Дипломная работа на тему "Расчет холодильника при овощехранилище вместимостью 2000 т"

ГлавнаяПромышленность, производство → Расчет холодильника при овощехранилище вместимостью 2000 т




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Расчет холодильника при овощехранилище вместимостью 2000 т":


Министерство сельского хозяйства Российской Федерации

Департамент кадровой политики и образования

ФГОУ СПО «Мелеузовский механико-технологический техникум»

Специальность 1711

ДИПЛОМНЫЙ ПРОЕКТ

Расчет холодильника при овощехранилище вместимостью 2000 т

Студент: Е. Г. Караськин

Руководитель проекта:М. Р. Мицукова

Консультант по экономической части: Т. В. Ишбаева

Нормоконтроль: В. В. Прокудин

Мелеуз 2005

ВВЕДЕНИЕ

Искусственное охлаждение используется человеком для своих нужд с древних времен.

Без холодильной техники невозможно прокормить растущее население планеты, поэтому важно развитие и совершенствование, расширение функциональных возможностей. На предприятиях торговли и общего питания для бесперебойного снабжения населения продуктами необходимо хранить запасы пищевых продуктов, в том числе и скоропортящихся, требующего влажного режима хранения лучший способ хранения пищевых продуктов холодом подавляется жизнедеятельность микроорганизмов, замедляется биохимические процессы. Поэтому сохраняется первоначальное качество пищевых продуктов, их естественный вид, вкус, питательная ценность.

В процессе производства и увеличения объемов реализации пищевых продуктов немаловажная роль принадлежит холодильной технике, которая позволяет создавать запасы скоропортящихся пищевых продуктов в широком ассортименте.

- Увеличивать продолжительность хранения замороженных продуктов.

- Продавать пищевая продукты сезонного производства равномерно в течение года.

- Снижать товарные потери при хранении и транспортировке продовольственных товаров.

- Внедрять прогрессивные метода оказания услуг населению предприятиями торговли и общественного питания, обеспечивая высокий уровень обслуживания.

- Удовлетворять потребности населения в доброкачественных продуктах питания.

Заказать написание дипломной - rosdiplomnaya.com

Специальный банк готовых защищённых на хорошо и отлично дипломных проектов предлагает вам скачать любые проекты по требуемой вам теме. Грамотное выполнение дипломных проектов на заказ в Самаре и в других городах РФ.

Первая в мире холодильная машина была сконструирована англичанином Дж. Перкинсом в 1819 году, качестве хладагента конечно был применен этиловый эфир. В 1871 году француз Ш. Гелье создал холодильную машину, работающую на метиловым эфире, и в 1872 году англичанин Бойль, изобрел холодильную машину, в которой в качестве рабочего тела был использован аммиак.

Широкое практическое применение холодильных машин началась в 80-е годы 19 столетия.

Холодильные машины применяют в пищевой, мясомолочной промышленности и в сельском хозяйстве. Для холодильной обработки и хранение пищевых продуктов (овощей и фруктов) в химической, нефтехимической промышленности и во многих других случаях.

В настоящее время преимущественно используют холодильные машины компрессорного типа. При наличии дешевых источников теплоты применяют теплоизолирующие машины.

Холодильные машины работают на хладагентах хлорфторуглеродах (R11. R12. R13. R115. R502 и другие), это создает проблему их замены переходными однокампанентными хладагентами (R22. R123. R124. R140b. R142b) и их смесями с низким потенциалом разрушения озонового слоя, применение которых в соответствии с международным соглашением (монреальский протокол 1987 года) возможно до 2030 года, а так же озонобезопасными однокомпанентными хладагентами (R23. R22. R120. R139a. R148a) и их смесями или природными веществами (R717. R744. R290. R600. R600a).

1 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ

Территория, на которой родился Санкт Петербург, издревна была дальней окраиной Новгородской Руси, а затем московского государства.

Известно, что в 18 веке эти места называли Ижорской землей. По одному из притоков нивы, небольшой извилистой реки Ижоря, протекающей ныне среди южных питерских пригородов.

Санкт – Петербург центр ленинградской области, город федерального значения, субъекта РФ город – Герой. Важнейший после Москвы экономически научный и культурный центр, крупный транспортный узел России, морской и речной порт. В административном отношении С-П разделен на 13 регионов, расположен на северо – западной европейской части России, большая часть города в пределах при Невской низменности, на реке Нева и прилегающем ее устью побережья Невской губы финского залива, Балтийского моря, а так же на многочисленных островах разветвленной Невской дельты.

Ныне в черте города 45 рек,40 искусственных каналов протяженностью 300 км. Климат С-П. морской с чертами континентального, частая смена воздушных масс много атмосферных фронтов. Зима умерено мягкая морозная средняя температура самых холодных месяцев января и февраля -7 -8 С.

Весна поздняя, лето теплое со сменой солнечных и дождливых дней. Средняя температура июля 17,8 0С. Осень затяжная, туманная.

В 1762г. учреждена комиссия о каменном строении Санкт-Петербурга и Москвы.

2 ВЫБОР РАСЧЁТНЫХ ПАРАМЕТРОВ

Расчетный режим холодильных установок характеризуется температурой кипения t0, конденсации всасывания (паров на входе в компрессор) tвс и переохлаждение жидкого хладагента перед регулирующим вентилем tрв. Значения этих параметров выбирают от назначения холодильной установки и расчетно-наружных условий.

2.1 Расчетные параметры наружного воздуха

От параметров наружного воздуха (в основном от температуры), зависит количество поступления теплопритоков в камеры, температуры конденсации холодильного агента, температура воды охлаждаемой в градирне или поступающей из естественных водоемов и холодопроизводительность установки.

Холодильные установки рассчитывают как правило на самый жаркий период года, поэтому в качестве расчетной летней температуры наружного воздуха для города Санкт-Петербурга принимается tр. л=270С, в качестве среднегодовой температуры наружного воздуха принимается tср=4,30С, в качестве расчетной летней относительной влажности наружного воздуха принимаются φ= 39%, а расчетной зимней влажности принимается φ=82% (приложение 1, таблица 2.1 – значение некоторых параметров (приложение1 (1)) – Лашутина, Судов, стр.40), географическая широта 600.

2.2 Расчетная температура воды для охлаждения конденсаторов

При оборотном водоснабжении начальную температуру воды для охлаждения конденсаторов принимают на 2-30С выше температуры воздуха по смоченному термометру, поэтому находится температура воды по i-d диаграмме.

iРисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле., i = const φ=59%

Рисунок убран из работы и доступен только в оригинальном файле. кДж/кг

Рисунок убран из работы и доступен только в оригинальном файле. tл=270С А

Рисунок убран из работы и доступен только в оригинальном файле. φ=100%

Рисунок убран из работы и доступен только в оригинальном файле. tм=210С В

Рисунок убран из работы и доступен только в оригинальном файле. α, г/кг

Рис. 1. I-d диаграмма влажного воздуха

Находится точка А с параметрами φ=59% и φ=100%. Из точки А двигаясь по линии параметральной i = const до пересечения линии параметральной i = const до пересечения с линией φ=100%. Температура насыщенного воздуха в точке. В пересечения будет искомой температурой tм=210С.

Температура воды входящей в конденсатор находится по формуле:

tв1 = tмт (2-π), 0С, (2.1)

где tмт – температура воздуха по мокрому термометру, 0С

tв1 =21+3=240С

Температура воды, выходящей из конденсатора находятся по формуле:

tв1 = tв1 + (4-50С), 0С (2.2)

tв1= 24+5=290С

Температура конденсации находится по формуле:

tкд = (tв1+tв2) / 2+ (4-60С (2.3)

tкд = (24+29) / 2+5,5 = 320С

Температура переохлаждения находится по формуле:

tп = tв1+3, 0С (2.4)

tп= 24+3=270С

2.3 Расчетные параметры внутреннего воздуха и продолжительность холодильной обработки

Расчетные значения температуры и влажности воздуха в охлаждаемых помещениях (в камерах холодильника) выбираются в зависимости от их назначения, вида продукта. Технологических особенностей хранения (замораживание, охлаждение, хранение и так далее).

Расчетные параметры воздуха камер хранения при овощной базе (овощехранилище), приведенные в таблице 2.1.

Таблица 2.1

--------------------------------------------------

Камеры и другие охлаждаемые

помещения

| Параметры воздуха | t0С продуктов | Продолжительность холодильной обработки и хранения (ч.) |
---------------------------------------------------------
t,0С | φ,% | начальн. t0С | конечн. t0С |
---------------------------------------------------------

Хранения картофеля

Хранение лука (чеснока)

Хранение моркови

Хранение свеклы

|

+2…+4

+1…-3

+2…+6

+1…-1

|

85-95

70-80

85-95

85-95

|

20

20

20

20

|

3

0

3

0

|

24

24

24

24

|
--------------------------------------------------------- --------------------------------------------------

Расчетную температуру грунта под полом, принимается при электрообогреве грунта равной 20С.

3 РАСЧЁТ ПЛОЩАДЕЙ, ОБЪЁМНО-ПЛАНИРОВОЧНОЕ РЕШЕНИЕ ХОЛОДИЛЬНИКА

3.1  Расчет площадей

База овощей (овощехранилище) – это самостоятельное предприятие, что позволяет более широка и полно использовать холодильные емкости в течении года.

В составе этой базы для овощей, с общей вместимостью 2000 т. имеются такие производственные помещения:

- камеры хранения овощей;

- помещения товарной обработки (переработка, фасовка, упаковка);

-экспедиция для приемки и отпуска продукции.

Так как холодильник имеет вместимость 2000 т., то он имеет 100% вместимость.

Тогда хранение картофеля приходится 25% вместимости овощехранилища, на хранение лука – 25%, моркови - 25% , свеклы – 25%.

Сетку колонн выбирается 6х12 м, т. к. этот выбор целесообразен для данного холодильника.

3.2 Расчет площади камер хранения картофеля

Определяется общая вместимость грузового объема камер хранения картофеля:

Вхр. к. = Вхол. *25% (3.1)

Вхр. к. = 2000 * 0.25 = 500 т.

Рассчитывается грузовой объем камер

Vгр= Вхр. к. /qύ (3.2)

где Вхр. к. – условная вместимость камер, т.

qύ - норма загрузки, т/м3 (картофель положен в деревянных контейнерах qύ 0,5 т/м3 , по табл. 2.3.)

Vгр= 500 / 0,5 = 1000 м3

Определяется грузовая площадь камер.

Fгр= Vгр / hгр, м2 (3.3)

где hгр – грузовая высота или высота штабеля, м ( hстр. = 6м, то hгр = 5 м

Fгр= 1000 / 5 = 200, м2

Определяется строительная площадь камер:

Fстр = Fгр / βF, м3 (3.4)

где βF – коэффициент используется строительной площади камер (βF = 0,75, на стр.25 (3))

Fстр = 200 / 0,75 = 266 м2

Определяется число строительных прямоугольников

n = fстр /f (3.5)

где f – строительная площадь одного прямоугольника, определяется выбранной сеткой колон, м2 (f= 6х12 = 72 м2 )

n= 266 /72 = 4

Условно принимается площадь равной строительным квадратам, тогда

Fстр = 72 * 4 = 288 , м2

Определяется условная действительная вместимость камер

Вg = В* ng / n, т (3.6)

где ng – принятое число строительных прямоугольников

Вg = 500*4/3,7 = 540 т

Так как в одной камере при овощехранилище должно быть примерно 250 т вместимости груза более не рекомендуется, для хранения картофеля выходит 2 камеры.

3.3 Расчет площади камер хранение лука (чеснока)

Определяется общая вместимость камер хранения лука.

Вхр. к. = Вхол. *25% (3.7)

Вхр. к = 2000*0,25 = 500 т.

Расчесывается грузовой объем камер

Vгр= Вхр. к. /qύ (3.8)

где Вхр. к. – условная вместимость камер, т.

qύ - норма загрузки, т/м3 (лук положен в деревянных контейнерах qύ =0,38 т/м3 , по табл. 2.3.)

Vгр= 500 / 0,38 = 1315,8 м3

Определяется грузовая площадь камер.

Fгр= Vгр / hгр, м2 (3.9)

Fгр= 1315,8 / 5 = 263, м2

Определяется строительная площадь камер:

Fстр = Fгр / βF, м3 (3.10)

где (βF = 0,75 , на стр.25 (3))

Fстр = 263/ 0,75 = 350 м2

Определяется число строительных прямоугольников

n = fстр /f (3.11)

n= 300 /72 = 5

Условно принимается площадь равной строительным квадратам, тогда

Fстр = 72 * 5 = 360 , м2

Определяется условная действительная вместимость камер

Вg = В* ng / n, т (3.12)

где ng – принятое число строительных прямоугольников

Вg = 500*5/4,86 = 514 т

Так как в холодильнике, положено располагать одну камеру примерно 230 т. вместимостью, то для хранения лука (чеснока) выходит 2 камеры:

В №1 Fстр = 216, м2 и Вд=308,4 т.

В №2 Fстр = 144, м2 и Вд=205,6 т.

3.4  Расчет площади камер хранения моркови.

Определяется общая вместимость грузового объема камер хранения моркови.

Вхр. к. = Вхол. *25% (3.13)

Вхр. к = 2000*0,25 = 500 т.

Расчесывается грузовой объем камер

Vгр= Вхр. к. /qύ (3.14)

где Вхр. к. – условная вместимость камер, т.

qύ - норма загрузки, т/м3 (лук положен в деревянных контейнерах qύ =0,36 т/м3 , по табл. 2.3.)

Vгр= 500 / 0,36 = 1390 м3

Определяется грузовая площадь камер.

Fгр= Vгр / hгр, м2 (3.15)

Fгр= 1390 / 5 = 278, м2

Определяется строительная площадь камер:

Fстр = Fгр / βF, м3 (3.16)

где (βF = 0,75 , на стр.25 (3))

Fстр = 278/ 0,75 = 370 м2

Определяется число строительных прямоугольников

n = fстр /f (3.17)

n= 370 /72 = 5

Условно принимается площадь равной строительным квадратам, тогда

Fстр = 72 * 5 = 360 , м2

Определяется условная действительная вместимость камер

Вg = В* ng / n, т (3.18)

где ng – принятое число строительных прямоугольников

Вg = 500*5/5,14 = 486,4 т

Так как в холодильнике, положено располагать одну камеру примерно 230 т.

Вместимостью, то для хранения лука (чеснока) выходит 2 камеры:

В №1 Fстр = 216, м2 и Вд=292 т.

В №2 Fстр = 144, м2 и Вд=194 т.

3.5 Расчет площади камер хранения свеклы.

Вхр. к. = Вхол. *25% (3.19)

Вхр. к = 2000*0,25 = 500 т.

Расчесывается грузовой объем камер

Vгр= Вхр. к. /qύ (3.20)

где Вхр. к. – условная вместимость камер, т.

qύ - норма загрузки, т/м3 (лук положен в деревянных контейнерах qύ =0,46 т/м3 , по табл. 2.3.)

Vгр= 500 / 0,46 = 1087 м3

Определяется грузовая площадь камер.

Fгр= Vгр / hгр, м2 (3.21)

Fгр= 1087 / 5 = 217,4 , м2

Определяется строительная площадь камер:

Fстр = Fгр / βF, м3 (3.22)

где (βF = 0,75 , на стр.25 (3))

Fстр = 217,4 / 0,75 = 290 м2

Определяется число строительных прямоугольников

n = fстр /f (3.23)

n= 290 /72 = 4

Так как вместимость одной камеры должна соответствовать примерно 250 т, то будет две камеры хранения свеклы

В №1 Fстр = 145 , м3 и Вд=250 т.

В №2 Fстр = 145 , м3 и Вд=250 т.

3.6 Расчет площади вспомогательных помещений и общая площадь всего холодильника

Площадь отводимую для вспомогательных помещений (коридор, тамбур, экспедиция загрузки и разгрузки и так далее) принимают равной 20-40 % суммы охлаждаемых помещений холодильника.

Определяется площадь вспомогательных помещений по следующей формуле:

Fвсп= (0,2…0,4)* Σ Fстр, м2 (3.24)

где Σ Fстр – суммарная площадь охлаждаемых помещений, м2

Fвсп= 0,4 * Σ (288+360+360+290) = 520 , м2

Определяем количество строительных прямоугольников.

n= Fвсп / f (3.25)

n= 570 / 72 = 7

Условно принимается площадь вспомогательных помещений по следующему порядку:

а) Из расположения плана холодильника выходит 3 строительных прямоугольника на долю коридора Fкор=216, м2;

б) На долю цеха отварной обработки остается 4 строительных прямоугольника Fцех=288, м2.

Площадь, отводимую экспедицией (для приемки и отпуска продукта) и служебно-бытового помещения в сумме принимают равной 20-30 % от суммы площадей охлаждаемых помещений.

Вычисляется площадь вспомогательных помещений по формуле:

Fвсп=(0,2…0,3) * Σ Fстр (3.26)

Fвсп=0,27 * Σ (288+360+360+290) = 351 , м2

Определяется количество строительных прямоугольников:

n=Fвсп / f (3.27)

n= 351 / 72 = 5

3.6 Объемно планировочное решение холодильника

Рассчитав площадь холодильника, выбирают планировку холодильника.

Условно принимаем площадь вспомогательных помещений равной 5 строительным прямоугольникам, тогда Fвсп= 72*5=360, м2

Из расположения плана холодильника на долю экспедиции будет4 строительных прямоугольника Fэкс=288, м2, тогда на долю служебного помещения остается 1 строительный прямоугольник 6х12, м2 Fсл=72, м2 .

Для лучшей организации и быстрого выполнения грузовых операций, холодильник предусматривает автомобильную платформу, которая располагается вдоль длинны холодильника.

Авто-платформа имеет ширину 7-9 м, а длину ее вдоль длинны холодильника.

Общая площадь всех помещений холодильника всем контуре ограждений овощехранилища, составляет:

Fобщ= Σ Fвсп+Σ Fк. хр, м2 (3.28)

где Σ Fвсп – сумма площадей всех вспомогательных помещений, м

Σ Fк. хр – сумма площадей камер хранения овощехранилища, м2

Fобщ= Σ 9 504+360) + Σ (290+360+360+290) = 2164 , м2

Определяют количество строительных прямоугольников:

n=Fобщ / f (3.29)

n= 2164 / 72 = 30

РАСЧЁТ И ПОДБОР ИЗОЛЯЦИИ

Данные для расчета изоляции приводятся в таблице.

Таблица 4.1

--------------------------------------------------
Наименование | № слоя | Материал слоя | Толщина δ, м | Коэффициент теплопроводности, λ, Вт/(м * К) |
---------------------------------------------------------
1 | 2 | 3 | 4 | 5 |
---------------------------------------------------------
Наружная стена | 1 | Штукатурка по мет. сетке | 0,02 | 0,93 |
---------------------------------------------------------
2 | Теплоизоляция ПСБ С | 0,085 | 0,05 |
---------------------------------------------------------
3 | Слой битума с рулонным параизоляц. материалом | 0,005 | 0,47 |
---------------------------------------------------------
4 | Штукатурка цементно-песчаная | 0,02 | 0,93 |
---------------------------------------------------------
5 | Кирпичная кладка | 0,38 | 0,82 |
---------------------------------------------------------
6 | Штукатурка цементно-гладкая | 0,02 | 0,93 |
---------------------------------------------------------
Стена внутренняя | 1 | Штукатурка по мет. Сетке | 0,02 | 0,93 |
---------------------------------------------------------
2 | Пенопласт поливинил Хлор. ПХВ-2 | 0,047 |
---------------------------------------------------------
3 | Дидроизол обрилум | 0,003 | 0,03 |
---------------------------------------------------------
4 | Штукатурка цементно-песчаная | 0,02 | 0,93 |
---------------------------------------------------------
5 | Плиты тепло-изоляциооные из ячеистого бетона | 0,15 | 0,15 |
---------------------------------------------------------
6 | Штукатурка цементно-гладкая | 0,02 | 0,93 |
---------------------------------------------------------
Перегородка | 1 | Штукатурка по мет. Сетке | 2*0,02 | 0,93 |
---------------------------------------------------------
2 | Теплоизоляция полиуритан. Жесткая П9-101 | 0,041 |
---------------------------------------------------------
3 | 3. Битум заменой | 0,003 | 0,18 |
---------------------------------------------------------
4 | Бетон тяжелый (наруж) | 0,15 | 1,6 |
---------------------------------------------------------
Пол с эл/подо-гревом на грунте | 1 | покрытие чистого пола | 0,36 | 0,83 |
---------------------------------------------------------
2 | Бетонная стяжка | 0,4 | 1,6 |
---------------------------------------------------------
3 | Теплоизляция гравий керамзитовый | 0,19 |
---------------------------------------------------------

  |
---------------------------------------------------------

  |
---------------------------------------------------------
4 | Пароизоляция (гидроизоляция ) | 0,004 | 0,31 |
---------------------------------------------------------
5 | Железобетонные плиты (перекр. с электра подогревом) | 0,2 | 2,02 |
---------------------------------------------------------
6 | Бетонная подготовка | 0,1 | 1,2 |
---------------------------------------------------------
7 | Грунт | -- | -- |
---------------------------------------------------------
Бесчердачное покрытие | 1 | Кровельный гидроизоляционный ковер (рубероид) | 0,12 | 0,17 |
---------------------------------------------------------
2 | Бетонная стяжка | 0,4 | 1,6 |
---------------------------------------------------------
3 | Теплоизоляционный слой, шлак гранулированный | 0,19 |
---------------------------------------------------------
4 | Железобетонная плита покрытия. | 0,2 | 2,02 |
--------------------------------------------------------- --------------------------------------------------

--------------------------------------------------
--------------------------------------------------

Продолжение таблицы 4.1

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- --------------------------------------------------

Для уменьшения теплопритоков в охлаждаемые камеры через наружные ограждения, ограждения камер покрывают тепловой изоляцией.

Срок службы холодильника его экономические показатели во многом определяются качеством изоляции.

Для тепловой изоляции применяют материалы органического и не органического происхождения, а так же синтетические.

Для защиты от грызунов поверх изоляции под штукатуркой на высоте 0,7 м от пола прокладывают металлическую сетку с ячейками 10х10 мм с загибом сетки под пол.

Оптимальные значения коэффициентов теплопередачи наружных ограждений даны в таблице 8 , а внутренних в таблице 9, стр99 (1) .

Толщину теплоизоляции определяют по формуле:

δщ = λщ [ 1/k – (1(αн + δ1/ λ1 + δ2/ λ2+ δn/ λn+1/ αв)] ,м (4.1)

где δщ – толщина слоя теплоизоляции, м

λщ – коэффициент теплопроводности теплоизоляционного материала, Вт/(м2* К) (табл. 2.8 (3))

k – коэффициент теплопередачи ограждения Вт/(м2* К) (принимают по табл.8 и 9 (1)).

αн и αвп – коэффициенты теплоотдачи от воздуха к наружной поверхности и от внутренней поверхности ограждения к воздуху камеры, Вт/(м2* К) (по табл.10 (1))

δ1, δ2… δn – толщина слоев строительных материалов, входящих в состав ограждения, м.

λ1 , λ2 …λn – коэффициенты теплопроводности строительных материалов входящих в состав ограждения, Вт /( м3 К) (принимают по таблице 2.8 (3)).

Таблица теплоизоляционного слоя идет в соответствии с ГОСТом: 25мм, 30 мм, 50 мм, 100 мм. Засыпная теплоизоляция идет без ГОСТа в безразмерной величине.

Данные для расчёта толщины изоляционного слоя приводятся в таблице 4.1.

Определяется толщина теплоизоляционного слоя северной и западной наружной стены. Камеры 1 и 2 , так как в этих камерах температура и влажность воздуха одинаковая, то и продукт хранения(картофель) естественно тоже будет один и тот же.

δиз = 0,05 [ 1/0,45 – (1/23,3н + 3*0,02/ 0,93 + 0,005/ 0,47+ 0,38/ 0,82+1/ 9)] = 85 мм

Принимается три теплоизоляционных слоя П-БС толщиной: 2х30 мм и 25 мм.

Так как у камер хранения свеклы (№5, №6) внутренняя перегородка общая то слой теплоизоляции будет располагаться на стороне камер хранения свеклы, так как здесь температура немного ниже, чем в камерах №1 и №2.

Рассчитывается толщина теплоизоляционного слоя восточной перегородки камеры №2. перегородка разделяет эту камеру хранения от коридора.

δиз = 0,041 [1/0.48 – (2*0.02/0.93 + 0.003/0.18+0.15/1.6+1/9)] =75мм

Принимаем 2 теплоизоляционных слоя ПУ-101 толщиной : 50мм и 25 мм.

Определяется толщина изоляционного слоя западной наружной стены камеры №5.

δиз = 0,05 [ 1/0.37 – (1/23.3 + 3*0.02/0.93 + 0.005/0.47 + 0.38/0.82 + 1/9)] = 100 мм.

Принимаем 1 слой теплоизоляцииПС-6С толщиной 100мм.

Определяем толщину слоя теплоизоляции южной внутренней стены камеры №% и №6, так как у этих камер температура и влажность воздуха одинаковые, то продукт хранения (свекла) будет одним и тем же.

δиз =0,047 [ 1/0.39 (3*0.02/0.93 + 0.003/0.03 +0.15/ /0.15+1/9) = 60мм

Принимается 2 слоя теплоизоляции ПХВ-2 толщиной 2*30мм.

Находится толщина теплоизоляционного слоя восточной перегородки камеры №6.

Перегородка разделяет эту камеру хранения от коридора.

δиз = 0,041*[1/0.45-(2*0.02/0.93 + 0.003/0.18 + +0.15/1.6 + 1/9)]= 80мм.

Принимаем 2 слоя теплоизоляции ПУ-101 толщиной 50мм и 30мм.

Определяется толщина теплоизоляционного слоя северной перегородки камеры №5 и №6 , так как в камерах №1 и №2 температура и влажность воздуха одинаковые, значит внутренняя перегородка будет общая.

δиз = 0,041[1/0.58-(2*0.02/0.93+0.003/0.18+0.15/1.6+1/9)]=60мм

Принимаем 2 теплоизоляционного слоя ПУ-101 толщиной 2х30мм.

Определяем толщину теплоизоляционной засыпки пола с эл/подогревом на грунте у камер №1 и №2.

δиз = 0,19[1/0,41-(0,36/0,83+0,4/1,6+,0004/0,31 + 0,2/2,02+ 0,1/1,2+1/9)]= 276мм

Принимается толщину теплоизоляционной засыпки гравия керамзитовая 280мм, так как целое число упрощает засыпки теплоизоляции камер№1 и №2.

δиз = 0,19[1/0.4-(1/23.3+ 0.12/0.17+ 0.4/1.6+ 0.2/2.02+ 1/9)]=250мм

Применяется толщина теплоизоляционной засыпки, шлака гранулированного 250мм.

Определяется Толщина теплоизоляционной засыпки пола с Эл подогревом.

δиз = 0,19[1/0.91-(0.36/0.83+0.4/1.6 +0.004/0.31 + 0.2/2.02+ 0.1/1.2 +1/9)]= 276мм

Принимается толщина теплоизоляционной засыпки гравия керамзитного 280мм так как целое число упрощает засыпку теплоизоляции.

Определяется толщина теплоизоляционной засыпки бес чердачного покрытия у камер №5 и №6.

δиз = 0,19 [1/0.35-(1/23.3+ 0.12/0.17+0.4/1.6+ 0.2/2.02 +1/9)]= 314мм

Принимается толщина теплоизоляционной засыпки шлака гранулированного 320мм, так как целое число упрощает засыпку теплоизоляции.

Для камер №3,№4 и №7,№8 , расчеты аналогичны камерам №1,№2 и №5,№6.

Внутренние ограждения перегородки между камерами №1,№2 и №3,№4 и №5,№6 и №7,№8 состоит из блоков теплоизоляционных материалов, покрытые с обеих сторон цементно-гладкой штукатуркой.

Так как наружная температура воздуха зимой достигает до t= -24 С, а в камерах хранения поддерживается температура примерно от -1 … +3 С, то производится расчет на недопущение конденсации влаги в холодильные камеры, по формуле:

k < 0,95 * αн (tн-tр) / (tн-tв) , Вт/ (м2*К) (4.1)

где αн – коэффициент теплоотдачи с наружной стороны воздуха (αн=23,3);

k = 0.23 ;

tв – температура воздуха с наружи (tв= -24 С);

tр – температура точки росы (tр= -1 С).

k < 0,95 * 23,3 (0-(-1)) / (0-(-24)) = 0,92 Вт/ (м2*К)

0,23< 0,92 – значит конденсации в камерах хранения не будет.

5 ТЕПЛОВОЙ РАСЧЁТ ХОЛОДИЛЬНИКА

Цель теплового расчета охлаждаемых помещений – это определения правильности выбора холодильного оборудования подбираемого на основании теплового расчета, учитывающий все виды теплопритока, которые могут повлиять на изменение температурного режима в камерах.

Холодопроизводительность оборудования определяют тепловым расчетом, который проводят для каждого охлаждающего помещения отдельно.

Теплоприток в каждую камеру Qобщ ,Вт, определяется как сумма отдельных теплопритоков.

Qобщ= Q1+Q2+Q3+Q4+Q5 , Вт (5.1)

где Q1 – теплоприток через ограждения конструкции помещения;

Q2 – теплоприток от продуктов при их холодной обработке;

Q3 - теплоприток от наружного воздуха при вентиляции помещений;

Q4 – теплоприток от различных источников при вентиляции помещений;

Q5 – теплоприток при дыхании овощей.

5.1 Расчет теплопритока 1 через ограждения охлаждающих помещений

Определяется теплоприток Q1 для камер хранения картофеля №1 и №2

Теплоприток Q1 определяется по выражению:

Q1= Q1т + Q1с, Вт (5.2)

где Q1т - теплоприток через ограждения охлаждающих помещение, Вт

Q1с – тепловой приток от солнечной радиации, Вт.

Теплопритоки Q1т и Q1с определяют по формуле:

Q1т = k F (tн-tв) , Вт (5.3)

Q1с = k F▲tс, Вт (5.4)

где k – коэффициент теплопередачи ограждения, Вт/ (м2 *К)

F – площадь теплопередающей поверхности ограждения, м2

tн – наружная расчетная летняя температура воздуха,0С

tв – расчетная температура в камере, 0С

▲tс – Избыточная разность температур характеризующая действие солнечной радиации в летнее время, 0С.

Для камер №1 и №2 определяется Q1т :

а) наружная стена северная (k=0,42 Вт/(м2* К), Fстены=6*24=144,м2 ; tн=270С; tв=+3 , 0С).

Q1т = 0,42*6*24*(27-3)= 1451,5 Вт

б) внутренняя перегородка восточная. Для этого ограждения tн=120С так как температура в коридоре достигает примерно tк=+12,0С

Q1т = 0,48*6,12 (12-3)=311,04 Вт

в) внутренняя перегородка южная. В камерах №5 и №6 температура воздуха немного ниже ( примерно на 30С ), чем температура воздуха в камерах №1 и №2, поэтому теплопритока через внутреннюю перегородку не будет.

г) наружная стена подвержена солнечной радиации, поэтому по таблице 58 (1) ▲tс= 7,2 , 0С, так как стена побеленная известью.

Q1с= 0,42*6*12*7,2= 217,73 Вт

д) пол с электро-подогревом на грунте.

Q1т = 0,41*12*24 (2-3)= 2764,8 Вт

Теплоприток с пола имеет отрицательный знак (тепло-отвод), поэтому теплоприток не учитывается.

е) потолок (беспорядочное покрытие)

Q1т = 0,4*12*24 (27-3) = 2764,8 Вт

Для темного бес чердачного покрытия ▲tс (избыточную разность температуры) принимают 17,7 , 0С

Q1с = 0,4*12*24*17,7 = 2040 Вт

Общая Q1об = Σ Q1т + Σ Q1с, Вт

Для остальных камер теплопритока Q1 , камер №1 и №2, заносим в таблицу 5.11

Q1об = Σ (1451,5+311,04+725,7+2764,8)+ Σ (217,73+2040)= =7,511 кВт

Таблица 5.1

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-С | +3 | 24 | -- | 6 | 144 | 27 | 24 | 0.42 | -- | 1451.5 | -- | 1451.5 |
---------------------------------------------------------
ВП-В | +3 | -- | 12 | 6 | 72 | 12 | 9 | 0,48 | -- | 311,04 | -- |
---------------------------------------------------------
ВП-Ю | Теплоприток Q1т имеет отрицательный знак, поэтому Q1т не будет. |
---------------------------------------------------------
НС-З | +3 | -- | 12 | 6 | 72 | 27 | 24 | 0,42 | 7.2 | 725,7 | 217,7 | 943,4 |
---------------------------------------------------------
Потолок | +3 | 24 | 12 | -- | 288 | 27 | 24 | 0,4 | 17,7 | 2764,8 | 2040 | 4804,8 |
---------------------------------------------------------
Пол | Теплоприток имеет отрицательный знак, поэтому его не будет. |
---------------------------------------------------------
Итого | 7511 |
--------------------------------------------------------- --------------------------------------------------

Определяется теплоприток в табличной форме для камер хранения лука и полученные результаты сводится в таблице 5.2

Таблица 5.2

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-С | 0 | 30 | -- | 6 | 180 | 27 | 27 | 0.42 | -- | 2041,2 | -- | 2041,2 |
---------------------------------------------------------
ВП-В | 0 | -- | 12 | 6 | 72 | 27 | 27 | 0,42 | 6,0 | 816,9 | 181,4 | 998 |
---------------------------------------------------------
ВП-Ю | 0 | 30 | -- | 6 | 180 | 3 | 3 | 0,58 | -- | 313,2 | -- | 313,2 |
---------------------------------------------------------
НС-З | 0 | -- | 12 | 6 | 72 | 12 | 12 | 0,45 | -- | 388,8 | -- | 388,8 |
---------------------------------------------------------
Потолок | 0 | 30 | 12 | -- | 360 | 27 | 27 | 0,35 | 17,7 | 3402 | 2230 | 5632,2 |
---------------------------------------------------------
Пол | 0 | 30 | 12 | -- | 360 | 2 | 2 | 0,41 | -- | 295,2 | -- | 2295,2 |
---------------------------------------------------------
Итого | 9670 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Определяется теплоприток Q1 , для камер хранения свеклы №5 и №6, и полученные результаты сводятся в таблице 5.3.

Таблица 5.3

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-С | 0 | 24 | -- | 6 | 144 | 3 | 3 | 0.58 | -- | 250,56 | -- | 250,56 |
---------------------------------------------------------
ВП-В | 0 | -- | 12 | 6 | 72 | 12 | 12 | 0,45 | -- | 388,8 | -- | 388,8 |
---------------------------------------------------------
ВП-Ю | 0 | 24 | -- | 6 | 144 | 23 | 23 | 0,39 | -- | 1292 | -- | 1292 |
---------------------------------------------------------
НС-З | 0 | -- | 12 | 6 | 72 | 27 | 27 | 0,42 | 7,2 | 816,5 | 217,7 | 1034 |
---------------------------------------------------------
Потолок | 0 | 24 | 12 | -- | 288 | 27 | 27 | 0,35 | 17,7 | 2721,6 | 1784,2 | 4505,8 |
---------------------------------------------------------
Пол | 0 | 24 | 12 | -- | 288 | 2 | 2 | 0,41 | -- | 2361,6 | -- | 236,2 |
---------------------------------------------------------
Итого | 7707,2 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Определяется теплоприток Q1 для камер хранения №5 и №6 , и полученные результаты сводятся в таблицу 5.4.

Таблица 5.4

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-В | +3 | -- | 12 | 6 | 72 | 27 | 24 | 0.42 | 6,0 | 725,76 | 181,4 | 907,2 |
---------------------------------------------------------
ВП-Ю | +3 | 30 | -- | 6 | 180 | 23 | 20 | 0,41 | -- | 1476 | -- | 1476 |
---------------------------------------------------------
ВП-З | +3 | -- | 12 | 6 | 72 | 12 | 9 | 0,48 | -- | 311 | -- | 311 |

  |
---------------------------------------------------------
Потолок | +3 | 30 | 12 | -- | 360 | 27 | 24 | 0,4 | 17,7 | 3456 | 2549 | 6005 |

  |
---------------------------------------------------------
Пол | Теплоприток Q1 имеет отрицательный знак, поэтому его не будет. |
---------------------------------------------------------
Итого | 8700 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

На каждые отдельные камеры хранения определили суммарные теплопритоки через ограждения и полы, поэтому эти теплопритоки относят к нагрузке на камерное оборудование.

Из требуемой литературы сказано, что при расчете овощехранилищ, суммарные теплопритоки с каждой камеры хранения учитывают полностью и на компрессор, и на камерное оборудование

5.2  Определение теплопритока 2 от продуктов при их холодильной обработке

Q2 – определяется в зависимости от суточного поступления продуктов в камеру, вида продукта, температуры поступления и выпуска, а так же времени холодильной обработки:

Q2 = Мпост (iпост – i вып) 106 / (τ *3600) , (5.5)

где Q2 – теплоприток от продуктов при их тепловой обработке, Вт.

Мпост – суточное поступление продуктов в камеру, т. в сутки;

iпост – удельная энтальпия продукта поступающего в камеру при температуре поступления iпост, кДж/кг

i вып – удельная энтальпия продукта выпускаемого из камеры при температуре выпуска i вып, кДж/кг

τ - продолжительность холодильной обработки продукта, ч.

Удельную энтальпию продукта в зависимости от его вида и температуры определяют по приложению 10 или по таблице 3.2 (3).

Определяется Q2 пр для камер хранения картофеля №1 и №2 :

Находится сначала суточное поступление в камеры, если для овощехранилищ Мсут в камеры хранения принимают равным 10% вместимости камер.

Если вместимость камер хранения картофеля равняется Вхр. к = 500т (из раздела 3 «Расчеты площадей»), то:

Мсут=10% *500=0,1* 500= 50 т/сут

Из приложения 10, i (кДж/кг) поступление и выпуска продукты равняется:

I пост = 347,4 кДж/кг, при t пост =20 С

I вып = 284,0 кДж/кг, при пост t вып = 3 С

Продолжить холодную обработку продукта I = 24ч.

Q2обпр = 50(347,4-284,0)106/24 * 3600= 36690 Вт

б) Определяем теплоприток Q2т от тары по выражению:

Q2т = Мт Ст (tпост-tвып)106 / (τ 3600), (5.6)

где Мт – суточное поступление тары, принимаемое пропорционально суточному поступлению продукта, т/сут;

Ст – удельная теплоемкость материала тары, кДж/кг

tпост-tвып – температура тары поступающая и выпускаемая из камеры, 0С

τ – продолжительность холодильной обработки (принимается по продукту), ч. (табл.2.3.1).

Массу деревянных контейнеров (ящиков) для овощей принимают равной 20% от массы овощей.

Суточное поступление тары определяется по формуле:

Мт= Мсут. прод. * 20%, т/сут (5.7)

Мт= 50 *0,2 = 10 т/сут

Q2т = 10*2,3(20-3)106 / (24*3600) = 4525 Вт

Определяется общий теплоприток Q2общ по выражению

Q2 обобщ =Q2пр +Q2т (5.8)

Q2 обобщ = 36690 + 4525 =41215 Вт

Полученный Q2 обобщ относится нагрузкой на камерное оборудование.

Нагрузка на компрессор камеры №1 и №2 берется на 30% меньше Σ Q2об.

Q2об = 41215*0,7 = 28850 Вт

Для остальных камер хранения теплоприток Q2 определяется аналогичным образом, поэтому все результаты расчета плавно переходят в общую таблицу 5.5

Таблица 5.5

--------------------------------------------------

Хол.

камеры

| t 0С |

Mп

т/сут

| i кДж/кг | ▲i кДж/кг |

т/сут

| Q2пр, Вт | Q2т, Вт | Q2 , Вт |
---------------------------------------------------------
пост | вып | КМ | ОБ | КМ | ОБ | КМ | ОБ |
---------------------------------------------------------
№1 №2 | 3 | 50 | 347,4 | 284 | 63,4 | 10 | 25683 | 36690 | 3167,5 | 4525 | 28850 | 41215 |
---------------------------------------------------------
№3 №4 | 0 | 50 | 347,4 | 272 | 75,4 | 10 | 30544 | 43634 | 3724 | 5324 | 34271 | 48958 |
---------------------------------------------------------
№5 №6 | 0 | 50 | 347,4 | 272 | 75,4 | 10 | 30544 | 43634 | 3727 | 5324 | 34271 | 48958 |
---------------------------------------------------------
№7 №8 | 3 | 50 | 347,4 | 284 | 63,4 | 10 | 25683 | 36690 | 3167,5 | 4525 | 28850 | 41215 |
--------------------------------------------------------- --------------------------------------------------

5.3 Определение теплопритока 3 при вентиляции охлаждаемых помещений

Q3 – учитывают для катер хранения некоторых охлаждаемых продуктов (фрукты, овощи и т. д.)

Для камер хранения продуктов Q3 вычисляется по формуле:

Q3 = Vк *а *ρв(iн-iв) 103 / (24*3600), Вт (5.9)

где Vк – объем вентилируемой камеры, м3.

а - кратность воздухообмена в сутки (а=3…5 1/сут для камер хранения )

ρв – плотность воздуха в камере, кг/ , м3

iн-iв – энтальпия наружного воздуха и воздуха в камере.

Определяется Q3 для камеры №1 и №2 если известны следующие данные:

Vк = 1000 , м3 ; а=4 1/сут ; ρв= 1,28кг/ , м3; tв=3 ,0С tн=61 кДж/кг

Q3 = 1000*4*1,28 (61-13,5) 103 / (24*3600) = 2815 Вт

Теплоприток Q3 от наружного воздуха при вентиляции охлаждающих помещений относят одинаково и на компрессор и на камерное оборудование.

Q3об = Q3км = 2815 Вт

ля остальных камер хранения продуктов, теплоприток определяется аналогичным методом, поэтому все результаты расчета сводятся в общую таблицу 5.6

Таблица 5.6

--------------------------------------------------
Хол. камеры | t, 0С |

Vк,

м3

|

а

1/сут

|

iн,

кДж/кг

| iк кДж/кг |

ρ

кг/м3

| Q3, Вт |
---------------------------------------------------------
КМ | ОБ |
---------------------------------------------------------
№1 №2 | 3 | 100 | 4 | 61 | 13,5 | 1,28 | 2815 | 2815 |
---------------------------------------------------------
№3 №4 | 0 | 1315,8 | 4 | 61 | 7 | 1,193 | 4253,3 | 4253,3 |
---------------------------------------------------------
№5 №6 | 0 | 1087 | 4 | 61 | 8,3 | 1,293 | 3430 | 3430 |
---------------------------------------------------------
№7 №8 | 3 | 1390 | 4 | 61 | 13,5 | 1,28 | 3912,6 | 3912,6 |
--------------------------------------------------------- --------------------------------------------------

5.4 Определение эксплуатационного теплопритока 4 ,Вт

Q4 – возникает вследствие освещения камер, нахождения в них людей, работы электрооборудования и открывания дверей. Теплоприток определяют ля каждой камеры и имеющих источников тепловыделений отдельно.

Теплоприток Q4 определяется по выражению:

Q4= q1+q2+q3+q4 ,Вт (5.10)

где q1 – теплоприток от освещения, Вт;

q2 – теплоприток от пребывания людей, Вт;

q3 – теплоприток от работы электрооборудования, Вт;

q4 – теплоприток при открывании дверей в охлажденные помещения, Вт;

Определяется Q4 для камеры №1 и №2

а) определяется теплоприток q1 от освещения :

q1=АF, Вт (5.11)

где А – удельный теплоприток от освещения в единицу времени отнесенной к 1 м2 площади пола, Вт/м2(А=2,3 Вт/ м2 для камер хранения);

F – площадь камеры, м2; 1= 2,3 х 288 = 662 Вт

б) Вычисляется теплоприток q2 от пребывания людей в охлаждаемых помещениях:

q2= 350 n , Вт (5.12)

где 350 – – тепловыделение одного работающего человека, Вт/ чел;

n – число работающих в помещении людей, чел (в камерах №1 и №2 с площадью 200 м2 работают примерно 3 человека).

q2 = 350 х 3 = 1050 Вт

в) Рассчитываем теплоприток q3 от работы электрического оборудования:

q3 = 103ΣNдв х ήi, Вт (5.13)

где ΣNдв – суммарная мощность электрического двигателя оборудования, находящегося в помещении, кВт (для камер хранения овощей = 14)

ήi – КПД=0,75 (при расположении электрооборудования вне охлаждаемого помещения)

q3= 103х14х0,75= 10500 Вт

г) Определяем теплоприток q4 при открывании дверей в охлаждаемые помещения:

q4 = ВF, Вт (5.14)

где В – удельный теплоприток из соседних помещений через открытые двери, отнесенный к 1 м2 площади камеры, Вт/м2 (таблица 60 /1/);

F – площадь камеры, м2

q4 =4х288 = 1152 Вт

Определяется общий теплоприток Q4, который сказывается на камерном оборудовании.

Q4об= 662+1050+10500+1152=13364 Вт

Нагрузка Q4км на компрессор с Q4об – нагрузки на камерное оборудование, берется 25-30%.

Q4км = 25% х Q4об ,Вт (5.15)

Q4км = 0,75х13364=10023 Вт.

Для остальных камер хранения овощей, теплоприток Q 4 определяется другим способом, поэтому все полученные результаты расчета сводится в общую таблицу 5.7

Таблица 5.7.

--------------------------------------------------
Камеры охлаждения |

|

F

м2

| A Вт/ м2 | n чел |

ΣNдв

кВт

| B Вт/ м2 |

q1

Вт

| q2 Вт | q3 Вт | q4 Вт | Q4 Вт |
---------------------------------------------------------
км | об |

  |
---------------------------------------------------------
№1 №2 | 3 | 288 | 2,3 | 3 | 14 | 4 | 662 | 1050 | 10500 | 1152 | 10023 | 13364 |
---------------------------------------------------------
№3 №4 | 0 | 360 | 2,3 | 4 | 14 | 4 | 828 | 1400 | 10500 | 1440 | 10626 | 14168 |
---------------------------------------------------------
№5 №6 | 0 | 288 | 2,3 | 3 | 14 | 4 | 662 | 1050 | 10500 | 1152 | 10023 | 13364 |
---------------------------------------------------------
№7 №8 | 3 | 360 | 2,3 | 4 | 14 | 4 | 828 | 1400 | 10500 | 1440 | 10626 | 14168 |
---------------------------------------------------------
Итого | 41300 | 55064 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

5.5 Определение теплопритока 5, выделяемого овощами при «дыхании» (Вт)

Теплопроводность Q5 определяется по выражению:

Q5 =В (0,1 qпост + 0,9qкм) ,Вт (5.16)

где В – вместимость камеры, т;

qпост, qкм – тепловыделение плодов при температурах поступления и хранения, Вт/т (табл.61/1/), (температура поступления принимается равной 20оС);

0,1 и 0,9 – требуемые постоянные коэффициенты

Определяется Q5 для камеры №1 и №2 , если известно: В=500 т ; qпост=44 Вт/т при t пост =200С (картофель); qхр = 22 при

tхр = 30С то отсюда:

Q5 = 500(0,1*44+0,9*22)= 12100 Вт.

Данный теплоприток Q5 относят полностью при определении тепловой нагрузки на камерное оборудование и на компрессор.

Для остальных камер хранения овощей, теплоприток Q4 определяется аналогично, поэтому все полученные результаты сводятся в общую таблицу 5.8

Таблица 5.8

--------------------------------------------------
Камеры охлаждения |

|

В

т.

| Значен. | Значен. |

Q5

Вт

|

  |
---------------------------------------------------------

| qпост Вт/ т |

tхр

| qхр Вт/ т |

  |
---------------------------------------------------------
км | об |
---------------------------------------------------------
№1 №2 | 3 | 500 | 20 | 44 | 2 | 22 | 12100 | 12100 |

  |
---------------------------------------------------------
№3 №4 | 0 | 500 | 20 | 44 | 0 | 20 | 11200 | 11200 |

  |
---------------------------------------------------------
№5 №6 | 0 | 500 | 20 | 44 | 0 | 20 | 11200 | 11200 |

  |
---------------------------------------------------------
№7 и №8 | 3 | 500 | 20 | 44 | 2 | 22 | 12100 | 12100 |

  |
---------------------------------------------------------
Итого | 46600 | 46600 |

  |

  |
---------------------------------------------------------

  |
--------------------------------------------------------- --------------------------------------------------

5.6 Сводная таблица теплопритоков

Все полученные результаты теплового расчета сводятся в общую таблицу 5.9.

Таблица 5.9

--------------------------------------------------
Камеры охлажден. |

|

Q1,

Вт

| Q2, Вт |

Q3,

Вт

|

Q4,

Вт

|

Q5,

Вт

|

ΣQ,

Вт

|
---------------------------------------------------------
КМ | ОБ | КМ | ОБ | КМ | ОБ |
---------------------------------------------------------
№1 №2 | 3 | 7511 | 28850 | 41215 | 2815 | 10023 | 13364 | 12100 | 61300 | 77005 |
---------------------------------------------------------
№3 №4 | 0 | 9670 | 34271 | 48958 | 4253 | 10626 | 14168 | 11200 | 70020 | 88250 |
---------------------------------------------------------
№5 №6 | 0 | 7707 | 34271 | 48958 | 3430 | 10023 | 13364 | 11200 | 66631 | 84660 |
---------------------------------------------------------
№7 №8 | 3 | 8700 | 28850 | 41215 | 3913 | 10626 | 14168 | 12100 | 64190 | 80096 |
---------------------------------------------------------
Итого | 262141 | 330011 |
--------------------------------------------------------- --------------------------------------------------

пределяется холодопроизводительность компрессоров на каждую температуру кипения хладагента:

Q0км = ρ*ΣQкм / b, Вт (5.17)

где ρ – коэффициент, учитывающий потери в трубопроводах и аппаратах холодильной установки (стр 71 (1));

ΣQкм – суммарная нагрузка на компрессоры для данной температуры кипения, принятая по сводной таблице теплопроводов;

b – коэффициент рабочего времени (на крупных холодильниках b=0,9)

а) Определяется Q0км для камер №1 и №2, если температура кипения хладагента tс, в приборах охлаждения, при непосредственном охлаждении, берется на 7-10 0С ниже температуры воздуха в камере:

t0 = tв – (7….10), 0С (5.18)

t0 = 3-10 = -7, 0С

Q0км = 1,04*61300 / 0,9=71 кВт

б) Вычисляется Q0км для камер №3 и №4 если известно:

ρ =1,04; ΣQкм =70020 кВт ; b=0,9 ; t0 = 0-10=-10 , 0С

Q0км =1.04*70020/ 0.9 = 81 кВт

в) Находится Q0км для камер №5 и №6

t0 = 0-10 = -10, 0С

Q0км =1.04*66631/ 0.9 = 77 кВт

г) Определяется Q0км для камер хранения №7 и №8

t0 = 3-10 = -7, 0С

Q0км =1.04*64190/ 0.9 = 74,2 кВт

бщая сумма ΣQ0км = 71+81+77+74,2= 303,2 кВт.

се значения заносят в таблицу 5.10.

Таблица 5.10

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-С | +3 | 24 | -- | 6 | 144 | 27 | 24 | 0.42 | -- | 1451.5 | -- | 1451.5 |
---------------------------------------------------------
ВП-В | +3 | -- | 12 | 6 | 72 | 12 | 9 | 0,48 | -- | 311,04 | -- |
---------------------------------------------------------
ВП-Ю | Теплоприток Q1т имеет отрицательный знак, поэтому Q1т не будет. |
---------------------------------------------------------
НС-З | +3 | -- | 12 | 6 | 72 | 27 | 24 | 0,42 | 7.2 | 725,7 | 217,7 | 943,4 |
---------------------------------------------------------
Потолок | +3 | 24 | 12 | -- | 288 | 27 | 24 | 0,4 | 17,7 | 2764,8 | 2040 | 4804,8 |
---------------------------------------------------------
Пол | Теплоприток имеет отрицательный знак, поэтому его не будет. |
---------------------------------------------------------
Итого | 7511 |
--------------------------------------------------------- --------------------------------------------------

Определяется теплоприток в табличной форме для камер хранения лука №3 и №4, и полученные результаты сводится в таблице 5.11

Таблице 5.11

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-С | 0 | 30 | -- | 6 | 180 | 27 | 27 | 0.42 | -- | 2041,2 | -- | 2041,2 |
---------------------------------------------------------
ВП-В | 0 | -- | 12 | 6 | 72 | 27 | 27 | 0,42 | 6,0 | 816,9 | 181,4 | 998 |
---------------------------------------------------------
ВП-Ю | 0 | 30 | -- | 6 | 180 | 3 | 3 | 0,58 | -- | 313,2 | -- | 313,2 |
---------------------------------------------------------
НС-З | 0 | -- | 12 | 6 | 72 | 12 | 12 | 0,45 | -- | 388,8 | -- | 388,8 |
---------------------------------------------------------
Потолок | 0 | 30 | 12 | -- | 360 | 27 | 27 | 0,35 | 17,7 | 3402 | 2230 | 5632,2 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Определяется теплоприток Q1 , для камер хранения свеклы №5 и №6 ,и полученные результаты сводятся в таблице5.12.

Таблица 5.12

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-С | 0 | 24 | -- | 6 | 144 | 3 | 3 | 0.58 | -- | 250,56 | -- | 250,56 |
---------------------------------------------------------
ВП-В | 0 | -- | 12 | 6 | 72 | 12 | 12 | 0,45 | -- | 388,8 | -- | 388,8 |
---------------------------------------------------------
ВП-Ю | 0 | 24 | -- | 6 | 144 | 23 | 23 | 0,39 | -- | 1292 | -- | 1292 |
---------------------------------------------------------
НС-З | 0 | -- | 12 | 6 | 72 | 27 | 27 | 0,42 | 7,2 | 816,5 | 217,7 | 1034 |
---------------------------------------------------------
Потолок | 0 | 24 | 12 | -- | 288 | 27 | 27 | 0,35 | 17,7 | 2721,6 | 1784 | 4505,8 |
---------------------------------------------------------
Пол | 0 | 24 | 12 | -- | 288 | 2 | 2 | 0,41 | -- | 2361,6 | -- | 236,2 |
---------------------------------------------------------
Итого | 7707,2 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Определяется теплоприток Q1 для камер хранения №5 и №6 , и полученные результаты сводятся в таблицу 5.13.

Таблица 5.13

--------------------------------------------------
Ограждения |

tв,

| Размеры | F, м2 |

tн,

|

▲t

|

k

Вт

м2К

|

▲tс

|

Q1т

Вт

|

Q1т

Вт

| Q1т Вт |
---------------------------------------------------------
l | B | H |
---------------------------------------------------------
НС-В | +3 | -- | 12 | 6 | 72 | 27 | 24 | 0.42 | 6,0 | 725,76 | 181,4 | 907,2 |
---------------------------------------------------------
ВП-Ю | +3 | 30 | -- | 6 | 180 | 23 | 20 | 0,41 | -- | 1476 | -- | 1476 |
---------------------------------------------------------
ВП-З | +3 | -- | 12 | 6 | 72 | 12 | 9 | 0,48 | -- | 311 | -- | 311 |
---------------------------------------------------------
Потолок | +3 | 30 | 12 | -- | 360 | 27 | 24 | 0,4 | 17,7 | 3456 | 2549 | 6005 |
---------------------------------------------------------
Пол | Теплоприток Q1 имеет отрицательный знак, поэтому его не будет. |
---------------------------------------------------------
Итого | 8700 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

ВЫБОР СИСТЕМЫ ОХЛАЖДЕНИЯ

После определения тепловой нагрузки на компрессор и на камерное оборудование выбираем систему охлаждения камер хранения, наиболее рациональную для данного объекта.

В данном случае проектируется хладоновая (R22), без насосная система. Децентрализованного холодоснабжения с непосредственным охлаждением, при котором хладагент кипит, в приборах охлаждения (ВО), расположенных в камерах. Система охлаждения камер воздушная, с помощью воздухоохладителей, обеспечивается умеренная циркуляция воздуха. Система отвода теплоты конденсации обеспечивается водой из системы оборотного водоснабжения.

На выбор системы охлаждение основное влияние оказывают следующие факторы: число и вид охлаждаемых объектов потребителей холода; расчетная температура в объектах; тепловая нагрузка от охлаждаемого объекта; расчетная суммарная холодонагрузка; требование техники безопасности; наличие серийно выпускного оборудования и приборов автоматики с требовательными характеристиками.

Холодильная установка должна обеспечивать:

- автоматическое регулирование заполнения приборов охлаждения хладагентом или питание хладоносителем;

- защиту компрессоров от влажного хода;

- соответствие холодопроизводительности компрессоров переменным нагрузкам испарительных систем;

- надежное улавливание масла, уносимого из компрессоров и по возможности исключение замасливания теплообменных аппаратов и улавливающих сосудов;

- простоту, надежность и безопасность работы системы.

Децентрализованное холодоснабжение целесообразно применять, где есть возможность установить для каждого охлаждающего объекта автономную, полностью автоматизированную холодильную машину с полной заводской готовностью.

На холодильниках для хранения овощей применяют специальные холодильные машины, укомплектованные. Применения децентрализованного холодоснабжения проявляет сократить сроки монтажа холодильной установки, снизить расходы на их оборудование, исключение: необходимость в устройстве отдельного машинного отделения.

В настоящее время имеется целый ряд специальных холодильных машин, предполагающих применения децентрализованного охлаждения.

7 РАСЧЁТ И ПОДБОР КОМПРЕССОРА

Исходными данными для теплового расчета холодильной машины является:

Нагрузка на компрессор определяется при расчете теплоприемников с учетом потерь в системе, температурный режим работы, вид хладагента.

Так как для камер хранения №1, №2 и камер №7, №8 температура кипения хладагента в приборах охлаждения будет одинаковая (t0 = -7 С), из-за температуры воздуха в камерах. tв=+2..+5 С, то нагрузка на компрессор для этих камер хранения преобразуется в средние значение (с запасом).

Если для камер №1 и №2 Q0км=71 кВт, а для камер №7 и №8 Q0 км= 74,2 кВт, то среднее (с запасом кВт) Q0км= 75 кВт.

7.1 Выбирается рабочий режим одноступенчатой холодильной установки для камеры хранения №1, №2 и №7, №8.

а) Температура кипения хладагента (R22) t0, известна из раздела «Тепловой расчет холодильника» и равна:

t0=tв-(7-10), 0С (7.1)

t0=3-10=-70C

б) Температура конденсации на 3-50С выше температуры воды, отходящей с конденсатора:

tк= tвд2 +(3-5), 0С (7.2)

где – температура воды выходящей из конденсатора равна +290С, т. к. это значение было найдено в разделе «Выбор расчетных параметров».

tк=29+3=320С

в) Температуру всасывания хладагента (R22) выбирается по формуле:

tвс= 15-250С (7.3)

tвс=180С

г) Холодопроизводительность (нагрузка на компрессор)

Q0км = 75 кВт

Режим работы: t0= -100С, tвс=+100С, tк=250С.

Строится цикл одноступенчатой холодильной машины в диаграмме i-lg P и находим параметры нужных точек.

Рисунок убран из работы и доступен только в оригинальном файле.lg, 3 2I 2

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.кПа +32

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.+18

Рисунок убран из работы и доступен только в оригинальном файле. 4 -7 1 1I

Рисунок убран из работы и доступен только в оригинальном файле. i ,

Рисунок убран из работы и доступен только в оригинальном файле. кДж/кг

Рис. 3 Цикл одноступенчатой холодильной машины

Значения параметров всех точек сводятся в таблицу 7.1.

Таблица 7.1

--------------------------------------------------

ρ0,

кПа

|

ρк,

кПа

| i1, кДж/кг | i11, кДж/кг | i2, кДж/кг | i4, кДж/кг | ύ1 м3/кг |
---------------------------------------------------------
395 | 1253 | 601,5 | 719 | 755 | 540 | 0,06 |
---------------------------------------------------------
290 | 1100 | 698 | 716 | 750 | 505 | 0,09 |
--------------------------------------------------------- --------------------------------------------------

Определяется:

1. Удельную массовую холодопроизводительность хладагента, кДж/кг

q0= i1-i4 , (7.1)

q0=601.5-540=61.5 кДж/кг

2. Действительную массу всасывающего пара, кг/с

mg =Q0 / q0 , (7.2)

mg = 75 / 61.5 = 1.22 кг/с

3. Действительную объемную подачу, м/с

Vд = mg *ύ (7.3)

Vд = 1,22 * 0,06 = 0.0732 м2/с

4. Индикаторный коэффициент подачи

λi = ((ρ0 – ▲ρвс ) / ρ0) – (с ((ρк +▲ρн) / ρ0 – (ρ0 - ▲ρв ) / ρ0)) (7.4)

где с=5% - метровое пространство в компрессоре.

λi = (395-5)/395 – 0,05 ((1253+10) / 395 –- (395 – 5) / 395))= 0,877

5. Коэффициент невидимых потерь для непрямоточных компрессоров.

λw1 = T0 / (Тк + 26), (7.5)

где и - температура кипения и конденсации по Кельвину.

λw1 = 266,1 / (305,1 + 26) = 0,8

6. Определяется коэффициент подачи компрессора.

λ = λi*λw1 (7.6)

λ = 0.877 * 0.8 = 0.7

7. Теоретическая объемная подача, м3/с

Vт = Vд / λ (7.7)

Vт = 0.0732 / 0,7 = 0,104 м3/с

8. Удельная объемная холодопроизводительность в рабочих условиях, кДж /м3

qύ = q0 / ύ1 (7.8)

qύ = 61,5 / 0,06 = 1025 кДж /м3

9. Удельная объемная холодопроизводительность в стандартных условиях

qон = 0,98- 505 = 193 кДж /кг

qон = 193 / 0,004 = 2144 кДж /кг

10. Коэффициент подачи компрессора в стандартных условиях

λн = λin * λwн (7.9)

λн = 0.84 * 0.8 = 0.672

11. Номинальная холодопроизводительность, кВт

Qон= Qо (qύн * λн) / (q0 * λ) (7.10)

Qон = 71 (2144*0,672) / (1277,3 * 0,7) = 115,2 кВт

12. Определяется адиабатная мощность, кВт

Na=mg (i2-i11) (7.11)

Na= 1.22 (755-719) = 44 кВт

13. Индикаторный коэффициент полезного действия

ήi= λw1+ bt0 (7.12)

где t0v - температура кипения,

в - эмпирический коэффициент для хладоновых машин и в= 0,0025.

ήi= 0,8 + 0,0025*(-7) = 0,78

14. Индикаторная мощность, кВт.

Ni= Na / ήi (7.13)

Ni= 44 / 0,78 = 56,4 кВт

15. Мощность трения, кВт

Nтр= Vт* ρтр (7.14)

где ρтр - удельное давление трения, кПа (для хладоновых непрямоточных машин = 19 - 34 кПа

Nтр= 0,104 * 30 = 3,12 кВт

16. Эффективная мощность, кВт

Ne= Ni + Nтр (7.15)

Ne=56.4 + 3.12 = 59.52 кВт

17. Мощность на валу дв

Здесь опубликована для ознакомления часть дипломной работы "Расчет холодильника при овощехранилище вместимостью 2000 т". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 540

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>