Дипломная работа на тему "Разработка АСУ процессом производства конической шестерни среднего и заднего моста 6520-2402017"

ГлавнаяПромышленность, производство → Разработка АСУ процессом производства конической шестерни среднего и заднего моста 6520-2402017




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Разработка АСУ процессом производства конической шестерни среднего и заднего моста 6520-2402017":


Содержание

Введение

1. Аналитическая часть

1.1 Анализ объекта - служебная характеристика, анализ поверхностей

1.2 Анализ существующих компоновок АЛ

1.3 Анализ основного и вспомогательного оборудования

1.4 Выявление недостатков существующего техпроцесса

1.5 Пути улучшения существующего тех. процесса

1.6 Цели и задачи дипломного проектирования

2. Проектно-пояснительная часть

2.1 Определение типа производства

2.2 Выбор типа оборудования и определение его количества

2.3 Разработка компоновки автоматической линии

2.4 Выбор и разработка вспомогательного оборудования

2.4.1Разработка устройства ориентации

2.4.2 Разработка гравитационного транспорта

2.4.3 Выбор промышленного робота

2.5 Выбор основного оборудования

Заказать написание дипломной - rosdiplomnaya.com

Новый банк готовых оригинальных дипломных проектов предлагает вам скачать любые проекты по требуемой вам теме. Мастерское написание дипломных работ на заказ в Туле и в других городах России.

3. Расчетная часть

3.1 Расчет усилий захватного устройства

4. Разработка системы управления

4.1 Разработка функциональной модели СУ

4.2 Разработка структурной схемы

4.3.1 Математическая модель

4.3.2 Функциональная спецификация

4.3.3 Определение программной и аппаратной частей

4.3.4 Описание входных сигналов

4.3.5 Описание выходных сигналов

4.3.6 Описание исполнительных устройств

4.4 Выбор элементов СУ

4.5 Разработка электрической схемы соединений СУ

4.6 Разработка алгоритма работы программного обеспечения СУ

5. Безопасность жизнедеятельности

5.1 Требования по обеспечению комфортности на рабочем месте

5.2 Расчет

5.3 Организация техники безопасности на рабочем месте

5.4 Организация системы пожаро - и электробезопасности на рабочем месте

5.5 Правовые вопросы обеспечения БЖД

5.6 Заключение

6. Технико-экономическое обоснование проекта

6.1 Расчет инвестиционных вложений

6.2 Расчет экономии затрат на производство

6.3 Расчет эффективности проекта

6.4 Вывод

Заключение

Список использованных источников


Введение

Дальнейшее развитие и повышение эффективности машиностроения возможно при существенном росте уровня автоматизации производственного процесса. В последние годы широкое распространение получили работы по созданию новых высокоэффективных автоматизированных механосборочных производств и реконструкции действующих производств на базе использования современного оборудования и средств управления всеми этапами производства.

Производственные процессы должны обеспечивать выпуск продукции необходимого качества и требуемое количество изделий в заданный срок при минимальных затратах живого труда и вложенных капитальных затратах.

Для успешного решения всех этих задач необходимо, чтобы технологическое оборудование, будучи высокопроизводительным и обеспечивая требуемую точность, было способно к переналадке в процессе его эксплуатации при смене выпускаемого изделия.

Автоматическая линия есть сложное многогранное понятие, которое следует рассматривать с нескольких точек зрения. Если первые переналаживаемые автоматические линии были ориентированы, как правило, на ручную переналадку на два-три наименования деталей, то современные переналаживаемые автоматические линии ориентируются, как правило, на автоматическую переналадку на выпуск любой детали, если только она входит в заранее определенную группу. Число деталей в такой группе по мере технического прогресса имеет тенденцию возрастать, а длительность периода между запускаемыми в обработку партиями деталей, как и величины этих партий, - уменьшаться.

Автоматические линии машиностроения могут строиться по агрегатно-модульному принципу из комплектов унифицированных узлов, а могут снабжаться сменяемыми в процессе эксплуатации по программе шпиндельными головками, перемещаемыми по базе станка.

Необходимо учитывать, что унификация узлов подачи выдвигает свои специфические требования.

Применение унифицированных узлов подачи возможно, если обрабатываются одноименные или одинаковые поверхности на различных деталях или же если обрабатываются одноименные или одинаковые поверхности на одной и той же детали, но на разных режимах.

При эксплуатации унифицированных узлов подачи возникают следующие три случая:

обрабатываются одинаковые поверхности различных деталей.

Эти поверхности характеризуются одинаковыми конструктивными и технологическими параметрами, например при обработке отверстий под гильзы в блоках цилиндров автомобильных двигателей одинаковыми являются их длины, диаметры, требования по отклонениям от цилиндричности, параллельности, перпендикулярности к базовой поверхности, шероховатости и др. Разница в расположении этих отверстий у различных блоков цилиндров здесь заключается только в расстоянии этих отверстий от базовой плоскости;

обрабатываются различные поверхности у одной или у различных деталей.

В этом случае обычно используются узлы, включающие в работу различные инструментальные блоки, такие как револьверные шпиндельные бабки, поворотные шпиндельные головки и т. п. Это узлы, обеспечивающие последовательную и последовательно-параллельную обработку;

обрабатывается одна и та же поверхность у одной детали, но режимы обработки во время эксплуатации данной автоматической линии могут изменяться.

В этом случае используемый силовой узел подачи должен обладать определенными резервами, допускающими изменение скоростей подач, как правило, заключающееся в их повышении.

коническая шестерня унифицированный узел

Для проектирования автоматической линии в настоящее время применяются принципы групповой технологии. Это значит, что гибкая автоматическая линия изначально проектируется под определенную номенклатуру деталей, выбранных в качестве представителей. Наибольшим разнообразием отличаются различные корпусные детали, поэтому именно их в первую очередь следует специально распределять по соответствующим группам.

Технологические операции механической обработки, выполняемые на станках, образующих автоматическую линию, характеризуются многими параметрами, к числу которых относятся вид данной операции, расположение обрабатываемых на данной операции поверхностей относительно базовых, достигаемая точность, а также режимы, на которых она выполняется. В настоящее время с целью выбора математическими методами деталей - представителей для обработки на автоматических линиях принято рассматривать два основных параметра, используемых для проектирования.

К этим параметрам относятся координаты приложения действия режущего инструмента, а также точность позиционирования рабочего органа по этим координатам. Что касается таких параметров операции, как рабочие режимы или вид сменяемых инструментов, необходимость и последовательность их смены, то они задаются по командам от системы управления.

Оценка возможности и целесообразности запуска в производство новой детали на существующей переналаживаемой автоматической линии сводится к следующим действиям:

-  составляется информационная модель новой детали;

-  производится анализ массогабаритных характеристик новой детали;

-  производится анализ технологического маршрута обработки новой детали;

-  производится анализ достигаемой точности и качества обработки новой детали;

-  производится анализ ожидаемой производительности существующей автоматической линии при выпуске новой детали;

-  производится анализ экономической эффективности выпуска новой детали на существующей автоматической линии.

Составление информационной модели новой детали базируется на анализе рабочего чертежа новой детали и рабочего чертежа ее заготовки. Рабочий чертеж новой детали включает в себя данные о конфигурации новой детали, ограничивающих ее рабочих поверхностях, материале детали и его твердости, твердости некоторых поверхностей детали, например закаливаемых поверхностях, требованиях к точности обрабатываемых поверхностей, требованиях к шероховатости и качеству обрабатываемых поверхностей, о взаимном расположении поверхностей, об "увязке" черновых и чистовых обрабатываемых поверхностей.

Технологический процесс, реализованный на действующей автоматической линии обработки детали, помимо всего прочего, для целей проводимой оценки должен включать в себя данные о базовых поверхностях, поверхностях для транспортирования, а также о маршрутной технологии. Эти данные могут быть представлены как совокупность методов обработки детали и совокупность переходов в зависимости от требований к шероховатости, качеству и точности обработки данной поверхности, а также могут привести к определенному группированию переходов обработки данной поверхности. Для анализа требуемой производительности при выпуске новой детали следует исходить из производственной программы выпуска этой детали. Общий фонд времени существующей автоматической линии, который может быть выделен для производства новой детали, складывается из времени, затрачиваемого на перекомпоновку, переналадку, а в случае необходимости, и на модернизацию этой линии, и времени, необходимого для выполнения этой переналаженной автоматической линией рабочих операций нового технологического процесса.

Проведя анализ всех этих показателей, можно сделать заключение о целесообразности или нецелесообразности использования для производства новой детали уже существующей автоматической линии.


1. Аналитическая часть 1.1 Анализ объекта - служебная характеристика, анализ поверхностей

Деталь шестерня ведущая заднего моста 6520-2402017 (чертеж в приложении А.1) изготовлен из стали 20ХГНМТА ТУ 14-1-5509-2005, масса 13,6 кг. Годовой план выпуска детали 25000 шт.

Шестерня ведущая среднего моста 5320-2502017 (чертеж в приложении А.2) изготовлен из стали 20ХГНМТА ТУ 14-1-5509-2005, масса 6,53 кг. Годовой план выпуска детали 25000 шт.

Оборудование которое использовалось для обработки ведущей конической шестерни заднего и среднего моста в нынешнем технологическом процессе приведена на таблице 1. Исходный технологический маршрут нуждается в корректировке, т. к. он не удовлетворяет многим требованиям проектирования автоматической линии. Технологический маршрут состоящий из нескольких операций преобразуем в одну операцию. Разбивка операций по переходам осуществляется таким образом, чтобы количество основного оборудования было наименьшим и достигалась необходимая производительность участка.

Обе детали характеризуются простой конфигурацией, образована простыми геометрическими поверхностями, которые могут быть использованы в качестве установочных баз на первой механической операции. (представляет собой тело вращения, симметричное относительно оси).

Коническая форма деталей говорит о их технологичности при получении заготовки, обработки, контроле. В тоже время с точки зрения механической обработки заготовки не технологичны, т. к. операция получения зубьев со снятием стружки производиться в основном малопроизводительными методами. Конструкция двух шестерен несмотря на ступенчатую коническую форму, позволяет вести обработку зубьев на одинаковых зуборезных станках с ЧПУ с небольшой переналадкой. Большинство элементов шестерен технологичны и позволяет вести обработку стандартными покупными инструментами.

Самые точные и ответственные элементы обоих шестерен - это шейки и зубья. Одна из главных шеек шестерни заднего моста имеет размер Ø65мм и другая шейка 75мм, а шейки шестерни среднего моста имеют размеры Ø70мм и Ø107мм. Шероховатость этих шеек 1,25 мкм. Такую же шероховатость имеют зубья обоих шестерен, поэтому их нужно шлифовать. Для этого можно подобрать одну группу шлифовальных станков с ЧПУ. Посадочные места под подшипники требуют высокую чистоту поверхности с шероховатостью Ra 1,25мкм. Остальные поверхности детали, имеют шероховатость более грубые.

Конструкция двух деталей похожа и состоит из стандартных и унифицированных конструктивных элементов. Большинство обрабатываемых поверхностей деталей имеют правильную простановку размеров, оптимальные степень точности и шероховатости. Конструкция деталей позволяет изготавливать их из стандартных и унифицированных заготовок или заготовок, полученных рациональным способом. Так же конструкция обеспечивает возможность применения типовых и стандартных технологических процессов при изготовлении.

Проведя анализ двух деталей, а это шестерни ведущих заднего и среднего мостов, можно сделать вывод о том, что для их изготовления можно подобрать одну группу обрабатывающих станков, отвечающим всем требованиям точности, качества и последующей эксплуатации.

Ведущие мосты предназначены для восприятия вертикальных, продольных, поперечных усилий, действующих на колеса, обеспечения постоянного увеличения момента двигателя и поведения его к ведущим колесам.

На автомобилях семейства КамАЗ на некоторых моделях устанавливается два ведущих моста - средний и задний. Конструкция мостов аналогична, отличие заключается в установке на среднем мосту межосевого блокируемого дифференциала и отдельных оригинальных деталей, сопрягаемых с ним.

Ведущая коническая шестерни является основной частью главной передачи автомобиля КамАЗ. Главная передача состоит из картера редуктора, пары спиральных конических шестерен и пары косозубых цилиндрических шестерен. На среднем мосту установлен межосевой дифференциал.

Ведущая коническая шестерня заднего моста отличается от конической шестерни среднего моста длинной ступицы. Каждая шестерня имеет отверстие. При этом у шестерни среднего моста оно цилиндрическое, предназначенное для обеспечения прохождения вала привода заднего моста, у шестерни заднего моста - шлицевое, предназначенное для соединения с ведущим валом. Ведущий вал среднего и заднего моста предназначен для передачи крутящего момента от карданной передачи к ведущим мостам автомобиля. Шестерни установлены в картере редуктора на двух конических подшипниках. Подшипники заднего и среднего мостов взаимозаменяемые, однако установка шестерни для каждого моста оригинальна.

Шестерня среднего моста установлена на двух конических подшипниках. Внутреннее кольцо заднего подшипника напрессовано на шейку шестерни. Наружное кольцо переднего подшипника запрессовано в гнездо стакана. Между подшипниками установлено распорная втулка и регулировочные шайбы предназначенные для регулировки преднатяга подшипников.

Шестерня заднего моста установлена на валу и вместе с валом на двух конических подшипниках в картере. Внутреннее кольцо заднего подшипника напрессовано на шейку шестерни. Наружное кольцо переднего подшипника запрессовано в гнездо стакана. Между подшипниками установлено опорная шайба и регулировочные шайбы, предназначенные для регулировки преднатяга подшипников.

Ведущие шестерни заднего и среднего моста изготовлены из стали 25 ХГНМ, проходят цементацию на глубину 1,6 мм и закалку для обеспечения твердости 60-64HRC.

Таблица 1

--------------------------------------------------
Наименование детали | Оборудование |
---------------------------------------------------------
фрезерно-центровальный станок МР-71 |
---------------------------------------------------------
5320-2502017 | специальный агрегатно-сверлильный станок барабанного типа 11А243 |
---------------------------------------------------------
токарный гидрокопировальный станок ЕМ-425 |
---------------------------------------------------------
токарный гидрокопировальный полуавтоматный станок ЕМ-427 |
---------------------------------------------------------
шлицефрезерный полуавтомат 5350А |
---------------------------------------------------------
горизонтакльно-фрезерный станок 6Р82Г |
---------------------------------------------------------
круглошлифовальный полуавтоматический станок |
---------------------------------------------------------
круглошлифовальный полуавтоматический станок |
---------------------------------------------------------
зуборезный полуавтоматический станок Глисон |
---------------------------------------------------------
зубофасочный полуавтоматический станок ВС-320 |
---------------------------------------------------------
зуборезный полуавтоматический станок Глисон 116 |
---------------------------------------------------------
моечная машина 198К |
---------------------------------------------------------
зубоконтрольный станок Глисон 51 |
---------------------------------------------------------
резьбошлифовальный полуавтоматический станок МВ-145 |
---------------------------------------------------------
круглошлифовфальный полуавтоматический станок BHS25/630 TOS |
---------------------------------------------------------
круглошлифовальный полуавтоматический станок SAST |
---------------------------------------------------------
6520-2402017 | фрезерно-центровальный станок МР-71 |
---------------------------------------------------------
гидрокопировальный станок ЕМ-473-1-08 |
---------------------------------------------------------
гидрокопировальный полуавтоматный станок ЕМ-427 |
---------------------------------------------------------
шпоночно-фрезерный станок ДФ-814 |
---------------------------------------------------------
торцекруглошлифовальный станок “Кикинда AFD-630” |
---------------------------------------------------------
зубофасочный станок BC-520 |
---------------------------------------------------------
зуборезный станок Глисон - 16 |
---------------------------------------------------------
моечная машина 198К |
---------------------------------------------------------
резьбошлифовальный станок MB145C1 |
--------------------------------------------------------- --------------------------------------------------
1.2 Анализ существующих компоновок АЛ

Критерием оценки вариантов служат минимальные затраты на обработку и максимальная производительность. Основополагающий этап создания компоновки Автоматическая линия (А. л.) - это система машин, комплекс основного и вспомогательного оборудования, автоматически выполняющего в определённой технологической последовательности и с заданным ритмом весь процесс изготовления или переработки продукта производства или части его. В функции обслуживающего персонала А. л. входят: управление, контроль за работой агрегатов или участков линии, их ремонт и наладка. Линии, которые для выполнения части операций производственного процесса требуют непосредственного участия человека (например, пуск и остановка отдельных агрегатов, закрепление или перемещение продукта переработки), называются полуавтоматическими. На современных А. л. механизированы и автоматизированы многие вспомогательные операции (например, уборка отходов производства), контроль качества продукции, учёт выработки и др. На многих А. л. автоматически регулируются параметры технологических процессов, осуществляются автоматическое перемещение рабочих органов, наладка и переналадка оборудования. Создание и внедрение А. л. - один из важнейших этапов автоматизации производства.

Автоматические линии широко применяются в пищевой промышленности, производстве бытовых изделий, в электротехнической, радиотехнической и химической отраслях промышленности. Наибольшее распространение автоматические линии получили в машиностроении. Многие из них изготовляются непосредственно на предприятиях с использованием уже действующего оборудования.

Автоматические линии для обработки строго определённых по форме и размерам изделий называются специальными; при изменении объекта производства такие линии заменяют или переделывают. Более широкими эксплуатационными возможностями обладают специализированные автоматизированные линии для обработки однотипной продукции в определённом диапазоне параметров. При изменении объекта производства в таких линиях, как правило, лишь перенастраивают отдельные агрегаты и изменяют режимы их работы; основное технологическое оборудование в большинстве случаев может быть использовано для изготовления новой однотипной продукции. Специальные и специализированные автоматические линии применяются главным образом в массовом производстве.

В серийном производстве автоматические линии должны обладать универсальностью и обеспечивать возможность быстрой переналадки для изготовления различной однотипной продукции. Такие А. л. называют универсальными быстропереналаживаемыми, или групповыми. Несколько меньшая производительность универсальных А. л. по сравнению со специальными компенсируется их быстрой переналадкой для производства широкой номенклатуры продукции.

Структурная компоновка автоматических линий зависит от объёма производства и характера технологического процесса. Существуют линии параллельного и последовательного действия, однопоточные, многопоточные, смешанные (с ветвящимся потоком). Автоматические линии параллельного действия применяются для выполнения одной операции, когда продолжительность её значительно превышает необходимый темп выпуска. Продукт переработки автоматически распределяется (из магазина или бункера) по агрегатам линии и после обработки приёмными устройствами собирается и направляется на последующие операции. Многопоточные автоматические линии представляют собой систему из автоматических линий параллельного действия, предназначенную для выполнения нескольких технологических операций, каждая из которых по продолжительности больше заданного темпа выпуска. В единую систему могут быть объединены несколько А. л. последовательного или параллельного действия. Такие системы называются автоматическими участками, цехами или производствами.

Управление автоматическими линиями. осуществляется системами автоматического управления, которые подразделяются на внутренние и внешние. Внутренние системы управления обеспечивают выполнение отдельным агрегатом или механизмом линии всех основных и вспомогательных операций технологического процесса на данном агрегате. Внешняя система (как правило, система путевого контроля, организованного по принципу обратной связи) обеспечивает согласованную работу агрегатов и участков линии. В зависимости от конкретных условий системы управления автоматической линией, они могут строится на электрических, механических, гидравлических, пневматических или комбинированных связях. Для автоматического регулирования технологического процесса и переналадки оборудования на автоматических линий (преимущественно групповых) применяют системы электронного программного управления. Крупные комплексные автоматические линии оснащаются электронными управляющими машинами и другими средствами вычислительной техники. На агрегатах автоматических линий преимущественно применяется индивидуальный или многодвигательный электропривод и реже - регулируемый электрический, гидравлический или механический привод.

Перемещение обрабатываемых деталей (продукта переработки) с одной рабочей позиции на другую осуществляется жёсткой или гибкой системой транспортирования. Жёсткая система транспортирования может пересекать рабочее пространство агрегатов А. л. или располагаться параллельно и иметь перпендикулярно смонтированные устройства для загрузки и разгрузки рабочих позиций. Рабочие позиции каждого агрегата находятся на одинаковом расстоянии одна от другой. После обработки на одной позиции деталь раскрепляется и передвигается на следующую рабочую позицию; при этом на первой позиции устанавливается новая заготовка, а на последней снимается готовое изделие. В зависимости от конструкции, размеров и формы изделий используются транспортёры шаговые, штангового типа, а также грейферные, пластинчатые, цепные и др. Жёсткие системы транспортирования применяются преимущественно на однопоточных линиях последовательного действия при изготовлении крупных штучных изделий (например, на линиях из агрегатных станков или линиях для механической обработки цилиндрических зубчатых колес). При гибкой системе транспортирования установка заготовок и снятие обрабатываемых изделий производятся независимо на каждом агрегате автоматизированной линии; передача изделий с одной позиции на другую может быть совмещена с рабочим процессом. Транспортирование обрабатываемых изделий между агрегатами осуществляется при помощи наклонных или вибрационных лотков, цепных, ленточных или желобчатых конвейеров и т. п. Гибкая система транспортирования наиболее эффективна при обработке мелких изделий на автоматических линиях параллельного действия, а также на многопоточных и смешанных автоматических линиях. Обычно при гибкой системе транспортирования на каждой рабочей позиции устанавливают магазины или бункера-накопители. Их назначение - обеспечить работу автоматизированной линии при остановках отдельных агрегатов и облегчить обслуживание линий. Количество и ёмкость накопителей определяются сложностью и протяжённостью автоматической линии, степенью надёжности и безотказностью работы агрегатов. Магазины (бункера-накопители) применяются также и на автоматической линии с жёстким транспортированием; в этом случае их встраивают в общую транспортную систему, обеспечивая независимую работу отдельных участков.

Изделие при обработке остаётся неподвижным или перемещается прямолинейно (автоматическая линия бесцентрово-шлифовальных станков), совершает круговое или вращательное движение (в автоматической роторной линии). Неподвижные или вращающиеся изделия перед обработкой фиксируются в требуемом положении непосредственно на рабочей позиции или в приспособлении-спутнике. Прямолинейное или круговое перемещение изделия в процессе обработки обычно осуществляется транспортными средствами.

Стабильность процесса на автоматической линии характеризуется временем, в течение которого необходимые параметры процесса выдерживаются в требуемых допусках. Стабильность качества продукции и устранение влияния погрешностей во время обработки на автоматических линиях достигаются применением систематического контроля заданных параметров и активным воздействием на технологический процесс.

Непосредственная эффективность автоматической линии сказывается, в частности, в уменьшении числа рабочих, ранее занятых на этом производстве. Но работа на автоматических линиях требует более высокой квалификации обслуживающего персонала. Наиболее эффективны А. л. при комплексном внедрении совершенных технологических процессов. В условиях социалистического производства автоматические линии применяют для трудоёмких операций и вредных процессов, если это значительно облегчает труд рабочих и улучшает его условия. Однако, как правило, автоматизированные линии дают и необходимую экономическую эффективность, особенно высокую при комплексной автоматизации производства. Стоимость продукции, изготовляемой на автоматической линии, зависит главным образом от стоимости исходных материалов и полуфабрикатов, производительности автоматизированной линии и затрат на их создание.

Стоимость автоматической линии. определяется количеством технологических операций, их сложностью, объёмом выпускаемой продукции, сложностью оборудования и систем управления, серийностью производства. При прочих равных условиях решающий фактор, определяющий стоимость автоматизированной линии, - серийность производства её оборудования. Стоимость автоматических линий снижается при использовании нормализованных узлов, механизмов и инструментов, при централизованном изготовлении систем транспортирования и управления, сокращении длительности монтажа и наладки. Снижение стоимости автоматизированных линий расширяет экономически целесообразные области их применения, позволяет вводить в действие автоматические линии, необходимые для технического перевооружения промышленности.

Производительность автоматической линии. зависит от времени, затрачиваемого на непосредственное осуществление рабочего процесса, времени на выполнение вспомогательных перемещений (несовмещенные транспортные операции, закрепление и открепление обрабатываемого изделия, отвод и подвод рабочих органов), времени на переналадку, наладку и восстановление работоспособности линии. Сокращение времени рабочего процесса достигается применением высокопроизводительной технологии. Уменьшение времени на вспомогательные перемещения достигается сокращением числа холостых перемещений или увеличением их скорости, совмещением во времени холостых перемещений с рабочим процессом. Для оценки производительности автоматической линии важен показатель цикловой непрерывности работы, который определяется (для дискретных процессов) отношением времени выполнения рабочего процесса к общему времени цикла. Время на подналадку, переналадку и ремонт сокращается при использовании автоматического регулирования, повышении стабильности рабочих инструментов и своевременной их замене.

1.3 Анализ основного и вспомогательного оборудования

К основному технологическому оборудованию относятся станки, на которых происходит механическая обработка деталей.

В настоящее время существует большое разнообразие групп станков (токарные, сверлильные, расточные, фрезерные, шлифовальные и др.), которые в зависимости от конструктивных исполнений и характера выполняемых работ делятся на типы (токарно-револьверные, координатно-расточные, внутришлифовальные, резьбофрезерные, вертикально-сверлильные и многие другие). Кроме того, по степени универсальности различают станки универсальные, специализированные и специальные. Первые предназначены для выполнения самых разнообразных операций и позволяют обрабатывать детали, сходные по конфигурации, но имеющие различные размеры, например зубообрабатывающие или резьбонарезные станки. На специализированных станках выполняют более узкий круг операций, а специальные станки вообще предназначены для обработки деталей одного типоразмера.

По своему устройству станки делятся на автоматы и полуавтоматы. Автоматом называют станок, в котором автоматизированы все основные и вспомогательные движения, необходимые для выполнения технологического цикла обработки заготовок, включая загрузку и выдачу обработанной детали. Обслуживание автомата сводится к периодической наладке, подаче материала на станок и контролю обрабатываемых деталей. Полуавтоматом называется автоматический станок, в котором часть движений неавтоматизирована. В большинстве случаев это движения, связанные с загрузкой и снятием заготовок.

Вспомогательное оборудование включает в себя транспортно-накопительные устройства, обеспечивающие накопление, хранение, ориентацию, поштучную выдачу и транспортирование деталей (промышленные роботы, тактовые столы, лотки, магазины, автоматизированные тележки и др.).

1.4 Выявление недостатков существующего техпроцесса

Техпроцессы по обработке ведущей конической шестерни заднего и среднего моста состояли из нескольких операций, выполняемых на разных станках. Поэтому в процессе изготовления детали часто переустанавливались, что приводило к большим потерям времени. Кроме того, в конечном итоге снижалось качество изделия и уменьшалась общая производительность.

Потребность в большом количестве рабочих кадров. Не выполнение высокой точности обработки деталей из-за старого оборудования, которое постоянно нуждается в наладке и вследствие этого падает производительность. Кроме того имеется ряд вредных воздействий причиняющий ущерб здоровью человека: шум, пары, газы, опасность попадания в глаза стружки и т. д. Условия труда в на участке считаются вредными т. е. характеризуются наличием вредных производственных факторов, превышающих гигиенические нормативы и оказывающих неблагоприятное воздействие на организм работающего.

Нерациональное использования внутрицеховой площади в связи с большим количеством оборудования.

1.5 Пути улучшения существующего тех. процесса

Одним из путей улучшения тех. процесса является комплексная автоматизация производственного участка, т. е. исключение человека из процесса обработки. Текущие станки полностью сменить на станки с ЧПУ.

Станки с ЧПУ характеризуются целым рядом достоинств. Поскольку технологический процесс автоматизирован, т. е. управление производится по занесенной в систему программе, увеличивается точность обработки материала. В результате, станки с ЧПУ позволяют существенно снизить процент брака. Кроме того, автоматизация процесса обработки станками с ЧПУ способствует ощутимому повышению производительности.

Таким образом, благодаря высокой скорости и точности обработки материала, управляемые станки с ЧПУ увеличивают эффективность производства в несколько раз.

Предлагается автоматизировать транспорт детали, их загрузку-выгрузку. Для целей загрузки может послужить робот-манипулятор, гравитационный транспорт для перемещения деталей между отдельными роботами манипуляторами, для ориентации заготовки можно использовать вибробункер.

Достоинства использования робототехники:

Повышение точности выполнения технологических операций и, как следствие, улучшение качества;

возможность использования технологического оборудования в три смены, 365 дней в году;

рациональность использования производственных помещений;

исключение влияния человеческого фактора на поточных производствах, а также при проведении монотонных работ, требующих высокой точности;

исключение воздействия вредных факторов на персонал на производствах с повышенной опасностью;

достаточно быстрая окупаемость.

1.6 Цели и задачи дипломного проектирования

Целью дипломного проекта является повышение технико-экономических показателей за счет создания автоматизированного производства детали конической шестерни среднего и заднего моста.

На основе анализа компоновок автоматических линий и основного и вспомогательного оборудования необходимо решить следующие задачи:

определение исходных данных;

провести анализ существующих автоматических линий;

подбор оборудования;

проектирование;

выбор и расстановка датчиков, разработка циклограммы;

выбор управляющей системы (контроллер) и его программирование относительно расстановленных датчиков;

рассчитать экономическую эффективность дипломного проекта;

разработать мероприятия по безопасности жизнедеятельности.


2. Проектно-пояснительная часть 2.1 Определение типа производства

В технологии машиностроения можно выделить следующие типы решаемых задач: экономические, организационные и технические. Для того чтобы сократить время и издержки на решение этих задач все технологические процессы разделили на три группы, то есть по принадлежности к определенному типу производства - единичному, серийному или массовому. От типа производства зависит направление проектирования технологического процесса, основной целью которого является сокращение организационно-технологических издержек. Два фактора оказывают существенное влияние на тип производства: заданная программа выпуска и трудоёмкость изготовления детали. На основе заданной программы определяется такт выпуска изделия t, а трудоёмкость изготовления изделия находится по среднему штучному временем Тшт. ср по операциям, действующим на производстве или аналогичного технологического процесса.

Тип производства по ГОСТ 14.004-83 характеризуется коэффициентом серийности по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле. (1)

где Рисунок убран из работы и доступен только в оригинальном файле. - такт выпуска изделия вычисляется по формуле:

Рисунок убран из работы и доступен только в оригинальном файле. (2)

Рисунок убран из работы и доступен только в оригинальном файле. - годовой фонд работы оборудования 4300 ч.

Рисунок убран из работы и доступен только в оригинальном файле.-годовая программа выпуска 50000 шт. Рисунок убран из работы и доступен только в оригинальном файле.

Такт выпуска:

Рисунок убран из работы и доступен только в оригинальном файле..

Определение типа производства по формуле:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. (3)

Рисунок убран из работы и доступен только в оригинальном файле.производство крупно серийное.

2.2 Выбор типа оборудования и определение его количества

Количество станков определяем по следующей формуле:

Рисунок убран из работы и доступен только в оригинальном файле. (4)

где N - объем выпуска,

Тшт - штучное время выполнения операции,

Fd - годовой фонд работы оборудования.

Определение количества оборудования приведены в таблице 2

Таблица 2

--------------------------------------------------
Наименование операции |

tшт, мин

|

nпр

|

nпр (штук)

|

np / nпр

|
---------------------------------------------------------
Фрезерная | 3,0265 | 0,6 | 1 | 0,6 |
---------------------------------------------------------
Токарная | 2,3719 | 1,05 | 1 | 1,05 |
---------------------------------------------------------
Шлицефрезерная | 2,8318 | 1,1 | 1 | 1,1 |
---------------------------------------------------------
Зубонарезная | 5,65 | 0,7 | 1 | 0,7 |
---------------------------------------------------------
Шлицешлифовальная | 3,366 | 0,45 | 1 | 0,45 |
---------------------------------------------------------
Зубошлифовальная | 3,7153 | 1,125 | 1 | 1,125 |
---------------------------------------------------------
Круглошлифовальная | 2,2241 | 0,7 | 1 | 0,7 |
--------------------------------------------------------- --------------------------------------------------

Расчетное количество станков вычисляется по формуле:

Рисунок убран из работы и доступен только в оригинальном файле. (5)

где Тшт - штучное время на соответствующей операции.

Фактическое количество станков Рисунок убран из работы и доступен только в оригинальном файле.расчетное количество станков округляется в большую сторону.

Загруженность станков по времени их использования:

Коэффициент загрузки оборудования вычисляется по формуле:

Рисунок убран из работы и доступен только в оригинальном файле. (6)

Всего количество оборудования: nпр = 7 штук.

2.3 Разработка компоновки автоматической линии

При разработке планировки участка необходимо учитывать следующие требования:

Компактность при расстановки оборудования.

Выполнение техпроцесса.

Оптимальное количество вспомогательного оборудования.

Размеры участка должны вписываться в сетку колонн корпуса.

Связывание с транспортными системами.

Состав производственных отделений и участков механических цехов определяется типом производства, технологическим процессом на изготовление детали и типом оборудования. В условиях массового и крупносерийного производства оборудование на участке расставляется по мере следования технологических операций. При укрупненном проектировании участка вначале необходимо определить общую производственную площадь участка по формуле:

Рисунок убран из работы и доступен только в оригинальном файле. (7)

где Рисунок убран из работы и доступен только в оригинальном файле.-удельная производственная площадь занимаемая оборудованием;

nпр - принятое количество оборудования.

Sуд=25м2; nпр=10; Sоб=250 м2

Участок, разработанный для выполнения технологического процесса по изготовлению конической шестерни ведущего среднего и заднего моста, представлен на чертеже ДП 0.220301.65.17.10.45.00.00 ВО.

Каждому типу станка соответствует условное графическое изображение. При разработке планировки необходимо, чтобы участок был замкнутым, т. е. начало и конец технологического процесса были расположены на одной оси. В этом случае конфигурация расположения оборудования образует "овал", внутри которого следует расположить три группы станков и три промышленных робота для перемещения заготовки от станка к станку. Первая группа станков "привязывается" к следующей группе станков. Далее располагается следующая группа станков для выполнения последующих операций. На каждой группы станков необходимо предусмотреть рабочее место для робота манипулятора, радиус рабочей зоны станков от 800 до 1400 мм. В начале и конце технологического маршрута необходимо поставить тару под заготовки и детали.

Переналадка автоматической лини по выпуску деталей конической шестерни среднего и заднего моста осуществляется переводом операции зубонарезного станка позиции 7 на позицию 8 путем установки позиции загрузки и выгрузки робота манипулятора на соответствующий станок.

В устройство ориентации заготовки выгружает погрузчик, после того как заготовка выходит уже ориентированной, робот манипулятор 1 помещает в позицию 1, после того как цикл станка закончиться, робот манипулятор 1 перемещает в позицию 2, после окончании обработки на позиции 2, робот кладет заготовку на склиз-скат, под своей гравитацией заготовка скатывается к следующей группе станков. Такой цикл повторяется до тех пор пока не закончатся заготовки в ориентирующем устройстве. Далее заготовка скатившиеся по склизу скапливается на его конце, а робот манипулятор 2 при появлении заготовки в зоне загрузке на позиции 5, перемещает заготовку в позицию 6, после того как обработка заготовки закончится, робот 2 перемещает в позицию 7 или 8 (в зависимости от конструкции детали), когда обработка закончиться, робот 2 перемещает заготовку в позицию 9, робот манипулятор начинает заполнять тару. Такой цикл повторяется до тех пор пока не закончатся заготовки в склизе. После заполнения, заготовки отправляются на термическую обработку. После термической обработки заготовка помещается в вибробункер 2, после того как заготовка выйдет в ориентированном виде, робот манипулятор 3 берет заготовку и перемещает в позицию 11, после окончания обработки на станке, робот манипулятор перемещает в позицию 12, после обработки на этой позиции, робот манипулятор перемещает в позицию 13, и после обработки на этой позиции, робот манипулятор перемещает готовую деталь в позицию 14, где заполняет тару. Такой цикл повторяется как и в первой группе станков.

Устройство числового программного управления линией и электрошкафы расположены за ограждениями.


2.4 Выбор и разработка вспомогательного оборудования

Вспомогательное оборудование необходимо для выполнения работ не связанных с обработкой детали. К таким работам относятся перемещение заготовки от одного станка к другому, к конвейеру, межоперационного накопления заготовок, деталей, транспортировка заготовок и готовых деталей.

К вспомогательному оборудованию данной автоматической линии относятся:

Устройство ориентации (вибробункер)

Транспортная система (склиз-скат)

Промышленный робот манипулятор.

С развитием вычислительной техники и повышением надежности средств автоматизации стало возможным и экономически выгодным автоматизировать различные вспомогательные операции.

2.4.1Разработка устройства ориентации

Конструкция устройства ориентации показана в приложении Б.

Механизм ориентации и захвата, выполняется виде бункера-воронки. В которой бункер имеет форму конуса, направленной вершиной вниз, так как отвод ориентированных деталей производиться вниз по наклонному двухрельсовому лотку. В самом низу лотка вырезано отверстие Т - образного типа под ориентацию детали. За прорезью бункера закреплен траверс. Бункер крепиться на 4-ех стойках с направляющими, по 2 с каждой стороны. Для обеспечения подвижности бункер подпружинен. На дне, с внешней стороны бункера крепиться электромагнит. Электромагниты ЭМ 34 переменного тока, однофазные, предназначенные для применения в качестве комплектующих изделий для дистанционного управления исполнительными механизмами различного промышленного назначения для эксплуатации в стационарном состоянии. Электромагниты рассчитаны для включения в сеть переменного тока частоты 50 и 60 Гц на номинальное рабочее напряжение до 660 В. Чертеж представлен в приложении В.

Технические характеристики электромагнита представлены в таблице 2.

Таблица 2

--------------------------------------------------

Режим

работы ПВ, %

|

Номинальное

тяговое усилие, Н

|

Время

срабатывания, с

| Время возврата, с | Номинальная частота включений, в час | Номинальная активная мощность, Вт |
---------------------------------------------------------
100 | 4,0 | 0,075 | 0,055 | 2400 | 13.5 |
---------------------------------------------------------
40 | 5,0 | 0,085 | 0,059 | 2000 | 16 |
---------------------------------------------------------
15 | 6,3 | 0,12 | 0,055 | 1200 | 20 |
---------------------------------------------------------
0,08 | 0,055 | 2400 | 18 |
--------------------------------------------------------- --------------------------------------------------

Принцип работы устройства ориентации:

Детали насыпанные навалом в бункер устремляются вниз под действием сил тяжести. И по инерции возникающим в результате направленного колебательного движения, в которое от электромагнитного вибратора приводиться бункер вместе с массой деталей. От вибрации детали ориентируются и выходят вниз из “Т” - образного разреза в бункере на траверс. Вдоль траверса ставиться оптический датчик, для распознавания роботом манипулятором наличие детали.

2.4.2 Разработка гравитационного транспорта

Чертеж гравитационного транспорта показана в приложении В.

Гравитационный транспорт содержит наклонный желоб. Желоб может иметь наклон от 40 до 70. Желоб состоит из каркаса выполненного из уголков различных размеров и трех прутков для увеличения износостойкости, прутки держаться на двух стойках, на конце желоба имеется траверс для накопления детали и захвата робота манипулятора.

Принцип работы гравитационного транспорта:

По наклонному желобу движется деталь вниз, под своим весом.

2.4.3 Выбор промышленного робота

На каждую пару станков предлагается установить по одному роботу-манипулятору. Робот производил бы обслуживание двух станков последовательно. В качестве оборудования для обслуживания станков предлагается напольный робот Fanuc-2 L-2400.

Основное назначение - для установки заготовок на металлорежущие станки и снятие готовых деталей; штабелирование грузов, обслуживание конвейеров и другие операции. Характеристика промышленного робота

Fanuc-2 L-2400 приведены в таблице 3.

Таблица 3

--------------------------------------------------
Наименование | Значение |
---------------------------------------------------------
Номинальная грузоподъемность, кг | 68,1 |
---------------------------------------------------------
Число степеней подвижности | 4 |
---------------------------------------------------------
Число рук/захватов на руку | 1/2 |
---------------------------------------------------------
Тип привода | пневмо и электро |
---------------------------------------------------------
Устройство управления | позиционное |
---------------------------------------------------------
Число программируемых координат | 4 |
---------------------------------------------------------
Ёмкость памяти системы, число положений рабочего органа | 60 |
---------------------------------------------------------
Погрешность позиционирования, мм | ±1,27 |
---------------------------------------------------------
Максимальный радиус зоны обслуживания R, мм | 1450 |
---------------------------------------------------------
Линейные перемещения со скоростью 0,914м/с, r, z мм | 1450, 1067 |
---------------------------------------------------------
Угловые перемещения |

3300

|
--------------------------------------------------------- -------------------------------------------------- 2.5 Выбор основного оборудования

При выборе основного технологического оборудования следует руководствоваться конструктивно-технологическими особенностями обрабатываемого изделия, режимами резания. Так как в данной работе идёт проектирование гибкого автоматизированного участка, то выбираемое оборудование должно быть с ЧПУ предназначенное для работы в условиях автоматизированного производства. На данном автоматизированном участке может идти обработка не только конической шестерни среднего и заднего моста, но и других аналогичных деталей, поэтому производство должно быть быстропереналаживаемым в случае перехода на изготовление другой аналогичной детали.

Выбор станка осуществляем по следующим признакам:

частота вращения шпинделя;

размеры рабочей поверхности стола;

мощность электропривода главного движения;

скорость быстрого перемещения стола;

подача стола;

наибольшее перемещение стола.

Для обработки деталей конической шестерни среднего и заднего моста предлагается использовать следующие станки с ЧПУ:

-  вертикально-фрезерный станок FANUC XD-40,токарно-патронный станок 16К20РФ3,зубошлицефрезерный станок 5Б352ПФ2,Зуборезный станок 5А270ВФ3,шлицешлифовальный станок ОШ-628Ф3,зубошлифовальный станок 5А868Ф,

-  круглошлифовального станка ЗМ151Ф2.

Вертикально-фрезерный станок разработанный с использованием последних мировых технологий представляет новое поколение вертикально-фрезерных станков с ЧПУ которые идеальны для крупносерийного и массовых производств средних и малоразмерных деталей.

Такие характеристики станка, как 3-х осевое параллельное управление, высокоуровневое программирование (макрокоды), графический дисплей, гарантируют превосходную точность исполнения команд и позволяет оператору быстро добиться желаемого результата.

Сервопривод постоянного тока с цифровым управлением обеспечивает точные и быстрые перемещения по всем 3 - м осям. Большое количество операций, таких как фрезерование, растачивание, сверление, нарезание резьбы и т. п., можно осуществить за одну установку детали.

Стол и суппорт станка отливается из специального высокопрочного чугуна, они компактны, имеют большую область загрузки, высокую жесткость и отличные антивибрационные характеристики, способные обеспечить самую высокую точность обработки на станках подобного класса.

Конструкция включает в себя мощный высокомоментный шпиндель и встроенную систему подачи СОЖ в зону резания, что обеспечивает высокоскоростные режимы резания. Как дополнительное оборудование может быть заказан поворотный стол (4ая-ось), управляемый центральной системой ЧПУ станка. С помощью него возможна 4х-осевая обработка контуров любой сложности. Технические характеристики вертикально фрезерного консольного станка Fanuc XD40 представлены в таблице 4.

Таблица 4

--------------------------------------------------
Наименование | Значения |
---------------------------------------------------------
Размер стола, мм | 420x800 |
---------------------------------------------------------
Размер T-паза, мм | 18x125x3 |
---------------------------------------------------------
Максимальный вес заготовки, кг | 300 |
---------------------------------------------------------
Перемещение по X/Y/Z, мм | 600/420/520 |
---------------------------------------------------------
Расстояние от шпинделя до колонны, мм | 519 |
---------------------------------------------------------
Подача по X/Y/Z, мм/мин | 1-10000 |
---------------------------------------------------------
Быстрые перемещения по X/Y/Z, мм/мин | 24/24/24 |
---------------------------------------------------------
Мощность, кВт | 7,5/11 |
---------------------------------------------------------
Максимальная скорость, об/мин | 6000 (8000) |
---------------------------------------------------------
Конус шпинделя | №40 7: 24 |
---------------------------------------------------------
Точность позиционирования по X/Y/Z, мм | 0,02/0,016/0,02 |
---------------------------------------------------------
Точность возврата в координату X/Y/Z, мм | 0,008/0,006/0,008 |
---------------------------------------------------------
Максимальный диаметр сверления, мм | 22 |
---------------------------------------------------------
Максимальный растачиваемый диаметр, мм | 100 |
---------------------------------------------------------
Максимальный момент на шпинделе, Н*м | 53,7 |
---------------------------------------------------------
Габариты станка, мм | 2310x2040x2317 |
---------------------------------------------------------
Масса станка, кг | 4000 |
--------------------------------------------------------- --------------------------------------------------

Токарно-патронный станок 16К20РФ3 предназначены для выполнения разнообразных токарных работ: обтачивания и растачивания цилиндрических и конических поверхностей, нарезания наружных и внутренних метрических, дюймовых, модульных и питчевых резьб, а также сверления, зенкерования, развертывания, и т. п. Отклонение от цилиндричности 7 мк, конусности 20 мк на длине 300 мм, отклонение от прямолинейности торцевой поверхности на диаметре 300 мм - 16 мк.

Станок оснащен механическим фрикционом, приводом быстрых перемещений суппорта, задняя бабка имеет аэростатическую разгрузку, направляющие станины закалены HRC 49.57. Технические характеристики токарно-патронного станка 16К20РФ3 приведены в таблице 5.

Таблица 5

--------------------------------------------------
Наименования | Значения |
---------------------------------------------------------

Наибольший диаметр обрабатываемого

изделия над станиной, мм

| 400 |
---------------------------------------------------------
Наибольший диаметр обрабатываемого изделия при 5 инструментах, мм | 250 |
---------------------------------------------------------
Наибольший диаметр прутка, проходящего через отверстие в шпинделе, мм | 50 |
---------------------------------------------------------
Наибольшая длина обрабатываемого изделия, мм | 150 |
---------------------------------------------------------
Наибольшая длина продольных перемещений каретки, мм | 900 |
---------------------------------------------------------
Наибольшая длина хода поперечного суппорта, мм | 250 |
---------------------------------------------------------
Частота вращения шпинделя, об/мин | 35-1600 |
---------------------------------------------------------
Количество рабочих скоростей шпинделя | 12 |
---------------------------------------------------------
Количество автоматических переключаемых скоростей, об/мин | 9 |
---------------------------------------------------------

Диапазон скоростей подач, мм/мин:

Продольных

поперечных

|

3-700

3-500

|
---------------------------------------------------------
Продолжение таблицы 5 |
---------------------------------------------------------
Наименование | Значения |
---------------------------------------------------------

Скорость быстрых подач, мм/мин:

продольных

поперечных

|

4800

2400

|
---------------------------------------------------------

Дискретность перемещения, мм/мин:

продольных

поперечных

|

0,01

0,005

|
---------------------------------------------------------
Суммарная мощность электродвигателей, кВт | 19,1 |
---------------------------------------------------------
Суммарная мощность электродвигателей, квт | 19,1 |
---------------------------------------------------------
Суммарная мощность станка, кВт | 21,7 |
---------------------------------------------------------
Габарит станка без приставного оборудования, мм | 3360х1710х1750 |
---------------------------------------------------------
Масса станка без приставного оборудования, кг | 4250 |
--------------------------------------------------------- --------------------------------------------------

Зубошлицефрезерный повышенной точности с горизонтальной осью изделия предназначен для нарезания шлицевых валов, цилиндрических прямозубых и косозубых колес, а также червячных колес червячными фрезами методом обката. Полуавтоматы оснащены УЦИ и системой позиционирования. Технические характеристики зубошлицефрезерного станка 5Б352ПФ2 приведены в таблицы 6.

Таблица 6

--------------------------------------------------
Наименования | Значения |
---------------------------------------------------------
Высота центров над станиной, мм | 300 |
---------------------------------------------------------
Наибольшая длина заготовки, мм | 1000 |
---------------------------------------------------------
Продолжение таблицы 6 |
---------------------------------------------------------
Наименования | Значения |
---------------------------------------------------------
Диаметр обрабатываемой поверхности, мм | 300 |
---------------------------------------------------------
Наибольшая длина нарезаемых шлицев, мм | 820 |
---------------------------------------------------------
Модуль, мм | 8 |
---------------------------------------------------------
Наибольший угол наклона зубьев, град | 45 |
---------------------------------------------------------
Наибольший диметр червячных фрез, мм | 160 |
---------------------------------------------------------
Наибольшая длина червячных фрез, мм | 200 |
---------------------------------------------------------
Диапазон частоты вращения шпинделя червячной фрезы, мин - 1 | 50…500 |
---------------------------------------------------------
Пределы рабочих осевых подач, мм/мин | 1,0…900 |
---------------------------------------------------------
Пределы рабочих радиальных подач, мм/мин | 1,0…500 |
---------------------------------------------------------
Диаметр сквозного отверстия шпинделя изделия, мм | 90 |
---------------------------------------------------------
Скорость быстрых перемещений салазок, мм/мин | 900 |
---------------------------------------------------------
Скорость быстрых перемещений стойки, мм/мин | 500 |
---------------------------------------------------------
Суммарная мощность, кВт | 27 |
---------------------------------------------------------
Масса, кг | 8000 |
---------------------------------------------------------
Габаритные размеры, мм (длина х ширина х высота) | 3640х2190х1970 |
---------------------------------------------------------
Параллельность боковых поверхностей зубьев между собой и осью изделия, мкм | 20 |
---------------------------------------------------------
Точность положения профилей любых зубьев по всей окружности, сек | 80 |
---------------------------------------------------------
Точность положения профилей соседних зубьев, сек | 25 |
---------------------------------------------------------
Точность направления зуба (для косозубого колеса), мкм | 15 |
--------------------------------------------------------- --------------------------------------------------

Зуборезный станок 5А270ВФ3 предназначен для чистовой и черновой обработки зубчатых колес конических и гипоидных передач с круговыми зубьями в условиях единичного, серийного и крупно-серийного производства. Технические характеристики зуборезного станка 5А270ВФ3 приведены в таблице 7.

Таблица 7

--------------------------------------------------
Наименования | Значения |
---------------------------------------------------------
Наибольший диаметр обрабатываемого изделия, мм | 500 |
---------------------------------------------------------

Наибольший внешний окружной модуль, мм

Наибольшая внешняя высота зуба, мм

| 12 |
---------------------------------------------------------
Наибольшее среднее конусное расстояние, мм | 26 |
---------------------------------------------------------
Наибольшая ширина зубчатого венца, мм | 307 |
---------------------------------------------------------
Наименьший угол делительного конуса, градусы | 80 |
---------------------------------------------------------
Число зубьев изделия | 5 |
---------------------------------------------------------
Наибольшее гипоидное смещение, мм | 5-150 |
---------------------------------------------------------
Диаметр конусного отверстия шпинделя бабки изделия, мм | ±70 |
---------------------------------------------------------
Расстояния от торца шпинделя бабки изделия до центра станка, мм | 100 |
---------------------------------------------------------
Наименьший диаметр зуборезных головок, мм | 100-400 |
---------------------------------------------------------
Наибольшая радиальная установка инструментального шпинделя относительно оси люльки, мм | 270 |
---------------------------------------------------------
Частота вращения инструментального шпинделя, об/мин | 20-250 |
---------------------------------------------------------
Угловая скорость подачи обкаткой, град/с | 0,3-9,0 |
---------------------------------------------------------
Суммарная мощность установленных электродвигателей, кВТ | 21 |
---------------------------------------------------------
Габаритные размеры станка с отдельно расположенными станцией гидропривода и электрошкафом, мм | 3100х3095х2090 |
---------------------------------------------------------
Масса станка, кг | 8700 |
--------------------------------------------------------- --------------------------------------------------

Шлицешлифовальный ОШ-628Ф3 предназначен для шлифования шлицевых пазов прямого или эвольвентного профилей. Технические характеристики шлицешлифовального станка ОШ-628Ф3 приведены в таблице 8.

Таблица 8

--------------------------------------------------
Наименования | Значения |
---------------------------------------------------------

Наибольшие размеры устанавливаемой заготовки:

длина х диаметр, мм

| 1600х200 |
---------------------------------------------------------
Предельные размеры обрабатываемых поверхностей: | 1500х200х50 |
---------------------------------------------------------
Возможное число обрабатываемых шлицев, шт | 1.999 |
---------------------------------------------------------
Размеры рабочей поверхности зеркала стола - длина х ширина, мм | 2100х350 |
---------------------------------------------------------
Расстояние от зеркала стола до оси центров, мм | 180 |
---------------------------------------------------------
Мощность главного привода, кВт | 6 |
---------------------------------------------------------
Частота вращения шлифовального шпинделя, об/мин | 12000 |
---------------------------------------------------------
Наибольшее расстояние от зеркала стола до оси шпинделя, мм | 600 |
---------------------------------------------------------
Дискретность перемещения шлифовальной головки и суппорта, мкм | 0,5 |
---------------------------------------------------------
Дискретность поворота шпинделя передней бабки, град | 0,001 |
---------------------------------------------------------
Габаритные размеры полуавтомата | 4200х2770х2460 |
---------------------------------------------------------
Масса станка с приставным оборудованием, кг | 10000 |
--------------------------------------------------------- --------------------------------------------------

Зубошлифовальный станок, работающий профильным кругом, с ЧПУ 5А868Ф предназначены для шлифования колес наружного и внутреннего зацепления с возможностью измерения прошлифованного зубчатого колеса непосредственно на станке.

Зубошлифовальный полуавтомат 5А868Ф для обработки прямозубых цилиндрических колес, работающий профильным кругом, предназначен для шлифования зубчатых колес наружного зацепления диаметром до 800 мм и модулем до 12 мм.

Полуавтомат работает как с автоматическим, так и с ручным циклом и может быть использован в крупносерийном производстве транспортного и тяжелого машиностроения.

Ввод в УЧПУ данных по изделию и режимам (непосредственно из чертежа или технической карты), а также подналадка по результатам шлифования осуществляется в диалоговом режиме, исключающим необходимость владения знаниями по программировании УЧПУ. Технические характеристики зубошлифовального станка 5А868Ф приведены в таблице 9.

Таблица 9

--------------------------------------------------
Наименования | Значения |
---------------------------------------------------------

Предельные размеры устанавливаемого изделия:

диаметр, мм

длина, мм

|

150.950

120.700

|
---------------------------------------------------------
Наибольшая масса изделия, кг | 400 |
---------------------------------------------------------

Предельные размеры обрабатываемого изделия:

Наибольший наружный диаметр, мм

Наименьший диаметр окружности впадин, мм

|

900

150

|
---------------------------------------------------------
Модуль | 1,5…12 |
---------------------------------------------------------
Число зубьев, шт | 1…999 |
---------------------------------------------------------
Наибольшая длина прямозубоговенца, мм | 200 |
---------------------------------------------------------
Наибольший диаметр шлифовального круга, мм | 400 |
---------------------------------------------------------
Система управления, шт | Синумерик 840D |
---------------------------------------------------------
Правка | 2 |
---------------------------------------------------------
Деление | 1 |
---------------------------------------------------------
Подача на врезание | 1 |
---------------------------------------------------------
Ход стола | 1 |
---------------------------------------------------------
Дискретность задания перемещений, мкм | 0,1 |
---------------------------------------------------------
Мощность RU; привода шлифовального круга, кВт | 15 |
---------------------------------------------------------
Суммарная мощность установленных на станке электродвигателей, кВт | 40,0 |
---------------------------------------------------------
Габаритные размеры станка: | 5100х 3200х 2200 |
---------------------------------------------------------
Масса станка, кг | 13000 |
--------------------------------------------------------- --------------------------------------------------

Круглошлифовальный станок ЗМ151Ф2 предназначен для наружного шлифования гладких и прерывистых цилиндрических поверхностей валов с несколькими ступенями. Обработка ступеней ведется последовательно одним кругом. Станок используется в условиях серийного и крупно-серийного производства. Технические характеристики круглошлифовального станка ЗМ151Ф2 приведены в таблице 10.

Таблица 10

--------------------------------------------------

Наибольшие размеры устанавливаемого изделия, мм:

диаметр

длина

|

200

700

|
---------------------------------------------------------

Диаметр шлифования, мм:

с прибором активного контроля

по датчику

|

20-85

20-180

|
---------------------------------------------------------
Высота центров над столом, мм | 125 |
---------------------------------------------------------
Наибольшее продольное перемещение, мм | 700 |
---------------------------------------------------------
Скорость гидравлического перемещения стола, м/мин | 0,05÷5 |
---------------------------------------------------------
Частота вращения изделия, об/мин | 50-500 |
---------------------------------------------------------
Наибольшее поперечное перемещение шлифовальной бабки, мм | 235 |
---------------------------------------------------------
Частота вращения шпинделя шлифовального круга, мм | 1590 |
---------------------------------------------------------
Скорость поперечной подачи шлифовального круга, мм/мин | 1,2-0,02 |
---------------------------------------------------------

Питающая электросеть:

род тока

частота, Гц

напряжение

|

переменный трехфазный

50

380

|
---------------------------------------------------------
Габарит станка с приставным оборудованием, мм | 5400х2400х2170 |
---------------------------------------------------------
Масса станка, кг | 6500 |
--------------------------------------------------------- --------------------------------------------------
3. Расчетная часть 3.1 Расчет усилий захватного устройства

Усилия, возникающие в местах контакта объекта с рабочими элементами, зависят от способа закрепления объекта в захватном устройстве и направления действия вектора равнодействующей силы, приложенной к объекту.

Считаем, что центр масс объекта совпадает с центром схвата или имеет небольшое смещение. При движении исполнительного устройства с ускорением объект также будет двигаться ускоренно. Вектор равнодействующей силы Q от силы веса объекта и максимальной инерционной силы равен по формуле:

Рисунок убран из работы и доступен только в оригинальном файле., (8)

где Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

m=20 кг.

Q=20* (9,8+1,5) =226 Н

Усилия в местах контакта объекта с рабочими элементами показаны на рисунках 1 и 2.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 1

Рисунок убран из работы и доступен только в оригинальном файле. (9)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 2

Рисунок убран из работы и доступен только в оригинальном файле.

Здесь опубликована для ознакомления часть дипломной работы "Разработка АСУ процессом производства конической шестерни среднего и заднего моста 6520-2402017". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 582

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>