Дипломная работа на тему "Расчет конструкции лифта"

ГлавнаяПромышленность, производство → Расчет конструкции лифта




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Расчет конструкции лифта":


Содержание

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ПАТЕНТНЫЙ ПОИСК

1.1 Характеристика объекта разработки

1.2 Регламент поиска

1.3 Отчет о патентном поиске

1.4 Библиографический перечень в процессе поиска информации

1.5 Аннотация отобранной в процессе поиска информации

1.6 Вывод

2. ОБЩАЯ ЧАСТЬ

2.1 Расчет металлоконструкции лифта

2.1.1 Назначение и устройство кабины лифта

2.1.2 Уст ройство и расчет каркаса кабины

2.1.3 Уст ройство и расчет пола кабины

2.1.4 Расчет направляющих башмаков

Заказать дипломную - rosdiplomnaya.com

Актуальный банк готовых защищённых студентами дипломных проектов предлагает вам написать любые проекты по нужной вам теме. Безупречное выполнение дипломных проектов по индивидуальным требованиям в Саратове и в других городах РФ.

2.2 Расчет направляющих

3. СПЕЦЧАСТЬ

3.1 Расчет и подбор каната

3.2 Определение массы подвижных частей механизма подъема

3.2.1 Расчет веса кабины

3.2.2 Расчет противовеса

3.2.2.1 Назначение, конструкция и устройство

3.2.2.2 Определение массы противовеса

3.2.2.3 Расчет металлоконструкций каркаса противовеса

3.2.3 Расчет массы подвесного кабеля

3.3 Расчет диаметра канатоведущего шкива и обводных блоков

3.4 Расчет канатоведущего шкива в системе автоматизированного проектирования APM WinMachine

3.5 Расчет тяговой способности канатоведущего шкива

3.6 Расчет электродвигателя

3.7 Расчет редуктора

3.8 Расчет тормоза лебедки

3.9 Электрическая часть

3.9.1 Расчет электродвигателя

3.9.2 Электрическая схема лифта

4. ПРОИЗВОДСТВЕННАЯ БЕЗОПАСНОСТЬ

4.1 Введение

4.2 Анализ вредных и опасных производственных факторов при эксплуатации проектируемого оборудования

4.3 Мероприятия по устранению и уменьшению действия опасных и вредных факторов

4.4 Инженерный расчет по обеспечению безопасных условий труда

4.3.1 Расчет заземления

4.3.2 Расчет освещения

5. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

5.1 Оценка технической целесообразности конструкции лифта

5.1.1 Выбор перечня показателей, оценки технического уровня конструкции

5.1.2 Оценка весомости (значимости) показателя 87

5.1.3 Расчет комплексного показателя технического уровня и качества конструкции

5.2 Расчет трудоемкости ОКР

5.3 Расчет временных и стоимостных затрат на проектирование лифта

5.4 Прогнозирование себестоимости лифта

5.4.1 Расчет затрат на основные материалы

5.4.2 Расчет затрат на комплектующие покупные

5.4.3 Расчет затрат на основные материалы в целом по лифту

5.4.4 Расчет затрат на заработную плату производственных рабочих

5.4.5 Расчет полной себестоимости лифта

5.5 Определение лимитной цены лифта

5.6 Расчет уровня капитальных вложений в НИОКР и освоение производства

5.7 Оценка экономической эффективности конструкции

5.8 Сводные показатели оценки экономической целесообразности конструкции

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Введение

Лифт стал неотъемлемой частью искусственно созданной среды обитания человека. Практически за одно столетие удалось создать полностью автоматизированную систему внутреннего транспорта пассажиров и грузов в зданиях и сооружениях, которая надежно функционирует, не требуя от людей специальных знаний и предварительной подготовки.

В России, в странах ближнего и дальнего зарубежья успешно функционирует огромный парк лифтов различного конструктивного исполнения, который обеспечивает нужды коммунального хозяйства, промышленных предприятий и сложных сооружений общественного и специального назначения.

Расширяющиеся потребности общественного развития требуют непрерывного совершенствования средств внутреннего транспорта зданий и сооружений на основе современных научно-технических достижений.

В данном дипломе представлен проект пассажирского лифта с нижним расположением привода грузоподъемностью 500 кг со скоростью движения кабины 1 м/с с разработкой лебедки.

Основу механизма подъема проектируемого лифта составляет канатная система передачи движения кабине (противовесу) и устройства привода для перемещения канатов в виде лебедки.

В целях обеспечения безопасности эксплуатации лифта к лифтовым лебедкам предъявляется ряд специфических требований:

– конструкция лебедки должна быть рассчитана на нагрузки, действующие в эксплуатационных, испытательных и аварийных режимах;

– между канатоведущим органом лебедки и тормозом должна быть неразмыкаемая кинематическая связь;

– лебедка должна оборудоваться автоматически действующим нормально-замкнутым колодочным тормозом.

– тормозной момент должен создаваться при помощи пружин или груза (применение ленточных тормозов не допускается);

– свободные концы вращающихся валов должны быть ограждены от случайного прикосновения;

– лебедка должна оборудоваться системой ручного привода движения кабины с помощью штурвала, постоянно закрепленного на валу или съемного;

– в конструкции лебедки должно быть установлено устройство ручного отключения тормоза с самовозвратом в заторможенное состояние после прекращения ручного воздействия;

– на лебедке должно быть указано направление вращения штурвала для подъема и спуска кабины лифта;

– усилие ручного воздействия на штурвал не должно превышать 235 Н при подъеме кабины с расчетным грузом;

– при снятии кабины с ловителей с помощью ручного привода прикладываемое усилие не должно превышать 640 Н;

Конструкция лифтовой лебедки должна обеспечивать:

– безопасность применения;

– надежность и безотказность работы;

– бесшумность и низкую виброактивность;

– допустимый уровень ускорений;

– требуемую точность остановки кабины.

В целях снижения трудоемкости технического обслуживания и ремонтных работ конструкция лебедки должна иметь минимальную массу и компактные габариты.

Лифтовые лебедки можно классифицировать по следующему ряду характерных признаков:

– По типу канатоведущего органа: барабанные и с канатоведущими шкивами (КШВ);

– По характеру кинематической связи приводного двигателя с канатоведущим органом: редукторные и безредукторные;

– По типу применяемого редуктора: с глобоидными и цилиндрическими червячными передачами;

– По типу привода: с электроприводом переменного или постоянного тока;

Характерная кинематическая схема лифтовой лебедки с КВШ приведена на рис. 1.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 1. Кинематическая схема лифтовой лебедки с КВШ и червячным редуктором:

1 – КВШ, 2 – редуктор червячный, 3 – соединительная муфта с тормозным шкивом,

4 – колодочный тормоз, 5 – электродвигатель.

Проектируемая лебедка включает канатоведущий орган, редуктор, тормоз и электродвигатель, смонтированные на опорной раме.

Лебедка оборудуется канатоведущим шкивом и червячным редуктором, обеспечивающим большие передаточные отношения при общей компактности конструкции. Причем редуктор выполнен с глобоидальным червяком. Нагрузочная способность глобоидальной передачи в 2…4 раза выше, чем цилиндрической. Кроме того, редукторы с глобоидальным зацеплением имеют более высокий КПД и большую износостойкость зубьев. К недостаткам глобоидального зацепления следует отнести сложность изготовления и повышенные требования к точности сборки и регулировки.

КВШ устанавливается на тихоходном валу консольно.

Привод лебедки осуществляется от специального двухскоростного асинхронного короткозамкнутого электродвигателя.

Тормозной момент создается колодочным тормозом нормально-замкнутого типа с электромагнитной растормаживающей системой. Тормоз замкнутого типа характеризуется тем, что затормаживает систему при выключенном приводе и растормаживает ее при включении привода. Правила ПУБЭЛ исключают возможность применения ленточных тормозов в связи с их недостаточной надежностью.

1. Патентный поиск

  1.1 Характеристика объекта разработки

Объектом разработки является привод лифта грузоподъемностью 500 кг, со скоростью 1 м/с. Механизм привода лифта состоит из электродвигателя, нормально-замкнутого тормоза, редуктора и канатоведущего шкива. Привод расположен в нижней части шахты лифта.

  1.2 Регламент поиска

Регламент поиска при исследовании привода лифта на патентную чистоту по России, Японии, Германии и Финляндии приведен в табл. 1.1.

Таблица 1.1

--------------------------------------------------
Предмет поиска | Ретроспективность | Источники информации | Страны (5,7) и классификационные индексы предмета поиска (МКЧИ или МКИ) (6,8) |
---------------------------------------------------------
Наименование | Местонахождение |
---------------------------------------------------------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---------------------------------------------------------
Привод лифта | С 1971 г. по 1991 г. | Открытия и изобретения | Библиотека ТулГУ | Россия | МКИ В 66 В 11/04 | --- | --- |
---------------------------------------------------------
Лифт | С 1971 г. по 1991 г. | Открытия и изобретения | Библиотека ТулГУ | Россия | МКИ В 66 В 9/16 | --- | --- |
---------------------------------------------------------
Шкив | С 1971 г. по 1991 г. | Открытия и изобретения | Библиотека ТулГУ | Россия | МКИ В 66 В 15/04 | --- | --- |
--------------------------------------------------------- --------------------------------------------------   1.3 Отчет о патентном поиске

Отчет при исследовании привода лифта на патентную чистоту по России, Германии, Японии и Финляндии проведен по следующим материалам (табл. 1.2).

Таблица 1.2

--------------------------------------------------
Страна | Наименование источника | Классификационные индексы предмета поиска | Номер авторского свидетельства, патента |
---------------------------------------------------------
МКИ | ИКМ |
---------------------------------------------------------
Россия | Открытия и изобретения | МКИ В 66 В 11/04 | --- | АС № 654528 |
---------------------------------------------------------
Россия | Открытия и изобретения | МКИ В 66 В 9/16 | --- | АС № 679505 |
---------------------------------------------------------
Россия | Открытия и изобретения | МКИ В 66 В 15/04 | --- | АС № 683975 |
--------------------------------------------------------- -------------------------------------------------- 1.4 Библиографический перечень в процессе поиска информации

Информация приведена в табл. 1.3.

Таблица 1.3

--------------------------------------------------
Страна | Номер свидетельского свидетельства | Класс | Источник |

Название

изобретения

|
---------------------------------------------------------
РФ | № 654528 | В 66 В 11/04 | Открытия и изобретения №12 1979г. | Привод лифта |
---------------------------------------------------------
РФ | № 679505 | В 66 В 9/16 | Открытия и изобретения №35 1979г. | Лифт |
---------------------------------------------------------
РФ | № 683975 | В 66 В 15/04 | Открытия и изобретения №31 1979г. | Шкив |
--------------------------------------------------------- -------------------------------------------------- 1.5 Аннотация отобранной в процессе поиска информации

1) АС №654528 1 ПРИВОД ЛИФТА

1. Привод лифта, содержащий раму, на которой установлен электродвигатель и редуктор, входной вал которого посредством муфты соединен с валом электродвигателя, а выходной вал редуктора кинематически связан с канатоведущим шкивом, отличающимся тем, что, с целью снижения металлоемкости путем разгрузки выходного вала редуктора от радиальных усилий и исключения возможности передачи колебаний вала канатоведущему органу, на корпусе редуктора смонтирована полая ось, на которой установлен канатоведущий орган, а внутри полой оси расположен выходной вал редуктора, причем на валу закреплен поводок, снабженный пальцами, а канатоведущий орган выполнен со звеньями для гашения колебаний, взаимодействующими с пальцами.

2. Привод по п. 1, отличающийся тем, что каждое звено гашения колебаний содержит выполненную на канатоведущем органе полость, в которой помещен палец, полость заполнена вязкой жидкостью и снабжена уплотнением, а между стенками полости и пальцем размещены пакеты пластин.

2) АС №679505 ЛИФТ

Лифт, содержащий установленную в направляющих кабину, снабженную подвижными блоками, установленные в верхней и нижней частях шахты неподвижные блоки, привод с канатоведущим шкивом и снабженные гибким уравновешивающим элементом тяговые канаты, огибающие канатоведущий шкив, неподвижные и подвижные блоки, отличающийся тем, что, с целью снижения металлоемкости кабины путем снижения нагрузки на последнюю, в нижней части кабины укреплен кронштейн, снабженный подпружиненными тягами и проушинами, через которые пропущен вал, жестко соединенный с тремя рычагами, средний из которых снабжен дополнительными блоками, а на крайних установлены подпружиненные тяги, связанные с концами тяговых канатов, другими концами огибающих дополнительные блоки и соединенных с подпружиненными тягами на кронштейне.

3) АС №683975 1 шкив

1. Шкив, содержащий ступицу с ободом, в желобе которого расположены футеровочные элементы, взаимодействующие своей рабочей поверхностью с тяговым канатом и образующие замкнутую систему, отличающийся тем, что, с целью повышения безопасности эксплуатации, упрощения конструкции и унификации футерованных ободьев шкивов больших диаметров, он снабжен сегментными держателями, профилированными по форме желоба, причем футеровочные элементы установлены в держателях, которые скреплены с ободом посредством разъемных соединений.

2. Шкив по п. 1, отличающийся тем, что в сегментных держателях установлены оси, выполненные с лысками на цилиндрической части и торцах, контактирующими соответственно с заплечиками сегментных держателей и стенками обода, и футеровочные элементы установлены на осях.

  1.6 Вывод

Привод лифта, проектируемый в данном дипломном проекте, обладает патентной чистотой при глубине поиска с 1971 года по 1991 год по странам Россия, Германия, Финляндия и Япония.

2. Общая часть

  2.1 Расчет металлоконструкции лифта

2.1.1 Назначение и устройство кабины лифта

Кабиной лифта называется закрытое грузонесущее устройство, предназначенное для транспортировки пассажиров и грузов.

Лифты могут оборудоваться непроходными и проходными кабинами в зависимости от планировки и назначения соответствующего здания или сооружения. Проходная кабина отличается наличием двух закрываемых дверей, расположенных на ее противоположных сторонах или под некоторым углом. Непроходная кабина оборудуется только одной дверью (не считая аварийной двери для перехода из кабины одного лифта в другой, которые размещаются в одной шахте).

Конструкция кабины и установленные в ней устройства и оборудование должны отвечать требованиям безопасности, комфортности условий транспортировки пассажиров и пожаростойкости.

Оборудование кабины должно иметь низкую виброактивность в широком диапазоне частот.

Между канатной подвеской и каркасом, между каркасом и купе кабины необходимо устанавливать амортизаторы для снижения шума и вибрации, распространяемого от лебедки по канатам в салон кабины.

Неблагоприятное воздействие вибрации на организм человека зависит от частоты и амплитуды колебаний. Допустимые величины амплитуды и частоты колебаний в кабине лифта не должны превышать значений [1], приведенных в табл. 2.1.

Основные требования к конструкции кабин лифтов отражены в разделе 5.5 ПУБЭЛ [4].

Таблица 2.1

--------------------------------------------------
Амплитуда колебаний, мм | Частота колебаний, Гц |
---------------------------------------------------------

0,1 – 0,2

0,005

0,003

|

3 – 5

16

32

|
--------------------------------------------------------- --------------------------------------------------

Основу конструкции кабины составляют металлоконструкции несущего каркаса, который с помощью устройства, называемого подвеской, надежно соединяется тяговыми канатами подъемной лебедки. Каркас с помощью скользящих или роликовых башмаков центрируется на жестких направляющих, которые исключают заметные поперечные колебания кабины и гарантирует постоянство расстояний между движущимися и неподвижными частями лифта в шахте.

В нижней или верхней части каркаса, в непосредственной близости от башмаков, смонтированы ловители, по одному с каждой стороны кабины. Ловители включаются автоматически и затормаживают кабину относительно направляющих при аварийном превышении скорости движения, надежно удерживая ее на направляющих после остановки.

В нижней части каркаса кабины должны предусматриваться прочные опорные поверхности, необходимые для взаимодействия с упорами или буферами в приямке при аварийном проходе кабиной нижней посадочной площадки.

На каркасе жестко или через амортизаторы устанавливается купе кабины. Пол кабины жестко связан с конструкцией купе или служит грузовой платформой устройства контроля нагрузки, смонтированного на раме каркаса.

Передняя часть купе оборудуется закрываемыми дверями той или иной конструкции с устройствами, исключающими возможность движения кабины при открытых створках.

При наличии автоматических дверей их привод устанавливается на специальной раме, связанной с потолочной конструкцией купе (колпаком купе), в которой обычно монтируются светильники.

Внутри кабины находится аппарат приказов пассажиров, индикаторные устройства и система связи с диспетчерской службой.

Внутренняя отделка купе должна учитывать назначение лифта и специфические особенности контингента пользователей. Так, в жилых зданиях массовой застройки предпочтение следует отдавать антивандальным решениям и более практичной внутренней отделке.

Сборная металлическая конструкция купе является перспективным решением, отражающим отечественный и зарубежный опыт. Применение тонкостенных панелей из профилированной стали повышает технологичность, пожаростойкость конструкции купе при некотором снижении материалоемкости. Повышению пожаростойкости способствует применение дверей специальной конструкции с пожароустойчивым наполнителем и окраска стен купе термостойким лаком.

2.1.2 Уст ройство и расчет каркаса кабины

Каркас кабины должен обладать достаточной прочностью и жесткостью, гарантируя безопасную работу лифта в рабочих, испытательных и аварийных режимах.

Конструкция каркаса собирается из стального проката или, в последнее время, из специально изготовленных гнутых профилей. Применяются сварные и болтовые соединения.

В нижней части каркаса предусматриваются опорные поверхности для взаимодействия с буферами в приямке шахты. С боковых сторон каркаса, в верхней и нижней его части, устанавливаются башмаки.

Наиболее нагруженной частью каркаса кабины является вертикальная рама. К ней крепятся тяговые и уравновешивающие канаты. На ней устанавливается горизонтальная рама с подвижным полом и купе. Вертикальная рама воспринимает динамические нагрузки при посадке кабины на буфер и ловители.

Верхняя и нижняя балка каркаса обычно имеют одинаковую конструкцию, и собирается из швеллеров или гнутого стального профиля.

Стойки вертикальной рамы крепятся к балкам посредством болтов и выполняются из прокатного или гнутого стального профиля. С целью увеличения жесткости болтовых соединений используются косынки из стального листа.

Момент сопротивления изгибу стоек обычно в 8 – 12 раз меньше соответствующего момента сопротивления балок. В связи с этим, при рабочих деформациях вертикальной рамы, изгибающие моменты заделки стоек имеют незначительную величину, что позволяет производить прочностной расчет балок и стоек независимо, по упрощенной методике.

Конструкция горизонтальной рамы каркаса кабины непосредственно воспринимает действие сил тяжести купе, груза и инерционных сил в рабочих и аварийных режимах.

Характер работы металлоконструкций горизонтальной рамы существенно связан с наличием и конструкцией взвешивающего устройства. Так, при применении взвешивающего устройства с подвижным полом, нагрузка на раму передается через опоры осей рычажной подвески пола, а при отсутствии взвешивающего устройства - непосредственно щитовой конструкцией пола.

Схема каркаса кабины представлена на рис. 2.1.

Задаемся размерами кабины:

– высота Н=2100 мм;

– глубина L=1400 мм;

– ширина В=1200 мм.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.1. Схема каркаса кабины: 1 – верхняя балка; 2 – стойка;

3 – нижняя балка; 4 – горизонтальная рама

Вертикальная рама каркаса представляет собой статически неопределимую конструкцию, которая может рассчитываться традиционными методами строительной механики или упрощенным способом на основе независимого рассмотрения работы горизонтальных балок и стоек [3].

Расчетная схема каркаса представлена на рис. 2.2. На схеме приняты

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.2. Расчетная схема противовеса.

Приняты следующие обозначения: Pис – расчетная нагрузка

в режиме статических испытаний; I1, I2 – моменты инерции

поперечных сечений стойки и балки вертикальной рамы;

h, l – основные размеры рамы

Расчетная нагрузка кабины определяется двукратным значением величины номинальной грузоподъемности.

При статических испытаниях груз равномерно распределяется по всей площади пола кабины.

Расчетная нагрузка, приложенная в середине пролета верхней балки составляет

Рисунок убран из работы и доступен только в оригинальном файле., кН (2.1)

Рисунок убран из работы и доступен только в оригинальном файле.= 18,05 кН

Используя стандартные методы строительной механики можно определить изгибающие моменты в характерных точках рамы с учетом симметрии ее конструкции:

– моменты в местах крепления стоек к нижней балке (точки А, D)

Рисунок убран из работы и доступен только в оригинальном файле. (2.2)

Рисунок убран из работы и доступен только в оригинальном файле.

- моменты в местах крепления стоек к верхней балки (точки В, С)

Рисунок убран из работы и доступен только в оригинальном файле. (2.3)

Рисунок убран из работы и доступен только в оригинальном файле.,

где Рисунок убран из работы и доступен только в оригинальном файле. – коэффициент, учитывающий соотношение жесткости сопряженных элементов и размеры рамы.

- изгибающий момент в среднем сечении верхней балки

Рисунок убран из работы и доступен только в оригинальном файле. (2.4)

Рисунок убран из работы и доступен только в оригинальном файле.

Для оценки влияния жесткости стоек на характер и величину деформации верхней балки определим вспомогательный коэффициент соотношения момента в заделке (точка В) и момента в точке приложения нагрузки от канатной подвески (точка Е)

Рисунок убран из работы и доступен только в оригинальном файле. (2.5)

Рисунок убран из работы и доступен только в оригинальном файле.

В реальных конструкциях лифтов величина Км ≥ 10, поэтому доля влияния моментов в узлах соединения балок со стойками очень мала, что делает вполне оправданным упрощенный расчет балок и стоек каркаса.

2.1.3 Уст ройство и расчет пола кабины

Горизонтальная рама каркаса кабины вместе с полом образует несущую конструкцию грузовой платформы.

Полы могут иметь деревянную, металлическую или комбинированную конструкцию.

Кабины могут оборудоваться подвижными и неподвижными полами в зависимости от назначения лифта, наличия и особенностей конструкции системы контроля ее загрузки.

Неподвижные полы устанавливаются в кабинах грузовых, больничных лифтов и в пассажирских лифтах с устройством контроля времени загрузки кабины, или в тех случаях, когда применяемый метод контроля нагрузки не требует наличия подвижного пола. Неподвижный пол может быть составной частью конструкции купе кабины, закрепленного на несущем каркасе через амортизирующие прокладки или представлять собой коробчатую конструкцию грузовой платформы.

Металлическая конструкция неподвижного пола имеет защитное покрытие из дерева или синтетических материалов. Деревянные полы составляются из плотно пригнанных досок толщиной 50 – 80 мм, соединяемых в шпунт и связанных между собой поперечными брусьями. Деревянный настил устанавливается в металлическую раму с промежуточными поперечными балками. Для защиты деревянный настил покрывается тонким металлическим листом или пластиком.

Устройства контроля загрузки пассажирского лифта с подвижным полом обычно представляет собой грузовые или пружинные весы с одним или несколькими дискретными уровнями контроля нагрузки и соответствующими микропереключателями.

Подвижный пол кабины должен изготавливаться из сплошного щита и полностью перекрывать порог дверей, кабины. У кабин с автоматическими раздвижными дверями порог может быть неподвижным.

Вертикальный ход подвижного пола не должен превышать 20 мм [2].

На рис. 2.3 представлена схема устройства контроля загрузки кабины с грузовым механизмом.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.3. Схема грузового механизма контроля загрузки с подвижным полом:

1, 16 – ступицы; 2, 3, 4 – микровыключатели; 5, 10, 13, 14, 15, 18, 21 – рычаги;

6, 12 – грузы; 7 – пружина; 8, 22 – полые валы; 9 – упор; 17, 23 – ось; 11 – палец;

19 – горизонтальная рама каркаса кабины; 20 – опорная стойка пола;

24 – щитовая конструкция пола

Грузонесущей основой подвижного пола является горизонтальная рама 19 каркаса кабины.

Щитовая конструкция пола через стойки 20 шарнирами опирается на рычаги полых валов 8 и 22, которые с помощью подшипников закреплены на неподвижных осях 17, 23, установленных на горизонтальной раме. Вилки рычагов 13 и 21 охватывают подшипники рычагов 15, 18 ступицы 16, которая установлена на оси 17. Такая конструкция обеспечивает вертикальное поступательное перемещение пола независимо от положения груза в кабине.

На рычагах 5 и 14 ступиц 1 и 16 закреплены грузы взвешивающего устройства 6 и 12 Между грузами 12 и 6 имеется односторонняя связь посредством пальца 11, взаимодействующего со скобой, закрепленной на конце рычага 14.

Для контроля 10 % перегрузки кабины, кроме груза 6, используется цилиндрическая пружина 7 Под рычагами 5 и 14 установлены микровыключатели 2, 3, 4.

При отсутствии пассажиров в кабине, груз 12, установленный на рычаге 14, уравновешивает силу тяжести подвижного пола 24. При этом рычаг 14 воздействует на микровыключатель 2

При появлении груза в кабине массой более 15 кг равновесие системы нарушается и рычаг 14 с грузом 12 поднимается вверх. Срабатывает контактное устройство 2, сигнализируя системе управления о наличии груза.

Дальнейшее увеличение загрузки кабины сопровождается дополнительным подъемом рычага 14. Связанная с ним скоба поднимает палец 11 вместе с грузом 6, поворачивая рычаг 5 против часовой стрелки.

Если груз в кабине достигает 90 % номинальной грузоподъемности, дальнейший подъем рычага 5 приводит к срабатыванию контактного устройства 4. При этом система управления лифта перестает реагировать на попутные вызовы с этажных площадок.

При превышении номинальной нагрузки более чем на 10 %, рычаг дополнительно поднимается вверх сжимая предварительно сжатую пружину 7 срабатывает контактное устройство 3 и отключается двигатель механизма подъема. Момент срабатывания контактного устройства устанавливается регулировкой силы предварительного сжатия пружины 7.

В лифтах с распашными дверями кабины применяется более простая система подвижного пола с петлевым креплением одной его стороны и опорой другой на пружину. При такой конструкции чувствительность контроля нагрузки зависит от положения пассажира по отношению к петлевой подвеске пола.

Рассматриваемая конструкция является вариантом системы контроля нагрузки с пружинным уравновешиванием. Роль грузовой платформы взвешивающего устройства выполняет купе кабины, которое имеет возможность вертикальных, поступательных перемещений относительно каркаса кабины (рис. 2.4. а).

Отличительной особенностью данной конструкции является очень небольшая величина вертикальных перемещений пола купе, который остается практически неподвижным.

При отсутствии пассажиров в кабине, сила тяжести купе уравновешивается усилием предварительно деформируемой двухопорной балки 1. Установка величины предварительной деформации осуществляется регулировочным болтом 4 относительно неподвижной втулки 5 (рис. 2.4 б).

Увеличение нагрузки купе приводит к дополнительной деформации балки и увеличению угла ее поворота Рисунок убран из работы и доступен только в оригинальном файле. на опорах. Благодаря этому, консольная часть балки, с винтом 6 на конце, поворачивается против часовой стрелки. Винт 6 действует на рычаг 7, который поднимается вверх, преодолевая усилие пружины 8, и перестает действовать на приводной механизм контактов микровыключателя 10 по достижению определенного, контролируемого уровня нагрузки купе кабины.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.4. Система контроля загрузки кабины с плавающей установкой купе

а) схема установки взвешивающего устройства: 1 – каркас, 2 – подвеска, 3 – купе,

4 – направляющие ролики вертикального перемещения купе,

5 – взвешивающее устройство;

б) схема устройства контроля нагрузки: 1 – упругая предварительно деформированная балка, 2 – устройство передачи нагрузки от пола купе на балку, 3 – направляющая втулка, 4 – болт регулировки предварительной деформации балки, 5 – упорная втулка,

6, 12 – винт регулировочный, 7 – балка рычажного передаточного механизма,

8, 11 – пружина, 9 – рычаг подвески микровыключателя,

10 – микровыключатель, 13 – упор

Взвешивающее устройство оборудовано тремя комплектами элементов 6 – 12 и их настройка позволяет контролировать три уровня загрузки кабины, включая перегрузку.

Винты 6 и 12 используются для регулировки нагрузки срабатывания каждого из 3-х микровыключателей 10. Под балкой установлен упор 13 для защиты ее от перегрузки, при посадке кабины на буфер или ловители.

Определяем параметры взвешивающего устройства.

Прогиб балки в середине пролета:

Рисунок убран из работы и доступен только в оригинальном файле., (2.6)

где l – пролет балки, м;

I – момент инерции поперечного сечения балки, м4;

P – расчетная нагрузка, Н;

Е – модуль упругости материала балки, Н/м2.

Рисунок убран из работы и доступен только в оригинальном файле.0,0009 м

Угол упругого поворота оси балки на опоре при прогибе в середине пролета

Рисунок убран из работы и доступен только в оригинальном файле. (2.7)

Рисунок убран из работы и доступен только в оригинальном файле.0,0022 рад

Тангенциальное перемещение болта 6 составит величину

Рисунок убран из работы и доступен только в оригинальном файле., м, (2.8)

где r – радиус поворота рычага.

Рисунок убран из работы и доступен только в оригинальном файле.=0,00027 м

Перемещение конца рычага 7 в точке контакта с конечным выключателем

Рисунок убран из работы и доступен только в оригинальном файле., м (2.9)

Рисунок убран из работы и доступен только в оригинальном файле.= 0,0007 м.

Соотношение плеч рычажной системы соответствует величине перемещения приводного элемента микропереключателя.

2.1.4 Расчет направляющих башмаков

Для центрирования относительно направляющих кабин (противовесов) и неизменности расстояний между подвижными и неподвижными частями лифта на несущих каркасах устанавливаются башмаки. С каждой стороны кабины (противовеса) устанавливается по два башмака, в верхней и нижней ее части.

Конструкция башмаков охватывает головку направляющей с трех сторон, так, чтобы обеспечить действие нормальных сил, уравновешивающих опрокидывающие моменты, вызванные эксцентриситетом положения центра масс груза, кабины и смещением центра подвески.

Принимаем направляющие башмаки скользящей конструкции.

Площадь поверхности вкладыша определяем в зависимости от допустимого контактного напряжения материала:

- для боковой поверхности

Рисунок убран из работы и доступен только в оригинальном файле., (2.10)

где Рисунок убран из работы и доступен только в оригинальном файле. – расчетная нагрузка на башмак в поперечном направлении (рис. 2.5);

Рисунок убран из работы и доступен только в оригинальном файле. – допустимое напряжение смятия материала вкладыша из капрона.

- для торцевой поверхности

Рисунок убран из работы и доступен только в оригинальном файле., (2.11)

где Nн – расчетная нагрузка на башмак в торцевом направлении (см. рис. 2.5);

Силы нормального давления, действующие на башмаки в плоскости направляющих и в перпендикулярном к ним направлении, определим из уравнений равновесия кабины:

∑Мх = 0, ∑Мy = 0 (2.12)

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.5. Схемы к расчету опорных реакций башмаков кабины:

а) схема горизонтальной проекции кабины;

б) схема вертикальной проекции кабины.

На рис. приняты следующие обозначения: А, В - ширина и глубина кабины, м; h - расстояние между башмаками по вертикали, м; П - обозначение точка подвески кабины; Хп, Yп - продольное и поперечное смещение точки подвески кабины относительно центра пола, м; S - натяжение тяговых канатов, кН; К - положение центра масс кабины; Г - положение центра масс расчетного груза; Хв, Yв - продольное и поперечное смещение центра масс кабины относительно центра пола, м; Хг, Yг - продольное и поперечное смещение центра масс расчетного груза, м; Nп, Nн - нормальные реакции в зоне контакта башмаков с направляющими, которые действуют перпендикулярно и параллельно плоскости направляющих; Рк, Рг - сила тяжести кабины и груза, соответственно, кН.

Из уравнений равновесия определяем соответствующие нормальные реакции

Рисунок убран из работы и доступен только в оригинальном файле., (2.13)

Рисунок убран из работы и доступен только в оригинальном файле., (2.14)

где Рг = Qр·10-2 – величина силы тяжести массы расчетного груза, кН (для пассажирского лифта Qр=0,5·Qс, где Qс – грузоподъемность из условия свободного заполнения кабины);

Рксила тяжести массы кабины, кН;

Хп, Yп – координаты смещения точки подвески кабины, принимаются по конструктивным соображениям от 0,03 до 0,1 м;

Хк, Yк – величина продольного и поперечного смещения центра масс кабины, зависящая от конструкции дверей кабины, может приниматься в пределах от 0,02 до 0,1 м;

Хг,=В/6, Yг=А/6 - определяются в предположении, что расчетный груз равномерно распределен по треугольной площадке, составляющей 50 % площади пола кабины, отделенной диагональю прямоугольного контура.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

  2.2 Расчет направляющих

Направляющими называются неподвижно установленные в шахте стальные рельсы, расположенные по боковым сторонам кабины (противовеса), которые гарантируют прямолинейное движение без поперечного раскачивания и обеспечивают постоянство безопасных зазоров между подвижными и неподвижными частями оборудования в шахте лифта.

В аварийных режимах посадки на ловители направляющие служат прочной основой для плавного торможения и надежного удержания кабины (противовеса) до момента снятия с ловителей. Возникающие при этом значительные динамические нагрузки непосредственно воспринимаются направляющими и устройствами их крепления в шахте.

В нормальных рабочих режимах направляющие воспринимают силы нормального давления башмаков, которые обусловлены смещением центра масс груза и кабины относительно канатной подвески или процессом загрузки кабины средствами напольного транспорта.

От прочности, жесткости и точности установки направляющих зависит надежность и безопасность работы лифта. В связи с этим раздел 5.3 ПУБЭЛ предъявляет ряд специальных требований к конструкции направляющих [4].

Прочностной расчет направляющих производится с учетом нагрузок действующих в рабочем режиме и при посадке на ловители (рис. 2.6).

Примем следующие обозначения:

l, lр – величина пролета крепления направляющей и ее расчетный пролет;

е – эксцентриситет приложения продольной силы R относительно центра тяжести сечения направляющей;

Nн, Nп – нагрузка, действующая в плоскости направляющих и перпендикулярном к ней направлении;

R – расчетная величина тормозной силы ловителя;

Мн, Мп, МR – изгибающие моменты в опасном сечении направляющей.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.6. Расчетные схемы направляющих

а) многоопорная балка; б) двухопорная балка

Направляющая рассматривается как неразрезная многопролетная балка, загруженная в одном пролете поперечными, нормальными силами и продольной тормозной силой при посадке кабины (противовеса) на ловители.

Методика расчета направляющих противовеса особой специфики не имеет. В связи с этим, более детально рассмотрим расчет направляющей кабины.

1. Предварительно определяем параметры профиля и шаг крепления направляющей (п. 7.1; табл. 7.1 [1]).

Геометрические характеристики профиля (рис. 2.7 а):

– Обозначение профиля НТ-3;

– Размеры поперечного сечения профиля:

H=60 мм;

h=35 мм;

B=90 мм;

b=16 мм.

– Масса 1 м 11,8 кг;

– Шаг крепления принимаем равным 2 м.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.7. Направляющая таврового профиля

а) схема поперечного сечения; б) расчетная схема

2. Рассчитываем величины моментов инерции и моментов сопротивления поперечного сечения направляющей (рис. 2.7 б).

Площадь поперечного сечения брутто

Рисунок убран из работы и доступен только в оригинальном файле. (2.15)

Рисунок убран из работы и доступен только в оригинальном файле.

Площадь поперечного сечения нетто (учет ослабления отверстиями)

Рисунок убран из работы и доступен только в оригинальном файле. (2.16)

Рисунок убран из работы и доступен только в оригинальном файле.

Координаты центра тяжести сечения брутто

Рисунок убран из работы и доступен только в оригинальном файле. (2.17)

Xсб=0

Рисунок убран из работы и доступен только в оригинальном файле.

Координаты центра тяжести сечения нетто

Рисунок убран из работы и доступен только в оригинальном файле. (2.18)

Xсн = 0

Рисунок убран из работы и доступен только в оригинальном файле.

где Y1, Y2, Y3,Y4 – координаты центра элементарных площадок поперечного сечения относительно любой выбранной точки горизонтальной оси сечения;

h1=35 мм;

h2=17 мм;

h3=8 мм;

h4=8 мм;

b1=16 мм;

b2=8 мм;

b3=90 мм;

b4=8 мм;

Y1=42,5 мм;

Y2=16,5 мм;

Y3=4 мм;

Y4=4 мм;

F1=560 мм2;

F2=136 мм2;

F3=720 мм2;

F4=64 мм2.

Моменты инерции сечения брутто

Рисунок убран из работы и доступен только в оригинальном файле. (2.19)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. (2.20)

Рисунок убран из работы и доступен только в оригинальном файле.

Моменты инерции нетто

Рисунок убран из работы и доступен только в оригинальном файле. (2.21)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. (2.22)

Рисунок убран из работы и доступен только в оригинальном файле.

Минимальная величина радиуса инерции брутто

Рисунок убран из работы и доступен только в оригинальном файле. (2.23)

Рисунок убран из работы и доступен только в оригинальном файле.=28,2 мм

Моменты сопротивления брутто при изгибе в плоскости направляющих:

– для верхней точки сечения

Рисунок убран из работы и доступен только в оригинальном файле. (2.24)

Рисунок убран из работы и доступен только в оригинальном файле.

– для нижней точки сечения

Рисунок убран из работы и доступен только в оригинальном файле. (2.25)

Рисунок убран из работы и доступен только в оригинальном файле.

Момент сопротивления брутто при изгибе в плоскости перпендикулярной плоскости направляющих:

– для крайней точки основания сечения направляющих

Рисунок убран из работы и доступен только в оригинальном файле. (2.26)

Рисунок убран из работы и доступен только в оригинальном файле.

– для точки на боковой поверхности головки направляющей

Рисунок убран из работы и доступен только в оригинальном файле. (2.27)

Рисунок убран из работы и доступен только в оригинальном файле.

Момент сопротивления нетто при изгибе в плоскости направляющих:

– в верхней точке сечения

Рисунок убран из работы и доступен только в оригинальном файле. (2.28)

Рисунок убран из работы и доступен только в оригинальном файле.

– в нижней точке сечения

Рисунок убран из работы и доступен только в оригинальном файле. (2.29)

Рисунок убран из работы и доступен только в оригинальном файле.

Момент сопротивления нетто при изгибе в плоскости перпендикулярной плоскости направляющих:

– в крайней точке основания сечения направляющей

Рисунок убран из работы и доступен только в оригинальном файле. (2.30)

Рисунок убран из работы и доступен только в оригинальном файле.

– в точке боковой поверхности головки

Рисунок убран из работы и доступен только в оригинальном файле. (2.31)

Рисунок убран из работы и доступен только в оригинальном файле.

3. Производим расчет направляющей в рабочем режиме работы лифта с 10 % перегрузкой кабины (см. рис. 2.6 а, б).

Предполагается, что в центре пролета направляющей действуют расчетная, нормальная сила Nн в плоскости направляющих и нормальная сила Nп перпендикулярная плоскости направляющих. Нормальные силы определяются рассмотренным выше методом при смещении центра масс груза в поперечном и продольном направлениях на величину А/6 и В/6, соответственно.

Пролет реальной многопролетной балки заменяется расчетным эквивалентным, учитывающим влияние жесткости соседних пролетов, путем сокращения его длины до величины

Рисунок убран из работы и доступен только в оригинальном файле. (2.32)

Рисунок убран из работы и доступен только в оригинальном файле.

В среднем сечении пролета во взаимно перпендикулярных направлениях действуют изгибающие моменты от поперечных сил:

– в плоскости направляющих

Рисунок убран из работы и доступен только в оригинальном файле. (2.33)

Рисунок убран из работы и доступен только в оригинальном файле.

– в плоскости, перпендикулярной плоскости направляющих

Рисунок убран из работы и доступен только в оригинальном файле. (2.34)

Рисунок убран из работы и доступен только в оригинальном файле.

Наибольшее расчетное нормальное напряжение определяется геометрическим сложением нормальных напряжений, действующих в двух плоскостях изгиба

Рисунок убран из работы и доступен только в оригинальном файле. (2.35)

Рисунок убран из работы и доступен только в оригинальном файле.

где Wн, Wп – минимальные значения величины момента сопротивления сечения направляющей соответствующих плоскостях изгиба.

Коэффициент запаса прочности определяется по отношению к пределу текучести материала направляющей (для Ст. 20 ГОСТ 1050-74 Рисунок убран из работы и доступен только в оригинальном файле.=245 МПа=2450000 Н/м2)

Рисунок убран из работы и доступен только в оригинальном файле., (2.36)

где [nэ] – допускаемый запас прочности в рабочем режиме.

4. Проверка жесткости направляющей.

Прогиб в плоскости направляющих

Рисунок убран из работы и доступен только в оригинальном файле.,

где Е=2,17·107 Н/см2

Рисунок убран из работы и доступен только в оригинальном файле.

Прогиб направляющей не должен превышать величины Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Условие выполняется, следовательно, направляющая подобрана верно.

3. Спецчасть

  3.1 Расчет и подбор каната

Канаты подъёмных механизмов лифтов обеспечивают передачу движения от лебедки к кабине и противовесу с небольшими потерями мощности на канатоведущем органе и отклоняющих блоках [2, 3].

Канаты воспринимают растягивающие нагрузки при движении и неподвижном состоянии кабины, в нормальных эксплуатационных и аварийных режимах.

От надежности работы системы подвески подвижных частей лифта зависит жизнь пассажиров. Поэтому к стальным канатам и тяговым цепям лифтов предъявляются повышенные требования прочности и долговечности. Эти требования нашли отражения в ПУБЭЛ Госгортехнадзора [4].

Канаты, поступающие на монтаж лифтового оборудования должны иметь документ (сертификат), характеризующий их качество и оформленный в полном соответствии с требованиями государственных стандартов. Аналогичные требования предъявляются к тяговым цепям.

Параллельно работающие канаты подвески кабин (противовесов) должны иметь одинаковые диаметры, структурные и прочностные характеристики.

Не допускается сращивание тяговых канатов механизмов подъема и ограничителей скорости.

Номинальный диаметр тяговых канатов лифтов для перевозки людей должен быть не менее 8 мм, а в ограничителях скорости и лифтах, не рассчитанных на транспортировку людей, – не менее 6 мм.

Число параллельных ветвей канатов подвески кабины (противовеса) должно быть не менее указанных в таблице 4 ПУБЭЛ [4].

В лифтах применяются только канаты двойной свивки, которые свиваются из прядей проволок относительно центрального сердечника в виде пенькового каната, пропитанного канатной смазкой.

Обычно стальной канат состоит из 6 прядей и сердечника.

Условия работы канатов в лифтах с КВШ отличаются наличием изгибающих, растягивающих, скручивающих и сдвигающих нагрузок, поэтому очень важно иметь большую поверхность касания проволочек в отдельных слоях. Этому требованию в наибольшей степени отвечают канаты типа ЛК с линейчатым касанием между проволоками.

В зависимости от структуры поперечного сечения прядей различают канаты ЛК-О – при одинаковых диаметрах проволок по слоям навивки, ЛК-Р с различным диаметром проволок. Канаты с точечным касанием проволок имеют обозначение ТК.

В обозначении конструкции каната учитывается характер касания проволок, количество прядей и число проволок в каждой пряди: ЛК-О 6x19 или ТК 6x37.

При использовании канатов важно обеспечить не только достаточную их прочность, но и надежное соединение с элементами конструкции лифта.

Стальные канаты должны рассчитываться на статическое разрывное усилие

Рисунок убран из работы и доступен только в оригинальном файле., (3.1)

где Р – разрывное усилие каната, принимаемое по таблицам ГОСТ или результатам испытания каната на разрыв, кН;

К – коэффициент запаса, принимаемый по таблице 6 ПУБЭЛ в зависимости от типа канатоведущего органа, назначения и скорости кабины лифта [4];

S – расчетное статическое натяжение ветви каната, кН

Величина расчетного натяжения ветви канатной подвески должна определяться по следующим зависимостям:

для канатов подвески кабины.

Рисунок убран из работы и доступен только в оригинальном файле. (3.2)

для канатов подвески противовеса

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле., (3.3)

где Q – грузоподъемность лифта, кг;

QК – масса кабины, кг;

QП – масса противовеса, кг;

QТК – масса тяговых канатов от точки схода с КВШ до подвески, кг;

QН – масса натяжного устройства уравновешивающих канатов, кг;

m – число параллельных ветвей канатов;

g=9,8 м/с2 – ускорение свободного падения.

Канат подвешивается в соответствии с правилами ПУБЭЛ [4]. Лифт с канатоведущим шкивом, в котором допускается транспортировка людей должен быть подвешен не менее чем на трех канатах. По рекомендации [1] лифты от 500 до 1000 кг подвешиваются на 3-6 отдельных канатах.

Выбираем 3 отдельные ветви канатов, на которых подвешивается кабина и противовес.

Масса тяговых канатов определяется по формуле

Рисунок убран из работы и доступен только в оригинальном файле. (3.4)

где Рисунок убран из работы и доступен только в оригинальном файле. – приближенное значение массы 1 метра тягового каната, кг/м (принимается 0,4-0,5 кг/м);

Рисунок убран из работы и доступен только в оригинальном файле.– расчетная высота подъема кабины, м.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

По расчетному значению разрывной нагрузки Р и таблицам ГОСТ определяется необходимый диаметр каната, так, чтобы табличное значение разрывной нагрузки было равно или больше расчетной величины.

Выбираем канат типа ЛК-Р ГОСТ 2680-80 [12] с одним органическим сердечником со следующими параметрами:

– Диаметр каната d=9,1 мм;

– Расчетная площадь сечения всех проволок F=31,18 см2;

– Масса 1000 м смазанного каната 305 кг

– Маркировочная группа по временному сопротивлению разрыву 1860 МПа;

– Расчетное разрывное усилие:

s  суммарное всех проволок в канате 58050 Н;

s  каната в целом 47500 Н;

После выбора типа и определения диаметра каната производим проверку фактической величины коэффициента запаса прочности каната подвески кабины или противовеса [3]

Рисунок убран из работы и доступен только в оригинальном файле.,

где РТ – табличное значение разрывной нагрузки выбранного каната, кН;

Рисунок убран из работы и доступен только в оригинальном файле. – фактическое значение массы каната от точки схода с КВШ до подвески кабины (противовеса), кг;

Рисунок убран из работы и доступен только в оригинальном файле. – фактическое значение массы 1 метра выбранного тягового каната, кг/м;

Рисунок убран из работы и доступен только в оригинальном файле.,

где Н – расчетная высота подъема кабины лифта, м

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Правильному выбору каната должно соответствовать условие

Рисунок убран из работы и доступен только в оригинальном файле. (3.5)

13 ≥ 12

Условие прочности 3.5 выполняется.

  3.2 Определение массы подвижных частей механизма подъема

Работа механизма подъема лифта связана с перемещением массы кабины, противовеса, тяговых канатов и подвесного кабеля.

Работа по преодолению сил тяжести подвижных частей может быть существенно снижена, если добиться равновесия сил тяжести, действующих на канатоведущий орган лебедки со стороны кабины и противовеса.

Так как полезный груз в кабине не остается величиной постоянной, полное уравновешивание кабины с грузом практически исключается. Если силу тяжести конструкции кабины можно полностью уравновесить с помощью противовеса, то груз в кабине – только частично.

В крайних положениях кабины оказывается неуравновешенной и сила тяжести тяговых канатов [2, 3]. Влияние неуравновешенности канатов становится весьма ощутимым при значительной высоте подъема лифта.

Основную роль в системе уравновешивания играет противовес. При небольшой высоте подъема масса противовеса выбирается из условия уравновешивания кабины и среднестатистического значения массы полезного груза. Это обеспечивает существенное снижение окружной нагрузки КВШ и необходимой мощности привода лебедки.

При высоте подъема кабины более 45 м приходится учитывать влияние силы тяжести неуравновешенной части тяговых канатов и применять для их уравновешивания дополнительные гибкие уравновешивающие элементы в виде цепей или уравновешивающих канатов.

Определение массы противовеса требует предварительного определения массы кабины лифта по исходным данным или по приближенным соотношениям, устанавливающим зависимость между площадью пола и массой кабины [3].

3.2.1 Расчет веса кабины

Масса кабин пассажирских лифтов отечественного производства приближенно определяться по следующей формуле [1]:

Рисунок убран из работы и доступен только в оригинальном файле., (3.6)

где А, В – ширина и глубина кабины, соответственно, м.

Рисунок убран из работы и доступен только в оригинальном файле.

3.2.2 Расчет противовеса

3.2.2.1. Назначение, конструкция и устройство

Применение уравновешивающих устройств значительно уменьшает потребное тяговое усилие на шкиве или барабане, а, следовательно, позволяет использовать более легкие и дешевые лебедки.

Одним из уравновешивающих устройств является противовес, массу которого выбирают такой, чтобы она уравновешивала массу кабины и часть массы груза. В лифтах с КВШ противовес, наряду с этим, обеспечивает натяжение канатов, необходимое для надежного сцепления канатов с ободом шкива.

Основу конструкции противовеса составляет несущий каркас с устройством канатной подвески и башмаками.

Канаты закрепляются на верхней балке каркаса с помощью пружинной подвески или огибают блоки, если в конструкции лифта используется полиспаст.

Рамы противовеса заполняются набором железобетонных или чугунных грузов исходя из расчетного значения коэффициента уравновешивания φ и массы каркаса.

Масса каркаса, в зависимости от конструктивного исполнения и грузоподъемности лифта, составляет 5…15% расчетной массы противовеса. В конструкции каркаса предусматриваются устройства для неподвижной фиксации набора грузов в каркасе.

Поперечные размеры в плане определяются соответствующими размерами грузов.

Габаритная высота противовеса обычно соизмерима с высотой кабины.

На рис. 3.1 представлен вариант типовой конструкции противовеса с пружинной подвеской, применяемый в лифтах отечественного производства.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 3.1. Противовес с

Здесь опубликована для ознакомления часть дипломной работы "Расчет конструкции лифта". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 919

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>