Дипломная работа на тему "Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан"

ГлавнаяПромышленность, производство → Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан":



Дипломная работа

Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан

Содержание

1. Введение

1.1 Характеристика автомобильной газозаправочной станции сжиженным газом пропан-бутан

1.1.1 Техническое описание

1.2 Характеристика генерального и ситуационного план

1.2.1 Основные технические решения

1.2.2 Техника безопасности

1.2.3 Противопожарные мероприятия

1.3 Нормативн о-правовая база обеспечения пожарной безопасности автомобильной газозаправочной станции

1.4 Пожарно-техническая экспертиза автомобильной газозаправочной станции

1.4.1 Замечания по рабочему проекту

1.5 Задачи дипломного проектирования

2. Моделирование пожарной опасности

Заказать дипломную - rosdiplomnaya.com

Специальный банк готовых защищённых студентами дипломных работ предлагает вам скачать любые работы по нужной вам теме. Безупречное написание дипломных проектов под заказ в Перми и в других городах России.

2.1 Пожароопасные свойства сжиженных углеводородных газов

2.2 Анализ возможных причин разгерметизации технологической системы

2.3 Расчет площади разлива сжиженных углеводородных газов в случае полной разгерметизации технологической системы

2.4 Расчет зоны взрывопожароопасных концентраций при испарении сжиженных углеводородных газов с площади розлива

2.5 Расчет избыточного давления взрыва при сгорании взрывоопасной газовоздушной смеси

2.6 Возможная обстановка при воздействии волн избыточного давления взрыва

2.7 Расчет опасных параметров при возникновении "огненного

шара"

2.8 Возможная обстановка на объекте при воздействии теплового излучения от "огненного шара"

2.9 Расчет тепловых нагрузок при пожаре разлива сжиженных углеводородных газов

2.10 Возможная обстановка на объекте при воздействии теплового излучения при пожаре розлива сжиженных углеводородных газов

3. Разработка противопожарных мероприятий

3.1 Мероприятия по обеспечению пожарной безопасности автомобильной газозаправочной станции

3.2 Анализ технических решений, направленных на совершенствование противопожарной защиты

3.3 Анализ тактико-технических возможностей пожарных подразделений

3.4 Обоснование исходных данных к конструкции сбросной

трубы

3.5 Характеристика состояния окружающей среды и экологического состояния автомобильной газозаправочной станции

3.6 Экономическая оценка эффективности применения

дренчерного орошения резервуара с СУГ

3.7 Гидравлический расчет дренчерной установки охлаждения резервуара с СУГ

Выводы

Литература

1. Введение

Современные тенденции развития автомобилестроения предполагают использование экологически чистых видов топлива. К таким видам топлива относятся и сжиженные углеводородные газы, в дальнейшем СУГ. В качестве топлива широко используется смесь пропан-бутан. В современных условиях топливного кризиса в России СУГ (пропан-бутан) с их низкой себестоимостью способны конкурировать с традиционными видами топлива, такими как бензин и дизельное топливо.

В настоящее время существует два способа хранения СУГ: наземное и подземное. При наземном способе хранения уровень хранимого в резервуаре продукта располагается выше уровня планировочных отметок площадки хранилища, а при подземном – ниже уровня планировочных отметок площадки емкости. Для наземного хранения СУГ применяют резервуары трех основных типов:

1. Работающие под высоким давлением;

2. Полуизотермические;

3. Изотермические.

Металлические наземные резервуары, работающие под высоким давлением, обычно используются для хранения небольших количеств СУГ с упругостью паров, не превышающих 1,8–2 мПа при температуре окружающей среды. При этом газ сжижают компремированием.

В полуизотермических резервуарах режим хранения СУГ поддерживается с помощью регулирования двух параметров – температуры и давления: температура хранимого продукта определяется заданным давлением насыщения, которое выбирается несколько выше атмосферного. Полуизотермический способ используется также при транспортировании СУГ в автомобильных и железнодорожных цистернах, а также в танкерах.

В изотермических резервуарах СУГ хранят под атмосферным давлением при температуре кипения. Сжижение газа, охлаждение его до температуры кипения и поддержание изотермического режима хранения достигается за счет холодильных установок. При выборе оптимальной технологии (способа) хранения СУГ важную роль играют два взаимосвязанных фактора:

-   объем хранилища;

-   скорость его заполнения продуктом.

В каждом конкретном случае выбор того или иного вида хранилища СУГ определяется и другими факторами, среди которых важное место отводится обеспечению взрыво - и пожаробезопасности.

1.1  Характеристика автомобильной газозаправочной станции

сжиженным газом пропан-бутан

Автомобильная газозаправочная станция на три топливо раздаточные колонки, расположена на 29 км Симферопольского шоссе, Московской области. Технологическая схема АГЗС предназначена для заправки баллонов топливной системы грузовых, специальных и легковых транспортных средств сжиженным углеводородным газом (пропан-бутан). Заправка автомобилей осуществляется при помощи газораздаточной колонки, отмеривающей в дм3 количество заправленного в баллон автомобиля газа.

Техническое описание

В состав АГЗС входит:

- один наземный одностенный резервуар, объемом 17,5 м3;

- три топливораздаточные колонки «ADAST», располагаемые на островках безопасности;

- два насоса: один для слива СУГ из автоцистерны в резервуар, второй для заправки газобаллонных автомобилей;

- навес;

- здание операторной (II степени огнестойкости);

- площадка АЦ СУГ;

- газонаполнительный пункт;

- молниеотвод.

Насосный агрегат установлен на несущих стальных рамах и представляют собой компактную эксплуатационную установку.

Станция установлена и заземлена согласно чертежам, предварительно переданным Потребителю.

1.2 Характеристика генерального и ситуационного плана

Строительство автомобильной газозаправочной станции (АГЗС), по адресу: Московская область 29 км Симферопольского шоссе, площадью застройки 0,175 га.

Площадка для АЦ не отгораживается железобетонной стеной. Въезд и выезд на площадку предусматривается раздельный. На въезде и выезде на площадку предусматриваются пандусы.

Наружное противопожарное водоснабжение обеспечивается за счет противопожарных резервуаров объемом 200 м3.

Камера под резервуар - наземное сооружение, высотой h=2,4м выполнено из сборных бетонных фундаментных блоков, покоится на монолитной железобетонной плите. Покрытие камеры - плоские асбестоцементные листы по стяжке из цементно-песчаного раствора. Изнутри свободное пространство камеры с установленным в нее металлическим резервуаром заполняется отфильтрованным песком.

С наружи поверхность блоков камеры отштукатуривается и окрашивается; выполняется декоративное оформление - ограждение из профлиста.

Операторская - отдельно стоящее мобильное здание размерами в плане 3,0x4,0 высотой 2,4м. Каркас здания металлический, из уголковых элементов, обшитый снаружи профильными стальными листами, изнутри - панелитом по внутреннему слою утеплителя (пеноизола).

Навес над раздаточной колонной - сооружение из металлических конструкций размерами в плане на металлических стойках из труб. Фундаменты под трубы - монолитные железобетонные стаканного типа. Покрытие и обрамление навеса - металлочерепица.

В соответствии с рабочим проектом принята следующая технoлогическая схема:

- сжиженный углеводородный газ (СУГ) хранится в емкости (резервуаре) мод. ЦТА-10. Геометрическая вместимость резервуара составляет 17,6 куб. м.; фактическая вместимость цистерны при максимальном коэффициенте заполнения-0,85, составляет-14,96куб. м. Суммарное количество хранимого сжиженного газа составляет-14,96 куб. м;

Для площадки автоцистерны с СУГ, оборудованной отбортовкой, и технологическим колодцем, предусматривается аварийная вентиляция с искусственным побуждением (система В1) с основными и резервными вентиляторами взрывобезопасного исполнения. Запуск и остановка системы предусмотрена как вручную, так и в автоматическом режиме, а также дистанционно из операторской, что отражено в электротехнической части проекта. Для обеспечения равномерной подвижности отсасываемой паровоздушной смеси в любой точке площадки, предусматривается отсос ее через воздуховод равномерного всасывания, который располагается на уровне верхнего края отбортовки. Удаление паровоздушной смеси предусматривается через воздуховод с помощью факельного выброса, что обеспечивает удаление ее на более значительную высоту.

Сеть технологических трубопроводов автомобильной газозаправочной станции позволяет производить прием топлива из автоцистерны и раздачу их через колонки потребителям. От резервуара до газозаправочной колонки предусматривается подземная прокладка газопровода Дц 25x35; Дц 15x2,5 по ГОСТ 1050-88 на глубине 1,6 м. в лотках, на опорах с пролетом 1,5м по резиновым подушкам. Колонка подключена к резервуару посредством труб Дц 53x3,5; 42x3,0 по ГОСТ 50-88. Для защиты подземных газопроводов были применены защитные покрытия усиленного типа по ГОСТ 9.602-89 на основе битумной мастики. Для резервуара также была предусмотрена защита от коррозии, состоящая из покрытия весьма усиленного типа по ГОСТ 9.602-89, на основе битумной мастики.

Проектом предусмотрено по степени надежности электроснабжения АГЗС к III категории. Напряжение сети 380/220 В. Установленная мощность Руст=12,785 кВт. Для распределения электроэнергии на станции принят распределительный пункт ПР 8501-1-292, установленный в операторской. Для заземления электроприемников станции используют нулевые жилы питающих кабелей и внешний контур заземления. Под навесом топливозаправочной устанавливаются светильники ВЗГ/ВЧА-200МС. Для наружного освещения станции применяются светильники РТУ-06-125-002 и РКУ-07-125-001-У1. Подвод питания к светильникам выполнен кабелем АВВГз и ВВГ, прокладываемым в траншее, трубах и по строительным конструкциям.

Заземлением корпусов светильников выполняется присоединением нулевого рабочего провода к винту заземления внутри светильника. Линия электроснабжения выполнена кабелем АВВ-1 сечением 4x25 мм2, проложенным в траншее, защищенным по всей длине глиняным кирпичом.

Молниезащита емкости хранения топлива выполнена стержневым молниеотводом, присоединенным к наружному контуру заземления в соответствии с РД 34.21.122-87. Высота стержневого молниеотвода равна 15м. Молниезащита топливораздаточной колонки осуществляется присоединением ее к наружному контуру заземления. На сооружении защиты газовой емкости предусматривается молниеприемная сетка с шагом ячеек 6x6 м.

Операторская имеет металлическую кровлю, поэтому в качестве молниеприемной сетки должна быть использована сама кровля. Токоотводы от металлической кровли и молниеприемной сетки должны быть соединены с наружным контуром заземления. Сопротивление заземления должно быть не более 4 Ом.

В проекте применен сигнализатор СТМ-10 Смоленского ПО «Аналитприбор». При повышении предельно допустимой концентрации сжиженных углеводородных газов срабатывает световая сигнализация и включаются вытяжные вентиляторы. Датчики газоанализатора устанавливаются в приямке на уровне 50-100 мм. от площадки и в колодце на уровне 50-100мм от дна. Трассы внешних соединений выполнены кабелем КВВГ, АКВВГ, проложенными в операторской открыто по стене с креплением скобами. Автомобильная газозаправочная станция оборудуется пожарной сигнализацией:

- в помещении операторской монтируется прибор ППК.

- извещатели дымовые пожарные ИП 215.

Техника безопасности.

На стационарной автомобильной газозаправочной станции производится заправка баллонов легковых и грузовых автомобилей одорированным сжиженным углеводородным газом, соответствующим ГОCT 20448-92 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления» марок ПТ и СПБТ, пары которого могут образовывать с воздухом взрывоопасные смеси.

Факторы производственных опасностей воздействия на организм человека:

1. Наличие вредных веществ IV-гo класса опасности (пропана, бутана), обладающих наркотическим действием.

2. Обморожение открытых участков кожи при попадании на них углеводородных газов.

Наиболее опасными аварийными ситуациями на АГЗС могут быть:

- разгерметизация гибкого шланга типа АЦТ8М-431-04-36-00 с условным проходом 40 мм и поступление сжиженного углеводородного газа на бетонированную площадку заправочной станции при заполнении баллонов автомобилей из колонки;

- отключение электроэнергии;

- неисправность оборудования:

а) неисправен предохранительный клапан (утечка рабочей среды через соединение золотник-седло клапана, клапан не срабатывает, при повышении давления газа в цистерне выше рабочего);

б) повреждено защитное стекло индикатора уровня и т. д.;

в) нарушение санитарного режима, представляющего опасность для людей и окружающей среды.

Во всех случаях возникновения аварийных ситуаций и образования взрывоопасных смесей должны быть приняты меры по их устранению.

Мероприятия, направленные на обеспечение безопасной эксплуатации АГЗС:

- Автоцистерны со сжиженным углеводородным газом и заправляемые автомобили размещаются на открытых площадках заправочной станции.

- Все электрооборудование и осветительная аппаратура, расположенные в зоне В-1г, имеют взрывозащищенное исполнение, соответствующее категории и группе взрывоопасных смесей.

- Загрязненные маслами песок, снег и промасленная ветошь должны быть собраны в металлический ящик искронедающим совком и периодически вывезены на полигоны промышленных отходов.

- По прибытии на площадку наполнения газобаллонных автомобилей водитель автоцистерны обязан:

а) заглушить двигатель автомобиля - тягача и вынуть ключ из замка зажигания;

б) заземлить автоцистерну и пост управления;

в) убедиться в отсутствии открытого огня;

г) под колеса автоцистерны поставить упор противооткатный.

- Заправка газобаллонных автомобилей должна осуществляться согласно производственной инструкции.

- Количество одновременно заправляемых автомобилей – один, остальные автомобили должны находиться на площадке для стоянки автомобилей, предусмотренной в проекте у въезда, за территорией АГЗС.

- При наполнении баллонов газобаллонных автомобилей на АГЗС должны выполняться требования «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением». Допускается заправка только баллонов газобаллонных автомобилей. Заправка других баллонов, в том числе и бытовых, категорически запрещается.

- Ответственность за техническую исправность баллонов газобаллонных автомобилей и их освидетельствование несет владелец автомобиля.

- Перед заправкой баллонов газобаллонных автомобилей оператор АГЗС обязан проверить в путевом листе водителя наличие штампа и подписи, подтверждающих исправность и пригодность баллонов к наполнению, а так же наличие у водителя удостоверения на право вождения газобаллонных автомобилей.

- Запрещается заправлять СУГ в установленные на автомобилях баллоны, у которых:

а) истек срок периодического освидетельствования, ллоны подлежат освидетельствованию один раз в два года);

б) нет установленных надписей;

в) не исправлены вентили и клапаны;

г) ослаблено крепление баллона;

д) имеются утечки из различных соединений.

Наполнение баллонов автомобилей СУГ разрешается только при выключенном двигателе автомобиля. Включать двигатель разрешается только после отсоединения рукавов и установки заглушки на отключающее устройство.

Въезд на территорию АГЗС и заправка автомобилей, в которых находятся пассажиры, запрещаются. Во время операций по подготовке, заправке и окончания заправки автомобилей запрещается так же пребывание на территории АГЗС посторонних лиц и водителей, ожидающих заправку.

При заправке газобаллонных автомобилей СУГ необходимо соблюдать следующие правила безопасности:

а) не стучать металлическими предметами по арматуре и газопроводам, находящимся под давлением;

б) если двигатель заправленного газом автомобиля при пуске дает перебои (хлопки), его следует немедленно заглушить и откатить автомобиль на расстояние не менее 15м;

в) не подтягивать соединения на баллонах и коммуникациях;

г) не оставлять заправляемые автомобили без надзора;

д) не производить выброс СУГ из баллонов в атмосферу при переполнении;

е) не производить регулировку и ремонт газовой аппаратуры газобаллонных автомобилей на территории АГЗС;

ж) не наполнять автомобильные баллоны более 90% по объему;

з) не заправлять баллоны автомобилей при повышении давления системе автоцистерны выше 1,6 МПа (16кгс/см2);

и) не держать присоединенной наполнительную струбцину к наполнительному вентилю автомобиля, когда заправка его не производится;

к) не буксировать транспортные средства петлей аварийного выталкивания автоцистерны.

Запрещается эксплуатация и въезд автоцистерны на площадку АГЗС если:

- истек срок очередного освидетельствования сосуда (цистерны);

- поврежден корпус или днище сосуда (вмятины, нарушена окраска и так далее);

- отсутствуют установление клейма и надписи;

- отсутствует или неисправна арматура;

- отсутствуют предупредительные надписи;

- отсутствует паспорт на сосуд;

- имеются утечки газа через соединения и арматуру;

- неисправны предохранительные клапаны;

- оборвана цепь заземления;

- заземляющий трос со штырем-струбциной отсутствует или имеет повреждения;

- отсутствуют огнетушители или истек срок их проверки (автоцистерна должна быть укомплектована двумя огнетушителями);

- неисправна резьба на штуцерах и резинотканевых рукавах;

- истек срок испытания резинотканевых рукавов, повреждены поверхность и их заземление;

- неисправно крепление арматуры и трубопроводов;

- поврежден индикатор уровня и КИП;

- повышено давление в сосуде (цистерне) выше 1,6 МПа (16 кгс/см2);

- отсутствует информационная табличка «Системы информации» об опасности, аптечка и знак аварийной остановки.

При наливе автоцистерны на «Базе сжиженного углеводородного газа» объем наливаемого топлива в цистерне не должен превышать 85% объема цистерны.

Противопожарные мероприятия.

Персональная ответственность за обеспечение пожарной безопасности АГЗС возлагается на ее руководителя. Руководитель АГЗС обязан:

а) обеспечить круглосуточную охрану АГЗС;

б) организовать изучение и выполнение правил пожарной безопасности всеми работниками АГЗС;

в) периодически проверять состояние пожарной безопасности, наличие и исправность технических средств борьбы с пожарами.

АГЗС обеспечивается следующими первичными средствами пожаротушения (ПСТ):

1) огнетушитель химически-воздушно-пенный (ОХВП-10) - 2 шт.;

2) ящик с песком (объем 0,5 м3) — 2 шт.;

3) лопата-2 шт.;

4) асбестовое полотно размером 1х2м - 2 шт.

Первичные средства пожаротушения и их количество приняты в соответствии с требованиями:

- «Правил безопасности при эксплуатации газового хозяйства автомобильных заправочных станций сжиженного газа»;

- «Инструкции» по эксплуатации и техническому обслуживанию заправочной автоцистерны для сжиженного газа.

- «Правил пожарной безопасности в Российской Федерации 01-03»

- «Норм пожарной безопасности. Автозаправочные станции. Требование пожарной безопасности. НПБ 111-98*»

Автоцистерна, доставляющая СУГ на площадку АГЗС, должна быть укомплектована двумя огнетушителями.

Первичные средства пожаротушения используются для локализации и ликвидации небольших загораний, а также пожаров в их начальной стадии развития.

Огнетушители должны быть опломбированы и должны иметь исправный раструб. Применять огнетушители без раструбов запрещается.

Огнетушители должны подвергаться наружному осмотру и перезарядке в соответствии с требованиями «Паспорта» на огнетушители.

Огнетушители, отправляемые на перезарядку, должны быть заменены на соответствующее количество заряженных огнетушителей.

При каждом ящике с песком должны находиться две металлические совковые лопаты. Ящики должны плотно закрываться крышками. На ящиках должна быть надпись: «Песок на случай пожара». Песок следует регулярно осматривать. При обнаружении увлажнения или комкования его необходимо просушить и просеять.

На видном месте в помещении пребывания обслуживающего персонала должна быть вывешена инструкция о порядке действия персонала при возникновении пожара и способы оповещения пожарной охраны.

В случае возникновения аварийной ситуации, связанной с разгерметизацией гибкого шланга и поступлении СУГ на бетонированную площадку, рабочим проектом предусмотрено автоматическое включение вентиляторов, срабатывающих от датчиков-сигнализаторов СТМ-10, реагирующих на повышение концентрации сжиженного газа в наиболее низких местах АГЗС:

- приямок бетонированной площадки;

- колодец сбора ливневых стоков с бетонной площадки.

Включение аварийной вентиляции позволяет резко снизить приземную концентрацию газа и не допустить условий возникновения пожара или взрыва. При повышении концентраций газа, кроме включения вентиляторов, включается световая сигнализация, указывающая на необходимость немедленного принятия мер персоналом.

1.3 Нормативн о-правовая база обеспечения пожарной безопасности автомобильной газозаправочной станции

Обеспечение пожарной безопасности автомобильной газозаправочной станции происходит на основе следующих документов:

-   СНиП 21-01-97* Пожарная безопасность зданий и сооружений – М.: ГОСТстрой РФ, 2002.

-   НПБ 105-03 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности». – М.: ГУГПС МЧС РФ, 2003 г.

-   ГОСТ 12.1.004-91. Пожарная безопасность. Общие требования. – М.: Госстандарт России, 1991 г.

-   НПБ 111-98* «Автозаправочные станции. Требования пожарной безопасности». ГУГПС МЧС РФ, 2002 г.

-   Рекомендации по обеспечению пожарной безопасности объектов нефтепродуктообеспечения расположенных на селитебной территории: М., ВНИИПО МВД РФ, 1997 г.

-   Правила безопасности при эксплуатации газового хозяйства автомобильных заправочных станций сжиженного газа. Госгортехнадзор России. – М.: НПО ОБТ, 2001. - 220 с.

-   Обеспечение пожарной безопасности объектов хранения и переработки СУГ: Рекомендации. – М.: ВНИИПО, 1999. – 78 с.

-   ППБ 01-03 Правила пожарной безопасности в Российской Федерации. – М.: 2003;

-   Правила устройства электроустановок. – М.: Энергоатомиздат, 1985;

-   ГОСТ Р 12.3.047-98 Пожарная безопасность технологических процессов. Общие требования. Методы контроля. – М.: 1998.

1.4 Пожарно-техническая экспертиза газовой

автозаправочной станции

Противопожарная защита автомобильной газозаправочной станции сжиженного пропан - бутана, предусматривает 2 вида защиты: пассивная противопожарная защита и активная пожарная защита.

Пассивная пожарная защита включает в себя следующие мероприятия. Размещение оборудования на площадке выполнено с соблюдением противопожарных норм относительно друг друга и относительно окружающих зданий и сооружений.

Предусмотрена защита от статического электричества автоцистерны, заземляющим контуром.

Конструкция резервуаров АЦ снабжена КИПиА и предохранительными клапанами, позволяющими избежать переполнения резервуара СУГ и повышения давления, выше допустимого.

Электрооборудование выполняется во взрывозащищенном исполнении.

Активная пожарная защита состоит из средств обнаружения утечки сжиженного газа; средств предотвращающих образование взрывоопасной концентрации парового облака СУГ при аварийном проливе СУГ и средств локализации и тушения пожара при воспламенении пролитого сжиженного газа.

В табл. 1 приведены фактические расстояния от АГЗС с подземным одностенным резервуарам до объектов, к ней не относящихся.

Таблица 1

--------------------------------------------------
№ п/п | Наименование объектов, до которых определяется расстояние | Фактическое | Требу-емое | Вывод |
---------------------------------------------------------
1 | 2 | 3 | 4 | 5 |
---------------------------------------------------------
1 |

Производственные, складские и административно-бытовые здания и сооружения промышленных предприятий:

- от площадки для АЦ

- от стенки резервуаров с СУГ

- от корпуса ТРК

- ПНБ

|

73

83

68

58

|

80

80

80

80

|

Не соответствует

Соответствует

Не соответствует

Не соответствует

|
---------------------------------------------------------
2 |

Лесные массивы:

- хвойных и смешанных пород

- лиственных пород

|

отсутствует

отсутствует

|

60

40

|

Соответствует

Соответствует

|
---------------------------------------------------------
3 |

Жилые и общественные

здания:

- от площадки для АЦ

- от стенки резервуаров с СУГ

- от корпуса ТРК

- ПНБ

|

80

90

75

70

|

100

100

100

100

|

Не соответствует

Не соответствует

Не соответствует

Не соответствует

|
---------------------------------------------------------
4 | Места массового пребывания людей | отсутствует | 100 | Соответствует |
---------------------------------------------------------
5 | Индивидуальные гаражи и открытые стоянки для автомобилей | отсутствует | 50 | Соответствует |
---------------------------------------------------------
6 | Торговые киоски | отсутствует | 60 | Соответствует |
---------------------------------------------------------
7 |

Автомобильные дороги общей сети (край проезжей части):

-I, II, III категории:

- от площадки для АЦ

- от стенки резервуаров с СУГ

- от корпуса ТРК

- ПНБ

|

20,5

30

14,5

15

|

50

50

50

50

|

Не соответствует

Не соответствует

Не соответствует

Не соответствует

|
---------------------------------------------------------
-IV, V категории | отсутствует | 30 | Соответствует |
---------------------------------------------------------
Маршруты электрифицированного городского транспорта | отсутствует | 50 | Соответствует |
---------------------------------------------------------
8 |

Железные дороги общей сети

(до подошвы насыпи)

| отсутствует | 80 | Соответствует |
---------------------------------------------------------
9 | Очистные канализационные сооружения и насосные станции не относящиеся к АЗС | отсутствует | 100 | Соответствует |
---------------------------------------------------------
10 |

Технологические установки категорий Ан, Бн, Гн, здания и сооружения с наличием радиоактивных и вредных веществ I и II классов опасности по ГОСТ 12.1.007-76*

| отсутствует | 100 | Соответствует |
---------------------------------------------------------
11 | Линии электропередач, электроподстанции (в том числе трансформаторные подстанции) | отсутствует | по ПУЭ | Соответствует |
---------------------------------------------------------
12 | Склады лесных материалов, торфа, волокнистых горючих веществ, сена, соломы, а также участки открытого залегания торфа | отсутствует | 50 | Соответствует |
--------------------------------------------------------- --------------------------------------------------

Экспертиза расстояний между зданиями и сооружениями на территории автомобильной газозаправочной станции №2 (29 км) представлена в табл. 2.

Таблица 2

--------------------------------------------------
№ п\п |

Что проверяется

Расстояния между зданиями и сооружениями на АГЗС.

|

Предусмотрено в проекте

(фактическое)

|

Требуется по нормам

(требуемое)

|

Вывод

|
---------------------------------------------------------
1. | Операторная – ТРК СУГ | 13 | 9 | соответствует |
---------------------------------------------------------
2. | Операторная – резервуар СУГ | 35 | 9 | соответствует |
---------------------------------------------------------
3. | ТРК – резервуар | 20 | 20 | соответствует |
---------------------------------------------------------
4. | Площадка АЦ – операторная | 35 | 9 | соответствует |
---------------------------------------------------------
5. | Площадка АЦ – ТРК | 20 | 20 | соответствует |
---------------------------------------------------------
6. | Площадка АЦ – резервуар | 1,5 | Не нормируется | соответствует |
--------------------------------------------------------- --------------------------------------------------

Результаты пожарно-технической экспертизы приведены в табл. 3.

Таблица 3

--------------------------------------------------

п/п

| Подлежит проверке | Решения, принятые проектом | Решения, установленные нормативными документами | Вывод о соответствии требованиям норм |
---------------------------------------------------------
1 | Планировка АЗС | Планировка территории АЗС исключает возможности растекания аварийных проливов топлива | Планировка АЗС должна исключать возможность растекания аварийного пролива как по территории АЗС, так и за ее пределы (п.9 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
2 | Дренажные лотки | На въезде и выезде с территории АЗС имеются дренажные лотки | На въезде и выезде с территории АЗС необходимо выполнять пологие повышенные участки высотой не менее 0,2 м или дренажные лотки (п. 9 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
3 | Ограждение АЗС | Решетка стальная, столбы железобетонные | Ограждение АЗС должно быть продуваемым и выполнено из негорючих материалов (п.3. прил.6 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
4 | Движение по территории АЗС транспортных средств | Предусмотрен раздельный въезд и выезд транспортных средств, движение предусмотрено одностороннее по наиболее короткому пути | Движение транспортных средств по территории АЗС должно быть, как правило, односторонним. При этом должен быть предусмотрен раздельный въезд и выезд (п.17 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
5 | Озеленение территории | Предусматривается озеленение территории. Номенклатура посадочного материала определяется при привязке площадки АЗС к конкретному участку с учетом п.18 НПБ 111-98* | Озеленение территории АЗС кустарниками и деревьями, выделяющими при цветении хлопья, волокнистые вещества или опушенные семена не допускается (п.18 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
6 | Размещение на территории АЗС зданий | На территории АЗС имеются здания операторной и пункт заправки бытовых баллонов | На территории АЗС могут размещаться служебные и бытовые здания для персонала АЗС, а также допускается размещать здания для сервисного обслуживания транспортных средств (п. 20* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
7 | Размещение помещений категорий А и Б | На территории АЗС отсутствуют помещения категорий А и Б | На территории АЗС не допускается размещение помещений категории А и Б (за исключением помещений для перекачивания сжиженного углеводородного газа, которое относится к технологической системе АЗС (п.21* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
8 | Помещения для проведения огневых и сварочных работ. | В зданиях АЗС не предусматриваются огневые и сварочные работы при эксплуатации | В зданиях АЗС запрещается предусматривать помещения для проведения огневых и сварочных работ (п.27 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
9 | Покрытие территории АЗС | Покрытие проездов, заправочных островков и площадок для АЦ выполнено из асфальтобетона и монолитного цементобетона. | Покрытие проездов, заправочных островков и площадок для АЦ должно быть стойким к воздействию нефтепродуктов (п. 33 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
10 | Расположение транспортных средств | Стоянки для автомобилей на территории АГЗС нет | Расположение транспортных средств на площадке для их стоянки не должно препятствовать свободному выезду транспортных средств с ее территории (п.36 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
11 | Воздушные линии электропередач | Воздушные линии электропередач на АЗС не предусмотрены | Предусматривать на АЗС воздушные линии электропередач не допускается (п.42 НПБ 111-98*) | Соответствует |
---------------------------------------------------------
12 | Помещения для технического обслуживания автомобилей | Пункта техобслуживания автомобилей на АГЗС нет. | Помещения для техобслуживания и мойки автомобилей, работающих на сжиженном или сжатом газе, должен предусматриваться в отдельном стоящем здании (п.9 прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
13 | Площадка для АЦ с СУГ | Площадка для АЦ с СУГ имеет отбортовку высотой 150 мм и имеет покрытие из монолитного цементобетона. Предусмотрена наружная система вытяжки паров СУГ с факельным выбросам на высоту 3 м от уровня площадки с автоматическими пуском от датчиков газосигнализаторов. | Площадка должна быть оснащена таким образом, чтобы предотвратить растекание жидкой фазы за ее пределы с помощью отбортовки высотой не менее 150 мм; материал площадки должен исключать проникновение СУГ и его паров; должна быть наружная система отсоса паров СУГ с автоматическим запуском от датчиков газосигнализаторов, а остановка от пожарных извещателей (п. 14* прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
14 | Расстояние от планировочной отметки до резервуара с СУГ | Резервуары с СУГ расположены на глубине 0,5 м от планировочной отметки | Резервуары для хранения СУГ должны располагаться подземно с обеспечением толщины засыпки грунтом не менее 0,5 м (п. 20.1* прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
15 | Вместимость резервуаров для СУГ |

Единичная – 17,5 м3 полезная вместимость резервуара – 14,8 м3,при степени заполнении 85 %

|

На АЗС, расположенных в черте населенных пунктов, общая вместимость резервуаров для СУГ не должна превышать 20 м3, единичная 10 м3 (п. 20.1* прил. 6* НПБ 111-98*)

| Не соответствует |
---------------------------------------------------------
16 | Трубопроводы с СУГ, проходящие в зоне возможного присутствия людей | Трубопроводы с СУГ и их паров в зоне возможного присутствия (пребывания) людей расположены подземно, с автоблокировкой подачи СУГ и его паров в разгерметизированный участок трубопровода и его перекрытием, с прекращением всех операций на всех участках АЗС | Трубопроводы СУГ и его паров, проходящие в зоне возможного присутствия водителей и пассажиров должны быть размещены подземно с возможностью безопасного перекрытия любой вероятной утечки СУГ или его паров в окружающую среду (п. 20.3* прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
17 | Допустимый уровень заполнения резервуаров СУГ | Автоматическая система (манометр, датчик измерения уровня типа ИСУ) при достижении 85%-ой степени заполнения резервуара блокирует работу насоса. | Резервуары для хранения СУГ должны быть оснащены системой автоматического предотвращения предельного допустимого уровня их заполнения (85% их геомет. объема) (п. 20.8* прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
18 | Наполнение резервуаров СУГ | Резервуары СУГ заполняются только из АЦ и оснащены линией для их аварийного опорожнения в АЦ. | Наполнение резервуаров СУГ должно быть предусмотрено только из АЦ, эти резервуары должны быть оснащены линией их аварийного опорожнения в АЦ (п. 20.8* прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
19 | Контроль довзрывоопасных концентраций паров СУГ | Контроль концентраций паров СУГ в технологическом блоке, в шахтах резервуаров, на площадке приема СУГ, у ТРК осуществляется газоанализаторами с автоблокировкой работы АЗС при достижении 10% от НКПР по парам СУГ. | Технологические колодцы с оборудованием для СУГ, шахты резервуаров, площадок для АЦ с СУГ и заправочные островки должны быть оборудованы сигнализаторами довзрывоопасных концентраций с автоблокировкой прекращения операций на АЗС (п. 20.9 прил. 6* НПБ 111-98*) | Соответствует |
---------------------------------------------------------
20 | Предотвращение поступление паров СУГ из трубопроводов в атмосферу | На линиях паровой и жидкой фаз СУГ в непосредственной близости от места их соединения с АЦ и ТРК имеются шаровые краны. | На трубопроводах ТС для паровой и жидкой среды СУГ в непосредственной близости от места их соединения с рукавами СУГ и заправочным устройством транспортных средств следует предусматриваться запорное устройство (п. 20.11* прил.6* НПБ 111-98*) | Соответствует |
--------------------------------------------------------- --------------------------------------------------

ВЫВОД:

1) Экспертиза генерального плана рассматриваемой автомобильной газозаправочной станции нарушений и отступлений от требований норм пожарной безопасности не выявила.

2) Экспертиза технологической части рассматриваемой автомобильной газозаправочной станции выявила следующие отступления от требований норм пожарной безопасности:

-   единичная вместимость резервуара для СУГ превышает нормативный уровень 14,8 м3, в место положенного объема 10 м3.

3) Экспертиза расположение АГЗС в ситуационном плане выявила следующие отступления от требований норм пожарной безопасности:

-   не соответствуют минимальные расстояния от границы АГЗС до автомобильной дороги (фактическое минимальное расстояние составляет 14,5 м требуемое по НПБ 111-98* - 50 м);

-   не соответствуют минимальные расстояния от границы АГЗС до производственного здания (фактическое минимальное расстояние составляет 65 м требуемое по НПБ 111-98* - 80 м);

-   не соответствуют минимальные расстояния от границы АГЗС до жилого здания (фактическое минимальное расстояние составляет 75 м требуемое по НПБ 111-98* - 100 м). Таким образом, для приведения проектируемой АГЗС к требуемому уровню пожарной безопасности, необходимо разработать дополнительные мероприятия позволяющие компенсировать несоответствия минимальные расстояния и разместить технологическое оборудование АГЗС на отведенных площадях застройки.

1.5 Задачи дипломного проектирования

Целью данного дипломного проекта является:

- рассмотрение возможных аварийных ситуаций при эксплуатации автомобильной газозаправочной станции;

- анализ пожарной опасности технологического процесса;

- выработка противопожарных мероприятий позволяющих эксплуатировать АГЗС на отведенных площадях застройки.

2. Моделирование пожарной опасности

Специфика всякой аварии современного промышленного взрыво - и пожароопасного объекта представляется в обязательном прохождении ее некоторых характерных фаз:

Фаза инициирования аварии

В этот период установки переходит в нестабильное (предаварийное) состояние и вводится фактор неустойчивости. Такую ситуацию можно интерпретировать как наличие у установки "болевой точки", для которой незначительное отклонение от нормального режима эксплуатации способно вызвать крупную аварию и сопутствующие ей колоссальные разрушительные эффекты. Она наименее определена для новых установок и новых технологий - там, где полностью отсутствует опыт эксплуатации, и нет фактических данных о безопасности, т. е. отсутствует нормативная база для проектирования. На этой фазе существенно влияние человеческого фактора. Обстоятельный анализ статистических данных показывает, что свыше 60% аварий происходит из-за ошибок персонала, т. е. тоже отсутствует нормативная база, регламентирующая вопросы взрыво - и пожаробезопасности при эксплуатации технологического оборудования. Следовательно, основным фактором опасности является неконтролируемый выход продукта из оборудования.

Как показывают статистика и приведенные примеры, аварии возникают в основном при вводе в эксплуатацию и ремонте систем транспорта и хранения СУГ, а также вследствие не изученности причин резкого повышения давления в изотермических резервуарах.

Фаза развития аварии

Этот период характеризуется самопроизвольным выходом продукта и его разливом, процессом испарения, образованием облака взрывоопасных концентраций, контактом облака с источником зажигания. При этом в зависимости от массы испарившегося продукта развитие аварии может носить цепной характер, когда разрушительное действие инициирующего события многократно (иногда в сотни раз) усиливается вследствие вовлечения в процесс энергонасыщенных компонентов технологии. Для современных малоизученных технологий характерна неконтролируемость опасности как штатными системами обеспечения безопасности самого предприятия, так и специальными силами по борьбе с авариями и чрезвычайными ситуациями. Эта особенность объясняет во многом автономный характер протекания аварии, когда темп нарастания событий (темп выделения энергии, опасности) превышает штатные ила специально привлекаемые для нейтрализации разрушительных процессов возможности.

Большинство крупных аварий обусловлено воспламенением газовоздушной смеси, образующейся при утечке сжиженного газа. Если она длится продолжительное время, то создается бассейн испарения сжиженного газа, который может быть причиной взрыва и большого пожара.

Фаза выхода аварии за промышленное предприятие

В современных условиях высокой концентрации объектов, близкого соседства различных зданий и сооружений разрушительное действие аварии при выходе за территорию объекта вовлекает дополнительные опасности для других объектов в ходе процесса и увеличивает масштаб катастрофы. Если же при этом затрагивается население, то авария становится событием социальным и политическим.

Понимание специфики аварий, знание их особенностей и закономерностей позволяют выявить существо возникающих проблем. Для современного состояния проблемы взрыве - и пожаробезопасности характерна ограниченность знаний как в области дефектов и отклонений, накапливаемых под действием технологических нагрузок и способных вызвать аварийную ситуацию, так и в области их поведения под действием воздушных ударных волн, теплового излучения и других поражающих факторов, появляющихся в условиях аварий.

Для обеспечения безопасности необходимо выявление качественных и количественных закономерностей при исследовании взрыво - и пожароопасное™ технологии хранения СУГ.

На рисунке 1 представлены возможные варианты развития взрыво - и пожароопасных ситуаций.

2.1 Пожароопасные свойства сжиженных углеводородных газов

Сжиженные углеводородные газы получают из нефти или природного газа. Они обладают высокой плотностью паров, примерно в 1,5-2 раза превышающей плотность воздуха. Низкая температура кипения (пропан: Ткип = -42,06°С, бутан: Ткип = -0,5°С) не позволяет газам в нормальных условиях находиться в жидком состоянии, и они быстро испаряются.

Сжиженные газы обладают высоким коэффициентом объемного расширения, например, в 3,5 раза больше чем у керосина, поэтому при нагревании возможно быстрое повышение давления внутри резервуара и его разрыв. Вследствии высокой плотности и значительной диффузии газы стелятся по земле и могут в безветренную погоду в открытом пространстве локальные взрывоопасные концентрации. Большая скорость испарения СУГ и низкие концентрационные пределы распространения пламени (пропан: НКПР = 2,3%, ВКПР = 9,4%, бутан: НКПР=1,8%, ВКПР = 9,1%) обуславливают быстрый рост взрывоопасных концентраций в значительных объемах. Так, из одного литра бутана при t = -4°С с площади 1 м2 может образоваться взрывоопасная концентрация в течение 1,5 мин в объеме до 13 м2.

Основными компонентами автомобильного газового топлива являются пропан и бутан. Они обладают способностью растворять жир, масло, краску, разрушать резину. Поэтому уплотнения в магистралях низкого давления выполнены из бензо - и маслостойкой резины или синтетических материалов. На автомобильные газозаправочные станции поставляют летнюю и зимнюю смеси газов с различным содержанием пропана и бутана. В летний период 50±10% пропана, в зимний период 90±10%. Уменьшение количества пропана и увеличение бутана в летний период необходимо для ограничения роста давления в емкостях при положительных температурах окружающей среды. И, наоборот, в зимней смеси пропана больше чем бутана для сохранения необходимого давления и надежной работы технологической системы.

2.2 Анализ возможных причин разгерметизации технологической системы

Необходимым условием обеспечения эффективной и безопасной эксплуатации технологического оборудования является его прочность, под которой понимают способность конструкции воспринимать усилия рабочих нагрузок, не разрушаясь и не образуя пластических деформаций сверх установленных величин.

Наблюдаемые на практике повреждения технологического оборудования происходят:

- в результате недостатков конструктивного характера (неправильный расчет, неудачный выбор материала) и дефектов изготовления (скрытые внутренние дефекты материала, некачественная подгонка и сварка);

- нарушения принятых режимов работы;

- отсутствие или неисправность средств защиты от перегрузок;

- некачественного технического обслуживания и ремонта.

Возможны следующие основные комбинации нарушений, в результате которых возникают повреждения технологического оборудования:

- превышение расчетных нагрузок при сохранении расчетной прочности оборудования;

- снижение расчетной прочности оборудования при сохранении расчетных нагрузок;

- одновременное нарушение расчетных нагрузок и расчетной прочности.

Причины повреждений технологического оборудования принято классифицировать следующим образом:

- повреждение в результате механических воздействий;

- повреждение в результате температурных воздействий;

- повреждение в результате химических воздействий.

2.2.1 Разгерметизация в результате механических воздействий

Под механическими воздействиями обычно понимают такие воздействия, которые возникают в результате превышения расчетных нагрузок на оборудовании при сохранении его расчетной прочности. Наиболее характерным механическим воздействием является чрезмерное внутреннее давление, возникающее в аппарате при переполнении его СУГ. Такое явление может иметь место:

- при нарушении технологического режима;

- внешнее воздействие;

- при неисправности контрольно-измерительных приборов и защит ной автоматики.

2.2.2 Разгерметизация в результате температурных воздействий

Повреждение технологического оборудования может произойти в результате:

- образования не предусмотренных расчетом температурных перенапряжений в материале стенок резервуара и трубопроводов;

- ухудшений механических характеристик материалов при низких или высоких температурах.

2.2.3 Разгерметизация в результате химических воздействий

Обращающаяся в технологическом процессе вещества (СУГ) и окружающая среда вступают в химическое взаимодействие с материалами, из которых изготовлено технологическое оборудование, вызывая его разрушение (коррозию). Разрушающему действию коррозии наиболее подвержены слабые места оборудования:

- швы;

- разъемные соединения;

- прокладки;

- места изгибов и поворотов труб.

2.3 Расчет площади розлива сжиженных углеводородных газов в случае полной разгерметизации технологической системы

2.3.1 Определение показателей, характеризующих

пожарную опасность аварийного розлива СУГ

Основными показателями, характеризующими пожарную опасность аварийного разлива СУГ, являются: площадь или зона разлива; коэффициент разлива, радиус зоны разлива; толщина слоя разлившейся жидкости.

Установлено, что площадь разлива жидкости Fж по поверхности твердых тел прямо пропорциональна объему разлившейся жидкости Vж:

Fж = ƒ Vж.

Коэффициент пропорциональности f в уравнении назван коэффициентом разлива жидкости. В СИ коэффициент разлива выражается в м2/м3 или м-1 и показывает значение площади разлива единицы объема данной жидкости.

Остальные показатели пожарной опасности аварийного разлива пожароопасной жидкости можно определить исходя из площади разлива.

Площадь разлива жидкости характеризуют диаметром или радиусом круга, эквивалентного (по площади) разлившейся жидкости. Такой параметр можно найти, приняв площадь разлива к площади круга и вычислив из этого равенства радиус.

Кроме того, важна толщина слоя разлившейся жидкости δж, которую определяют по формуле:

δж = 1/ƒ.

Значение коэффициента разлива пожароопасной жидкости определяется в соответствии с НПБ 107-97 «Определение категорий наружных установок по пожарной опасности», а именно:

Рисунок убран из работы и доступен только в оригинальном файле.f=150, если содержание (по массе) растворителей составляет >70%;

f=100, если содержание (по массе) растворителей составляет ≤70%.

Fж=150·17,5=2625 м2.

При крупномасштабных авариях, например, связанных с полным разрушением наземных вертикальных стальных резервуаров («Рекомендации по обеспечению пожарной безопасности объектов нефтепродуктообеспечения, расположенных на селитебной территории»), коэффициент разлива или вернее уже затопления определяют исходя из расположения наземного резервуара на местности:

Рисунок убран из работы и доступен только в оригинальном файле.

f=12 – при расположении на возвышенности;

f=5 – при расположении на поверхности, имеющей уклон, благоприятствующий разливу жидкости, но не более 1%.

Приведенную форму разлива жидкости при расположении резервуара в низине или на ровной поверхности (с уклоном до 1%) – в виде круга с радиусом:

Rж=Рисунок убран из работы и доступен только в оригинальном файле.; Рисунок убран из работы и доступен только в оригинальном файле.

Допускается определять показатели, характеризующие пожарную опасность разлива пожароопасных жидкостей, по материалам реальных аварий при адекватности анализируемых ситуаций или в лабораторных условиях.

2.4 Расчет зоны взрывоопасных концентраций при испарении сжиженных углеводородных газов с площади разлива.

Основные положения

При функционировании технологического процесса возможны два варианта образования зон взрывоопасных концентраций на открытой технологической установке:

- эксплуатационные взрывоопасные зоны, образующиеся при нормальном функционировании технологического аппарата;

- аварийные взрывоопасные зоны, образующиеся в результате неконтролируемого поступления СУГ наружу из технологического аппарата.

2.4.1 Основы классификации взрывоопасных зон при нормальном функционировании технологического процесса

Размеры эксплуатационных взрывоопасных зон регламентированы «Правилами устройства электроустановок» (ПУЭ). Такие зоны принято классифицировать как взрывоопасные класса В-Iг у наружных установок. Взрывоопасные зоны у наружных установок ограничиваются по горизонтали и вертикали следующими размерами:

- 3м – от закрытых технологических аппаратов, содержащих горючие газы и ЛВЖ;

- 5м – от места выброса взрывоопасных и горючих веществ из предохранительных и дыхательных клапанов;

- 8м – от резервуаров с ЛВЖ газгольдеров, а при наличии обвалования – в пределах всей площади внутри обвалования;

- 20м – от мест открытого слива и налива ЛВЖ на эстакадах.

2.4.2 Определение размеров взрывоопасных зон при аварийном розливе СУГ на открытой площадке

При аварийном разливе СУГ взрывоопасные концентрации образуются только в том случае если,

tр>tвсп ;

где tр – температура СУГ, 0С; tвсп – температура вспышки, 0С.

В нормативных документах по пожарной безопасности имеются два метода расчета размеров зон взрывоопасных паровоздушных смесей при испарении жидкости с поверхности разлива.

Первый метод, включенный в «Рекомендации по обеспечению пожар ной безопасности объектов нефтепродуктообеспечения, расположенных на селитебной территории», основан на проведенных исследованиях по изучению закономерностей распределения вредных веществ при кратковременном выделении из наземных источников в Главной геофизической обсерватории России.

Расчетная формула, заимствованная из работы В. М. Эльтермана "Охрана воздушной среды на химических и нефтехимических предприятиях" (М.: Химия, 1985), имеет вид:

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле.м.

где Rзвк - горизонтальный размер зоны от границы источника испарения, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени, м; А - константа, равная 0,17 м-1; mп – масса паров, испарившаяся с открытой поверхности разлива, кг; φнп - нижний концентрационный предел распространения пламени, кгм-3.

Связь между нижним концентрационным пределом распространения пламени, выраженным в кг·м-3 (φнп), нижним концентрационным пределом распространения пламени, выраженным в % объемных (φнп) описывается следующей формулой:

Рисунок убран из работы и доступен только в оригинальном файле.; Рисунок убран из работы и доступен только в оригинальном файле.кг·м-3

где М - молекулярная масса, кг·кмоль-1, Vt - мольный объем, равный при нормальных условиях 22,4 м3 ·кмоль-1.

Второй метод расчета горизонтальных размеров зон, ограничивающих газо - паровоздушные смеси с концентрацией горючего выше нижнего концентрационного предела распространения пламени, при аварийном поступлении горючих газов и паров не нагретых легковоспламеняющихся жидкостей в открытое пространство изложен в НПБ 105-03.

Размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (φнп), вычисляют по формулам:

для горючих газов (ГГ)

• радиус зоны:

Рисунок убран из работы и доступен только в оригинальном файле.; Рисунок убран из работы и доступен только в оригинальном файле.

• высота зоны:

Рисунок убран из работы и доступен только в оригинальном файле.; Рисунок убран из работы и доступен только в оригинальном файле.

• плотность газа при расчетной температуре:

Рисунок убран из работы и доступен только в оригинальном файле.; Рисунок убран из работы и доступен только в оригинальном файле.;

где mг - масса поступивших в открытое пространство СУГ при аварийной ситуации, кг; ρг - плотность СУГ при расчетной температуре и атмосферном давлении, кг·м-3, φнп - нижний концентрационный предел распространения пламени, % объема.

При расчете за начало отсчета горизонтального размера зоны принимают внешние размеры аппарата. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ (кг·м-2 ) из пролива при температуре Тж ≤ Ткип по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.

где М - молекулярная масса СУГ, кг·моль-1; Lисп - мольная теплота испарения СУГ, Дж·моль-1 ; Т0 - начальная температура материала, на поверхность которого разливается СУГ, К; Тж - начальная температура СУГ, К; λтв - коэффициент теплопроводности материала, на поверхность которого разливается СУГ; τ - текущее время, сек, принимаемое равным времени полного испарения СУГ, но не более 3600 сек; α - коэффициент температуропроводности материала, на поверхность которого разливается

СУГ, м·сек-1; Re - число Рейнольдса; λв - коэффициент теплопроводности воздуха, Вт·м-1 К-1; d - характерный размер пролива СУГ, м. Учитывая, что Т0 Тж =Тж =310; К mсуг = 0.

• Число Рейнольдса:

Рисунок убран из работы и доступен только в оригинальном файле.

где U - скорость воздушного потока, м·сек-1; νв - кинематическая вязкость воздуха, м2 ·сек-1.

• Коэффициент температуропроводности материала, на поверхность которого разливается СУГ, определяется по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.

где ств - теплоемкость материала, на поверхность которого разливается СУГ, Дж·кг-1 ·К-1; ρтв - плотность материала, на поверхность которого разливается СУГ, кг·м-3.

• Характерный размер пролива СУГ определяют по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.

где Fи - площадь поверхности испарения, м2.

При температуре Тж > Ткип дополнительно рассчитывается масса СУГ, испарившегося в окружающее пространство за счет перегрева.

• Масса СУГ, испарившегося в окружающее пространство в случае его перегрева:

Рисунок убран из работы и доступен только в оригинальном файле.

где mп - масса вышедшего перегретого СУГ, кг; Ср - удельная теплоемкость СУГ при температуре перегрева Та, Дж·кг-1 ·К-1; Та - температура перегретого СУГ в соответствии с технологическим регламентом в технологическом аппарате, К; Ткип - температура кипения СУГ, К; Lисп - удельная теплота испарения СУГ, Дж·кг-1:

Рисунок убран из работы и доступен только в оригинальном файле. кг

Рисунок убран из работы и доступен только в оригинальном файле.

2.5 Расчет избыточного давления взрыва при сгорании взрывоопасной газовоздушной смеси

Рассчитаем избыточное давление взрыва при сгорании взрывоопасной газовоздушной смеси. Расчет проводиться на основе ГОСТ Р 12.3.047-98.

2.5.1 Избыточное давление ΔР, кПа, развиваемое при сгорании газовоздушной смеси в открытом пространстве:

Рисунок убран из работы и доступен только в оригинальном файле.

где Ро - атмосферное давление, кПа (допускается принимать равным 101 кПа); mпр - приведенная масса газа, кг; г - расстояние от геометрического центра газовоздушного облака, м.

2.5.2 Приведенная масса СУГ:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

где Qсг - удельная теплота сгорания СУГ, Дж/кг; Z - коэффициент участия, который допускается принимать равным 0,1; Q0 - константа равная 4,52-106 Дж/кг; mг - масса горючих СУГ поступившего в результате аварии в окружающее пространство, кг; α - степень заполнения емкости по обьему

(85%); ρсуг - плотность СУГ, кг/м3 ; VPE3 - объем резервуара, м3 .

2.5.3 Импульс волны давления , Па-сек:

Рисунок убран из работы и доступен только в оригинальном файле.

где mпр - приведенная масса газа, кг; r - расстояние от геометрического центра газовоздушного облака, м.

Таблица 4

--------------------------------------------------
r, м |

mг, кг

|

mпр, кг

| I, кПа·сек | ΔР, кПа |
---------------------------------------------------------
1 | 8871,28 | 9028,294 | 50188,57 | 4684556 |
---------------------------------------------------------
50 | 8871,28 | 9028,294 | 1003,77 | 118,57 |
---------------------------------------------------------
100 | 8871,28 | 9028,294 | 501,88 | 33,24 |
---------------------------------------------------------
150 | 8871,28 | 9028,294 | 334,59 | 17,61 |
---------------------------------------------------------
200 | 8871,28 | 9028,294 | 250,94 | 11,67 |
---------------------------------------------------------
250 | 8871,28 | 9028,294 | 200,75 | 8,72 |
---------------------------------------------------------
300 | 8871,28 | 9028,294 | 167,29 | 6,98 |
---------------------------------------------------------
350 | 8871,28 | 9028,294 | 143,39 | 5,78 |
---------------------------------------------------------
400 | 8871,28 | 9028,294 | 125,47 | 4,92 |
---------------------------------------------------------
450 | 8871,28 | 9028,294 | 111,53 | 4,28 |
---------------------------------------------------------
500 | 8871,28 | 9028,294 | 100,37 | 3,79 |
---------------------------------------------------------
550 | 8871,28 | 9028,294 | 91,25 | 3,40 |
---------------------------------------------------------
600 | 8871,28 | 9028,294 | 83,64 | 3,08 |
---------------------------------------------------------
650 | 8871,28 | 9028,294 | 77,21 | 2,82 |
---------------------------------------------------------
700 | 8871,28 | 9028,294 | 71,69 | 2,59 |
---------------------------------------------------------
750 | 8871,28 | 9028,294 | 66,91 | 2,40 |
---------------------------------------------------------
800 | 8871,28 | 9028,294 | 62,73 | 2,24 |
---------------------------------------------------------
850 | 8871,28 | 9028,294 | 59,04 | 2,09 |
---------------------------------------------------------
900 | 8871,28 | 9028,294 | 55,76 | 1,97 |
---------------------------------------------------------
950 | 8871,28 | 9028,294 | 52,83 | 1,86 |
---------------------------------------------------------
1000 | 8871,28 | 9028,294 | 50,19 | 1,76 |
---------------------------------------------------------
1050 | 8871,28 | 9028,294 | 47,79 | 1,67 |
---------------------------------------------------------
1100 | 8871,28 | 9028,294 | 45,62 | 1,59 |
--------------------------------------------------------- --------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.2. Импульс волны давления при сгорании газовоздушной смеси на открытом пространстве, кПа·с.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.3. Избыточное давление, развиваемое при сгорании газовоздушной смеси на открытом пространстве, кПа

2.6 Возможная обстановка при воздействии волны

избыточного давления взрыва

При сгорании газовоздушной смеси на открытом пространстве опасность будут представлять:

•  Волна давления при сгорании газовоздушной смеси в открытом пространстве (последствия воздействия избыточного давления представлены в таблице 5);

•  Осколки (час

Здесь опубликована для ознакомления часть дипломной работы "Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 747

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>