кислоты, подается через форсунку водяной пар. Пар, нагретый до температуры 250 °С и сжатый до 2,45 МПа, поступает из 7 цеха. При этом в колонне (поз.1) образуется тройная смесь. Серная кислота присоединяет к себе воду, понижая парциальное давление водяных паров в смеси. В нижней части колонны

происходит концентрирование серной кислоты за счет испарения азотной кислоты.

Перегретый пар /1/ подается в нижнюю часть колонны (поз.1) и при прохождении до 13-11 тарелки отдает тепло перегрева, на вышележащих тарелках передается тепло конденсации.

2. Денитрация рекуперированных и уловленных кислот.

Для денитрации отработанной серной кислоты ее нагревают паром с таким расчетом, чтобы тепло, вводимое с паром, было достаточным для нагревания смеси до 150 – 160 ºС. Поэтому перегретый пар подают в колонну ГБХ (поз.1) с начальной температурой 250 ºС и поддерживают концентрацию отработанной серной кислоты 68 – 70 %. При этом содержание нитрозилсерной кислоты составляет не более 0,05 – 0,1 %, что значительно меньше содержания нитрозилсерной кислоты, если смесь нагревать глухим паром. В этом случае ее содержание составляет 1 – 2 %.

Азотная кислота, освобожденная от воды, но с большой массовой долей окислов азота, в парообразном виде поднимается в верхние царги колонны (поз.1) 6, 7, где, барботируя через слой серной кислоты, окончательно теряет влагу, затем проходит через царги № 4, 5, которые служат брызгоуловителями серной кислоты.

В колонне ГБХ (поз.1) постоянно поддерживается разрежение 1,27 МПа и температура 135 ºС во избежание взрыва, так как процесс идет с выделением большого количества тепла.

Освобожденные от влаги пары азотной кислоты поступают в верхние две царги колонны (поз.1), образующие дефлегматор, где за счет продувки паров азотной кислоты через стекающую противотоком из конденсатора в жидком виде азотную кислоту происходит отдувка окислов азота. Отработанная серная кислота концентрации не более 70% поступает в отделение концентрирования отработанной серной кислоты.

3. Абсорбция окислов азота и азотной кислоты.

Окислы азота, образовавшиеся в колонне ГБХ (поз.1), поступают в холодильник – конденсатор (поз.2), где за счет охлаждения происходит конденсация азотной кислоты из парообразного состояния в жидкое. Процесс охлаждения идет за счет подачи воды с начальной температурой 5 ºС, на выходе ее температура равна 30 ºС.

Сконденсированная азотная кислота стекает в общий коллектор конденсатора и пройдя холодильник (поз.2), с температурой 30 ºС поступает в склад готовой продукции.

Из склада готовой продукции концентрированная азотная кислота передается на нитрование целлюлозы.

Серная кислота постепенно, насыщаясь водой, стекает по царгам вниз и перекачивается в отделение концентрирования серной кислоты.

Несконденсировавшиеся пары азотной кислоты и окислы азота поступают в холодильник - конденсатор (поз.3) для отделения от брызг азотной кислоты и далее поступают в абсорбер (поз.4), куда на орошение подается вода. При этом протекают реакции:

2NO2 + H2O = HNO3 + HNO2 + 116.1 кДж  (2.20)

N2O4 + H2O = HNO3 + HNO2 + 59.2 кДж  (2.21)

N2O3 + H2O = 2 HNO2 +55.4 кДж   (2.22)

Процесс образования разбавленной азотной кислоты включает следующие стадии:

- диффузия оксидов азота из газовой в жидкую фазу;

- взаимодействие оксидов азота с водой и образование азотной и азотистой кислот;

- разложение азотистой кислоты до азотной кислоты и оксида азота (II).

Азотистая кислота, образующаяся при абсорбции окислов азота водой в абсорбционной башне (поз.9), малоустойчива и разлагается.

Суммарная реакция разложения азотистой кислоты связана с образованием окиси азота и азотной кислоты:

3HNO2 = HNO3 + 2NO + H2O – 75.87 кДж  (2.23)

С повышением температуры скорость этой реакции резко увеличивается, однако и при обычной температуре скорость разложения азотистой кислоты довольно велика.

Суммарная реакция образования азотной кислоты описывается уравнениями:

2NO2 + H2O = HNO2 + HNO   (2.24)

3HNO = HNO + 2NO + HO    (2.25)

 __________________________________________

3NO2 + H2O = 2HNO3 + NO + 136.2 кДж   (2.26)

и

N2O3 + H2O = 2HNO   (2.27)

3HNO2 = HNO3 + 2NO + H2O    (2.28)

____________________________________________

3N2O3 + H2O = 2 HNO3 + 4 NO    (2.29)

В обычных условиях поглощения двуокиси азота (0,3 – 10 % NO + NO2 в газе, 25 – 40°С, 0,001 – 0,008 МПа) скорость процесса абсорбции определяется скоростью диффузионного процесса. В первой (кинетической) области при малом содержании NO2 в газе (до 0,3 %) скорость абсорбции пропорционально концентрации двуокиси азота и не зависит от линейной скорости газа; во второй (диффузионной) области при высоком содержании NO2 в газе скорость абсорбции зависит и от линейной скорости газа.

Главными факторами, определяющими большую скорость образования азотной кислоты из окиси азота, являются проведение процесса абсорбции под давлением при пониженных температурах с применением богатых по содержанию окислов азота нитрозных газов и создание условий для более полного соприкосновения газа с жидкостью.

Далее идет процесс абсорбции, который протекает в абсорбционной башне (поз.9), которая имеет колосниковую решетку, на которой уложены кольца Рашига для увеличения поверхности контакта фаз.

Полученная в процессе абсорбции 5% - ая азотная кислота идет на подпитку для получения более концентрированной кислоты. В результате процесса абсорбции образуется 40%-ая азотная кислота, которая поступает в сборный бак (поз. 7), откуда с помощью центробежных насосов возвращается в цикл.

Перед пуском агрегата колонну разогревают паро - воздушной смесью. Затем включают выхлопной вентилятор, создают в колонне вакуум порядка 15-20 мм рт.ст и через нижний штуцер подают пар низкого давления и атмосферный воздух. Начальная температура такой паро – воздушной смеси не превышает 50ºС. Дальнейшее повышение температуры смеси проводится равномерно, без скачков, со скоростью 10ºС за 15 мин. Через 2-3 часа нагревания в верхней царге достигается температура 80-90ºС, при этом температура паро – воздушной смеси около 150ºС. Затем уменьшают подсос воздуха и повышают температуру смеси. В колонну для промывки парового конденсата подают концентрированную серную кислоту. Тепло, выделяющееся при разбавлении H2SO4 конденсатом, а также физическое тепло пара расходуется на поддержание в верхней части колонны температуры не ниже 80ºС.

В разогретую колонну постепенно подают разбавленную азотную кислоту, доводя нагрузку агрегата до нормальной. Период пуска агрегата до установления полной нагрузки и нормального режима составляет до 10 часов. Такой длительный пусковой период обусловлен хрупкостью ферросилида и большой чувствительностью его к изменениям температуры.

При остановке агрегата прекращают подачу азотной кислоты и уменьшают подачу серной кислоты. Через полчаса прекращают ввод пара в колонну. За это время азотная кислота будет полностью удалена из колонны, после чего прекращают подачу серной кислоты.

4. Концентрирование серной кислоты.

Процесс концентрирования серной кислоты производят в аппаратах – концентраторах вихревого типа (БМСКХ). Концентрирование серной кислоты осуществляется в концентраторах вихревого типа, представляющий собой вихревую ферросилидовую колонну. Процесс концентрирования осуществляется топочными газами при температуре от 600 до 900ºС. Горячие газы подаются в первую ступень вихревой колонны концентрирования серной кислоты.

Вихревая колонна состоит из пяти рабочих ступеней и одной брызгоуловительной ступени. Первая по ходу газового потока ступень выполнена в виде цилиндрической емкости, футерованной изнутри кислотоупорным кирпичом. Горячий газовый поток, нагретый в топке, при температуре 900ºС подается в днище колонны (первую ступень по ходу газового потока ступень концентратора) тангенциально через футерованный канал. Воздух в топку нагнетается воздуходувкой, а расход его регулируется задвижкой.

Вторая, третья, четвертая, пятая рабочие, абсорбционные и брызгоуло-вительная ступени выполнены конструктивно одинаковыми и изготовленными из высоко - кремнистого чугуна – ферросилида марки ЧС – 15. Отработанная (70 % - ная) серная кислота при температуре от 150 ºС до 170 ºС из колонны денитрации (поз.1) по трубопроводу 6.1 подается на шестую ступень концентратора (вихревой колонны) (поз.13). Расход ее устанавливается по щелевому расходомеру.

Контактирование горячих газов /3/ и кислоты осуществляется в колонне в противоточном режиме. Топочные газы, поступающие в первую ступень концентратора, поднимаясь вверх со ступени на ступень, контактирует с кислотой и концентрируют ее на ступенях.

При этом газы насыщаются парами воды и освобождаются от брызг кислоты на брызгоуловительных ступенях. Далее отходящие газы поступают в эжектирующее устройство. В эжектирующем устройстве за счет подсоса холодного воздуха происходит снижение температуры отходящих газов. Далее отходящие газы поступают в аппарат – брызголовушку, где происходит отделение брызг и капель кислоты от газового потока.

Вода подается на верхнюю абсорбционную ступень в количестве 1,0 – 2,0 л / мин. Расход воды регулируется вентилем и устанавливается по ротаметру. Образующаяся при абсорбции слабая (50 – 60 %) серная кислота и уловленные брызги серной кислоты подаются на укрепление на первую ступень колонны. Температура отходящих газов после брызголовушки составляет 110 – 130 ºС. Далее отходящие газы поступают в эжектирующее устройство и трубу выброса газов. Эжектирующее устройство /2/ служит для охлаждения газов до 60 – 70 ºС. Образующийся при охлаждении газов конденсат направляется в колонну.

Отходящие газы при 40 – 60 ºС направляются через трубу выброса газа в атмосферу. Серная кислота перетекает со ступени на ступень вниз, концентрируется и в виде продукционной 91 % серной кислоты с выхода первой ступени поступает в холодильник. Из холодильника серная кислота перетекает в сборник готовой продукции. Режим работы концентратора /3/ представлен в таблице 3.1.

Таблица 2.4 - Режим работы концентратора серной кислоты

Наименование показателя |
Норма |
---------------------------------------------------------
1 | 2 |
---------------------------------------------------------
Массовая доля регенерированной серной кислоты, %, не менее | 92 |
---------------------------------------------------------

Температура топочных газов при

входе в концентратор, ºС

|
900 |
---------------------------------------------------------
Давление природного газа, МПа |  0,1 |
--------------------------------------------------------- --------------------------------------------------
- - -
Дипломная работа на тему: "Разработка технологии концентрирования серной кислоты" опубликована на сайте http://rosdiplomnaya.com/

Здесь опубликована для ознакомления часть дипломной работы "Разработка технологии концентрирования серной кислоты". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 657

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>