Дипломная работа на тему "Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля"

ГлавнаяПромышленность, производство → Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля":


ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕОРИИ И ТЕХНОЛОГИИ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ МЕТАЛЛОВ

1.1 Математические модели электродинамических процессов

1.2 Математическое моделирование формоизменения заготовки в процессах МИОМ

1.3 Математическое моделирование электромеханических процессов при магнитно-импульсной обработки металлов

1.4 Интенсификация процессов магнитно-импульсной обработки

1.5 Выводы по разделу

1.6 Постанов ка задачи исследования

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В СИСТЕМЕ «УСТАНОВКА-ИНДУКТОР-ЗАГОТОВКА» ДЛЯ МИОМ

2.1 Основные соотношения электромеханики твердых тел

2.2 Математическая модель электродинамических процессов в одновитковом индукторе

2.3 Математическая модель электродинамических процессов в многовитковом индукторе

2.4 Математическая модель электромеханических процессов в системе «индуктор-заготовка»

2.5 Построение численной модели для задачи электродинамики

2.5.1 Одновитковый индуктор и установка

2.5.2 Многовитковый индуктор и установка

2.5.3 Система «индуктор-заготовка-установка»

2.5.4 Вычисления сил и температур

Заказать написание дипломной - rosdiplomnaya.com

Уникальный банк готовых успешно сданных дипломных проектов предлагает вам написать любые работы по желаемой вами теме. Оригинальное выполнение дипломных работ на заказ в Краснодаре и в других городах РФ.

2.5.5 Численное моделирование механических процессов в заготовке

2.6 Выводы по разделу

3. ОБОСНОВАНИЕ ВЫБОРА ФОРМЫ СПИРАЛИ ИНДУКТОРА ДЛЯ ОБЖИМА

3.1 Влияние формы спирали индуктора на процесс обжима трубчатых заготовок

3.2 Выбор геометрических размеров спирали индуктора-концентратора

3.3 Энергетические характеристики процесса обжима

3.4 Выводы по разделу

4. ИССЛЕДОВАНИЕ СИЛОВЫХ И ТЕМПЕРАТУРНЫХ УСЛОВИЙ ФУНКЦИОНИРОВАНИЯ СПИРАЛЕЙ ИНДУКТОРОВ ДЛЯ ОБЖИМА

4.1 Силовые характеристики процесса обжима

4.2 Температурные режимы функционирования спирали индуктора

4.2.1 Температура спирали индуктора в момент максимального значения импульсного тока

4.2.2 Температура спирали индуктора в момент окончания разряда магнитно-импульсной установки

4.3 Выводы по разделу

5. ИСПОЛЬЗОВАНИЕ МНОГОБЛОЧНЫХ МАГНИТНО-ИМПУЛЬСНЫХ УСТАНОВКОК ДЛЯ ИНТЕНСИФИКАЦИИ ПРОЦЕССОВ МАГНИТНО-ИМПУЛЬСНОЙ ШТАМПОВКИ

5.1 Математическая модель функционирования установки при неодновременном включении блоков конденсаторных батарей

5.2 Выбор временного интервала включения блоков конденсаторных батарей

5.3 Влияние факторов на эффективность процесса обжима заготовки при неодновременном включении конденсаторных батарей

5.4 Разработка технологического процесса сборки изделия «трубка-фланец»

5.5 Разработка технологического процесса сборки изделия «баллон»

5.6. Выводы по разделу

ОСНОВЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Основной задачей развития машиностроения является вывод его на принципиально новые ресурсосберегающие технологии, обеспечивающие повышение производительности труда, экономию материальных и энергетических ресурсов и охрану окружающей среды. В значительной степени решению этих задач способствует внедрение в промышленность прогрессивных технологий магнитно-импульсной штамповки (МИШ), отличающихся простотой и низкой стоимостью оснастки, компактностью оборудования, высоким качеством получаемых изделий и экологической безопасностью.

Магнитно-импульсная штамповка характеризуется тем, что давление на деформируемую металлическую заготовку создается непосредственно воздействием импульсного магнитного поля (ИМП) без участия промежуточных твердых, жидких или газообразных тел. Таким образом, можно штамповать детали из полированных и лакированных заготовок без повреждения поверхностей, деформировать заготовки, заключенные в герметическую неметаллическую оболочку, и выполнять другие операции, осуществление которых иными методами нерационально.

В то же время внедрение этого метода в производство сдерживается недостаточной стойкостью инструмента и элементов высокоэнергетического оборудования, что связано с отсутствием научно обоснованных методик, позволяющих проводить процесс магнитно-импульсной штамповки наиболее рационально. В связи с этим в производстве достаточно велик объем экспериментальных и доводочных работ, а реализуемые режимы обработки далеки от оптимальных. Поэтому тема данной работы, касающаяся повышения эффективности операций МИШ путем научно обоснованного проектирования инструмента и управления параметрами разрядного контура, является актуальной.

Работа выполнена в соответствии с проектом РФФИ «Конкурс Р-2004 Центр» «Математическое моделирование динамических процессов в электромеханических системах», с грантами по фундаментальным исследованиям в области технических наук №ТО2-06.4-300 «Повышение стойкости индукторных систем для магнитно-импульсной обработки металлов» и №ТО2-01.5-296 «Разработка математической модели электромеханических процессов в индукторных системах для магнитно-импульсной обработки металлов», с грантом для поддержки научно-исследовательской работы аспирантов вузов федерального агентства по образованию «Оценка прочности и стойкости индукторов для магнитно-импульсной обработки» и с программой «Развитие научного потенциала высшей школы» по разделу 3.3 «Развитие научно-исследовательской работы молодых преподавателей и научных сотрудников, аспирантов и студентов» № 05.55.2.РНП «Математическое моделирование электромеханических процессов в индукторе для магнитно-импульсной штамповки».

Цель работы. Снижение энергоемкости операций магнитно-импульсной штамповки трубчатых заготовок по схеме обжима путем научно обоснованного выбора геометрии спирали индуктора-концентратора и управления процессом разряда магнитно-импульсной установки.

Автор защищает:

- результаты численных экспериментов, проведенных на базе разработанной математической модели по оценке эффективности конструкций индукторов различной формы для обжима;

- методику проектирования индуктора-концентратора для обжима трубчатых заготовок;

- установленные зависимости влияния геометрических размеров и материала заготовки, а также параметров магнитно-импульсной установки на энергосиловые параметры процесса обжима трубчатой заготовки и температурные условия функционирования индукторов различной геометрии.

Научная новизна:

- на базе разработанной математической модели функционирования системы «установка - индуктор - заготовка» обоснована эффективность использования индуктора-концентратора для обжима осесимметричных трубчатых заготовок;

- на основе закона сохранения заряда разработана математическая модель функционирования многоблочной магнитно-импульсной установки и обоснован выбор временного интервала для включения очередного блока конденсаторных батарей;

- установлены математические зависимости величины, характеризующей изменение степени деформации заготовки при неодновременном включении конденсаторных батарей, от геометрических размеров заготовки и собственной частоты магнитно-импульсной установки.

Методы исследования:

- теоретический анализ процессов формоизменения заготовки, выполненный с использованием основных положений теории пластического течения при динамическом нагружении;

- теоретический анализ силовых и температурных режимов функционирования индуктора с использованием основных положений электродинамики сплошных сред;

- математическое моделирование, численный эксперимент, конечно-элементный анализ, теория планирования эксперимента.

Достоверность результатов: обеспечивается обоснованностью использованных теоретических зависимостей, корректностью постановки задач, применением известных математических методов.

Практическая ценность и реализация работы:

- разработаны методика проектирования геометрии спирали индуктора-концентратора для обжима, обеспечивающего максимальное формоизменение заготовки, и программный комплекс для её реализации;

- результаты исследования использованы при разработке новых технологических процессов получения сборочных соединений «трубка - фланец» и изделия «баллон», которые внедрены в опытные производства ОАО «ТНИТИ»;

- отдельные материалы исследования использованы в учебном процессе для студентов специальности 15.02.01 Машины и технология обработки металлов давлением.

Апробация. Результаты исследования доложены на следующих конференциях:

- II Международной практической конференции «Металлофизика, механика материалов и процессов деформации», г. Самара,2004;

- Международной научно-технической конференции МК-06ММФ «Прогрессивные технологии и оборудование в машиностроении и металлургии», посвященной 50-летию Липецкого государственного технического университета, 2006;

- Научно-практической конференции профессорско-преподавательского состава ТулГУ, 2003-2006 гг.

Публикации. Материалы проведенных исследований отражены в 11 печатных работах.

Автор выражает глубокую благодарность научному руководителю д-ру техн. наук, проф. В. Д. Кухарю, канд. физ.-мат. наук, доц. А. А. Орлову за оказанную помощь при выполнении работы, критические замечания и рекомендации.

Структура и объем работы. Диссертационная работа состоит из введения, пяти разделов, заключения и общих выводов по работе, списка литературы из 61 наименований и включает 130 страницу машинописного текста, 60 рисунков и 9 таблиц. Общий объем -142 страницы.

Во введении обоснована актуальность рассматриваемой в работе задачи, ее научная новизна, практическая ценность работы.

В первом разделе работы изложено современное состояние магнитно-импульсной штамповки, рассмотрены существующие математические модели, отражающие процессы, протекающие в заготовке и индукторе при разряде магнитно-импульсной установки. Обоснована постановка задач исследования.

Во втором разделе приведена математическая модель функционирования системы «установка-индуктор-заготовка», в которой формоизменение заготовки описывается на базе теории пластического течения. Получена полная система дифференциальных по времени и интегральных по пространству уравнений, описывающая электрические процессы в индукторе и заготовке. Для численного интегрирования этой системы интегро-дифференциальных уравнений применялся метод конечных элементов. Приведены уравнения по вычислению пондеромоторных сил, напряжений, деформаций и температур в каждой точке сечения индуктора и заготовки в любой момент времени.

В третьем разделе на базе разработанной математической модели была проведена оценка эффективности конструкций индукторов - одновиткового, четырехвиткового цилиндрического, индуктора-концентратора. Были построены и обработаны кривые тока, а также характерные графики распределения радиальной пондеромоторной силы по высоте заготовки и деформации заготовки для каждого типа индуктора. Разработана методика, позволяющая определить геометрические размеры спирали индуктора-концентратора, который обеспечивает максимальную деформацию заготовки при равных энергетических затратах.

В четвертом разделе на базе проведенного численного эксперимента были установлены зависимости влияния геометрических размеров и материала заготовки, а также параметров магнитно-импульсной установки на энергосиловые параметры процесса обжима трубчатой заготовки и температурные условия функционирования индукторов различной геометрии.

В пятом разделе показана принципиальная возможность интенсификации процесса обжима за счет неодновременного включения блоков конденсаторных батарей в разрядную цепь. Установлены зависимости влияния геометрических размеров заготовки, а также параметров магнитно-импульсной установки на величину, характеризующую изменение степени деформации при обжиме трубчатой заготовки при неодновременном включении блоков конденсаторных батарей.

1. СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕОРИИ И ТЕХНОЛОГИИ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ МЕТАЛЛОВ

Магнитно-импульсной обработка металлов характеризуется тем, что на давление на деформируемую металлическую заготовку создается непосредственно воздействием импульсного магнитного поля без участия промежуточных твердых, жидких или газообразных сред.

Еще в 1927 г. академиком Л. Капицей была предсказана возможность использования силовых импульсных магнитных полей в технологических операциях по обработке металла.

Это технологическое направление появилось в конце 50-х годов прошлого столетия и сразу же нашло применение в самолетно - и ракетостроении, а впоследствии и в автомобильной промышленности. В настоящее время используется в различных отраслях промышленности вплоть до пищевой. В последнее время начинает использоваться в области медицины и боевой технике.

Первая промышленная магнитно-импульсная установка (МИУ) типа «Magneform», предназначенная для обработки тонкостенных труб импульсным магнитным полем, была изготовлена в США фирмой «General Dynamics» в 1962 г. Энергоемкость установки составляла 6.25 кДж, производительность - 10 импульсов в минуту. В 1963-66 гг. на базе этой установки в США создается гамма МИУ с запасаемой энергией от 12 до 84 кДж для различных технологических операций обработки металлов давлением [59]. Наряду с США, начиная с 1963-1966 гг. вопросами МИОМ и созданием оборудования для нее начали заниматься в других странах. Начиная с 1963 года, разработкой и применением МИУ, проведением теоретических и экспериментальных исследований в Англии занимаются ученые фирмы «Wickman Machine Tools Sales» [61], в ФРГ - фирма «Brown Boveri» и Institut fur Werkzeugmaschine und Umformtechnik der Tecnischen Hochschule Hannover [58].

Большое количество обзорных сообщений по применению МИУ для деформирования металлов появилось в периодической печати Японии, Франции за период 1964-1968 гг. О большой работе, проводимой в этих странах, свидетельствуют многочисленные патенты на новые типы установок и их элементы. С 1964 г. работы по созданию МИУ и исследования процесса деформирования металлов с помощью импульсных магнитных полей ведутся в Польше, Чехословакии, ГДР [57].

Начиная с 1960 года, в нашей стране проводятся работы по созданию экспериментальных и опытно-конструкторских образцов МИУ. Широкие технологические возможности метода, экономическая эффективность, относительная простота осуществления привлекли в первую очередь к этому вопросу специалистов, занимающихся техникой сильных импульсных токов и сильных магнитных полей, теорией и практикой индукционных электрических и электромеханических процессов, теорией и практикой высокоскоростного деформирования металлов. Первостепенную роль в создании отечественных МИУ и внедрении метода в промышленность сыграли разработки Харьковского политехнического института им. В. И. Ленина (ХПИ), Ленинградского политехнического института им. М. И. Калинина, Московского энергетического института, ЭНИКМАШ, Тульского НИТИ и других организаций.

В ЭНИКМАШе, начиная с 1962 были созданы и выпускались серийно гамма установок энергоемкостью 10...80 кДж с производительностью 120...360 операций/ч [34].

Наряду с указанными целый ряд организаций страны в различное время создали для своих целей МИУ энергоемкостью 3.5...200 кДж с рабочим напряжением 5...50 кВ. Установки, разработанные Самарским авиационным институтом, Омским политехническим институтом, институтом атомной энергии имени И. В. Курчатова, ВПТИЭлектро (г. С.-Петербург), Чувашской государственной академией (г. Чебоксары) и другими организациями, хорошо зарекомендовали себя в опытном и мелкосерийном производстве.

На предприятии АО ТНИТИ (г. Тула) впервые в нашей стране разработаны, изготовлены и внедрены в серийное производство автоматизированные магнитно-импульсные установки серии МИУ-Т [48]. Установки изготовлены из комплектующих, выпускаемых нашей промышленностью серийно и могут легко встраиваться в механизированные и автоматизированные линии.

Технологические операции магнитно-импульсной обработки трубчатых заготовок выполняются по двум основным схемам: обжим и раздача.

При обжиме обрабатываемую трубчатую заготовку помещают внутри спирального индуктора соленоидного типа, а при раздаче индуктор находится внутри заготовки.

Формообразующие операции осуществляют на оправках соответствующей формы. Формовкой на оправках можно обжимать трубы с одновременным нанесением внутренней резьбы, получением зигов, фасонных поверхностей и пробивкой отверстий. Часто одновременно с формовкой производят калибровку заготовки по оправке.

Сборочные операции, в основе которых лежит обжим, осуществляются непосредственно на деталях. Процесс соединения металлических деталей применяется при стыковке труб, сборке ряда соединений, для получения герметичных соединений, при запрессовке колец в тело поршня, сборке наконечников с тросами и канатами и др.

Для обработки трубчатых заготовок по схеме «раздача» индуктор вставляют в заготовку, а саму заготовку - внутрь разъемной матрицы из металла или пластика. По этой схеме производят отбортовку, получают кольцевые и продольные рифты и зиги, осуществляют вырубку, чеканку рисунка и др. Сборочные операции по схеме «раздача» не требуют применения специального устройства и инструмента, так как обычно производится сборка двух трубчатых деталей сращиванием труб, запрессовка труб во втулки, корпуса или диски. Применение МИОМ для сборочных операций значительно снижает трудоемкость сборки, позволяет отказаться от применения резьбы, склеивания, закатки и т. д. Минимальный диаметр труб, для которых возможна операция раздачи с помощью индуктора, составляет 30-40 мм.

В значительной мере основы теории, технологии и оборудования импульсных методов штамповки базируются на результатах работ отечественных и зарубежных школ, к которым принадлежат О. Д. Антоненков, А. М. Балтаханов, И. В. Белый, Ш. У. Галиев, В. А. Глущенков, С. Ф. Головащенко, А. А. Есин, Е. Г. Иванов, В. Н. Кислоокий, С. М. Колесников, А. В. Колодяжный, А. Д. Комаров, В. Д. Кухарь, В. Я. Мазуровский, В. С. Мамутов, В. М. Михайлов, Е. А. Попов, Ю. А. Попов, А. К. Талалаев, Л. Т. Хименко, В. Н. Чачин, Н. Е. Проскуряков, В. Н. Самохвалов, Г. А. Шнеерсон, Б. А. Щеглов, В. Б. Юдаев, С. П. Яковлев, H. Dietz, H. P. Furth, J. Jablonski, H. Lippman, R. H. Post, H. P. Waniek, R. Winkler и другие.

Исторически сложилось, что разработка математических моделей шла по двум направлениям:

1)  достаточно полное описание электродинамических процессов без учета движения заготовки и индуктора;

2)  решение задач механики МИОМ с использованием экспериментально установленных сил, действующих на индуктор и заготовку.

Ниже приведен обзор наиболее известных работ, посвященных обоим направлениям.

  1.1 Математические модели электродинамических процессов

При расчете электромагнитных параметров процесса МИОМ используют два основных определения пондеромоторных сил [34]:

- силы взаимодействия тока, протекающего по обрабатываемой заготовке, с магнитным полем индуктора;

- силы взаимодействия двух токов, один из которых протекает в индукторе, а второй в обрабатываемой заготовке.

Эти формулировки не являются противоречивыми по физической сущности процесса, но описываются несколько различающимися аналитическими выражениями, что определяет разницу в порядке и методике анализа процесса и является одной из причин возникновения различных методик расчета параметров в индуктивно-связанных системах. Первая формулировка позволяет свести понимание процесса к аналогии «магнитного давления» (методы теории поля), а вторая может дать усредненные решения, не зависящие от характеристик магнитного поля, возникающего в системе индуктор-заготовка, т. е. позволяет определить интегральные характеристики разрядного контура, но не позволяет описать картину силового поля (методы теории цепей). Использование методов теории цепей (схемы замещения с сосредоточенными электрическими параметрами) [41,47] в некоторых случаях позволяет получить замкнутые решения для тока [26]. Использование методов теории поля позволяет рассчитать переходный процесс в разрядном контуре и диффузию поля в массивные проводники системы, на основе которых исследуется распределение электромагнитных сил в элементах системы «индуктор-заготовка» [37].Математическая модель сложных электромеханических и тепловых процессов в системе «индуктор-заготовка» может быть составлена (в ее электрической части) относительно плотностей токов [39]. Преимущество этого подхода по сравнению со случаем составления математической модели, например, для вектора магнитной индукции или магнитного потенциала, заключается в том, что вектор плотности тока локализован в проводящей среде в то время как другие векторы электромагнитного поля сосредоточены в проводящей среде и в окружающем пространстве. Поэтому формулиров ка задачи для плотности тока исключает необходимость дискретизации относительно большого пространства, занятого электромагнитным полем.

Задачи расчета электромагнитных параметров индуктивно-связанных систем и, в особенности, распределения тока в них при магнитно-импульсной обработке металлов наиболее подробно рассмотрены в работе [8], где электромагнитные параметры определялись в каждом конкретном случае решением системы интегро-дифференциальных уравнений, описывающих распределение тока в индукторе и заготовке, изменение во времени электропроводности материалов и размеров системы.

Ряд авторов [51] рассматривают более простую задачу расчета электромагнитных параметров индукторных систем относительно процесса в целом и используют допущения, упрощающие расчеты. Наиболее типичным является допущение о резко выраженном поверхностном эффекте. Решение задачи приведено к интегральным выражениям. Однако строгий расчет магнитного поля при сложной геометрии системы «индуктор-заготовка», даже при допущении о резко выраженном поверхностном эффекте, связан с большими математическими трудностями. Поэтому в расчета сложных индуктивно-связанных систем нашли применение, в основном, приближенные методы расчета, наиболее распространенным из которых является метод «сшивания» [52]. Однако, используемое в этом случае при выводе формул допущение о бесконечно большой высоте витка индуктора и относительной малости рабочего зазора не всегда приемлемо для реальных конструкций индукторных систем при МИОМ.

Для расчета параметров одновитковых осесимметричных систем с конечной высотой витка при относительно большом рабочем зазоре, автором работы [12] предложен метод «сворачивания», заключающийся в том, что первоначальный расчет параметров системы «индуктор-заготовка» производится в приближении параллельной картины магнитного поля с учетом краевых эффектов и постоянства магнитного потока, а затем производится ее сворачивание в реальную систему с конечным радиусом.

Для расчета многовитковых индукторных систем представляется перспективным метод, при котором реальный индуктор заменяется индуктором с равномерным распределением плотности тока [24], а краевые эффекты в области между витками учитывают добавочным зазором, увеличивающим исходный геометрический зазор до эквивалентного.

1.2 Математическое моделирование формоизменения заготовки в процессах МИОМ

Из-за сложности и ресурсоемкости решения задачи электродинамики для определения пондеромоторных сил в работах [21, 36, 40], предложено заменять пондеромоторные силы давлением ИМП:

Рисунок убран из работы и доступен только в оригинальном файле. (1.1)

где Рисунок убран из работы и доступен только в оригинальном файле. = Рисунок убран из работы и доступен только в оригинальном файле.+Рисунок убран из работы и доступен только в оригинальном файле.+Рисунок убран из работы и доступен только в оригинальном файле.- эквивалентный зазор между индуктором и заготовкой, учитывающий проникновение магнитного поля в металл индуктора Рисунок убран из работы и доступен только в оригинальном файле., в металл заготовки Рисунок убран из работы и доступен только в оригинальном файле., а также геометрический зазор между индуктором и заготовкой Рисунок убран из работы и доступен только в оригинальном файле.; Рисунок убран из работы и доступен только в оригинальном файле.- текущее перемещение заготовки; Рисунок убран из работы и доступен только в оригинальном файле.- коэффициент затухания; Рисунок убран из работы и доступен только в оригинальном файле. - круговая скорость.

Использование выражения (1.1) позволяет отказаться от совместного решения электромеханических уравнений и свести расчет процессов МИОМ к решению уравнений механики деформируемого твердого тела при заданной внешней нагрузке, параметры которой должны определяться из электрических характеристик системы «установка-индуктор-заготовка». Однако этот подход приводит к большим погрешностям в определении усилий, действующих на индуктор и заготовку и фактически нивелирует разницу между МИОМ и другими высокоскоростными методами, такими как штамповка взрывом, и не отражает основной особенности напряженно-деформированного состояния заготовки, на поверхности которой напряжения равны нулю.

Б. А. Щеглов в работе [53] рассмотрел осесимметричное пластическое течение тонколистовой заготовки из жесткопластического несжимаемого металла, обладающего изотропным упрочнением и вязкостью. Рассмотрен процесс пластического течения трубной заготовки после динамического воздействия. Приводится алгоритм расчета динамических и кинематических параметров процесса. Увеличение вязкости приводит к возрастанию динамических напряжений в заготовке и снижению скоростей деформаций и самих деформаций. Для динамического формоизменения металлов, обладающих большой вязкостью, необходимы более высокие усилия и энергетические затраты.

В работе [25] при раздаче цилиндрических и конических оболочек показано, что величина минимальной напряженности поля при отсутствии его просачивания, для перехода материала в пластическое состояние зависит только от геометрических размеров и механических свойств материала. Напряженное состояние исследовано без учета упрочнения материала и сил инерции.

Задача пластического деформирования тонкостенной конической трубы рассмотрена в работе [43]. В течении времени Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле. на заготовку действует постоянное равномерное внутреннее давление P, а затем оно снимается и дальнейшее движение происходит за счет накопленной кинетической энергии. Концы трубы свободно опираются по контуру, материал трубы – жесткопластический. Показано, что задача деформировании конической трубы может быть сведена к задаче о деформировании цилиндрической трубы, что и было установлено Е. Г. Ивановым [18].

Осесимметричная безмоментная раздача конической заготовки ИМП при допущениях малости перемещения вдоль образующей, по сравнению с перемещениями по нормам к поверхности [20], сводится также к задаче о раздаче тонкостенной цилиндрической трубы.

Исследование процессов магнитно-импульсной штамповки значительно усложняется, если в процессе формоизменения образующая заготовки претерпевает изгиб и если поперечное сечение принимает форму отличную от окружности. Экспериментальному исследованию этих процессов посвящен ряд работ [9, 10, 11, 13, 32], к основным результатам которых можно отнести определение технологических возможностей процесса, а также изучение характера течения металла в процессе формоизменения.

Теоретическое исследование этих процессов с позиции механики деформируемого твердого тела было выполнено в работах [6, 16, 23, 30, 32, 35, 54, 55]. Используя экспериментальные данные о характере формоизменения, а также соотношения безмоментной теории оболочек, в работах [30, 32, 54, 55] проведено исследование напряженно-деформируемого состояния в течении процесса формоизменения, определена работа пластического деформирования, обоснован выбор геометрических размеров обрабатываемых деталей и энергия заряда для осуществления операций отбортовки концов труб и т. д.

Приближенный учет изгибающих моментов в процессах МИОМ выполнен в работе [17], при этом условия равенства работ внешних и внутренних сил задачи изгибного деформирования сведены к задачам об одноосном напряженном состоянии. Основным недостатком этой работ является приближенная оценка напряженно-деформированного состояния, возникающего в заготовке.

Использование соотношений моментной теории оболочек к анализу процесса поперечной рифтовки труб дано в работе [6]. В данной постановке задача сводится к решению системы дифференциальных уравнений в частных производных, которая решается методом конечных разностей. Такой подход к анализу динамики тонких упругопластических осесимметричных оболочек был развит в работах [5, 27]. Особенностью данных решений является то, что они применимы только для анализа осесимметричных процессов, для оболочек с плавными очертаниями и требуют создания устойчивых расчетных схем.

Перспективным является использование метода конечного элемента к анализу процессов МИОМ. Присущие ему принципы построения решения позволяют эффективно использовать вычислительную технику при поэтапных исследованиях процессов пластического формоизменения и достаточно просто учитывать геометрическую и физическую неоднородность заготовки, а также неравномерность приложения нагрузки.

В работе [23] предлагается алгоритм исследования переходных процессов деформирования упруго-пластических осесимметричных нетонких оболочек, построенный на основе модифицированного метода конечных элементов [22]. Конечно-элементная дискретизация исследуемой области сводит решение задачи к решению системы дифференциальных уравнений движения, интегрирование которых по времени проводится численно по явной разностной схеме. Такой подход позволяет определить распределение напряжений, деформаций и перемещений в произвольной точке заготовки в любой момент времени. Предложенный алгоритм иллюстрируется на примере решения задачи об отбортовке отверстия в плоской заготовке. Точность полученного решения подтверждается экспериментально. Следует отметить, что упруго-пластический подход наиболее применим к анализу процессов, в которых величина пластических деформаций соизмерима с упругими. В противном случае для уточнения решения используется модель жестко-пластического тела, как это сделано, например, в работе [35], авторы которой использовали метод конечного элемента при исследовании процессов магнитно-импульсной штамповки, протекающих в условиях плоской деформации. В этом случае в качестве искомых функций выступают компоненты узловых скоростей и величины средних напряжений.

Оригинальным является представление узловых скоростей в виде произведения двух функций, одна из которых является функцией времени, постоянной для всей пластической области [33, 49]. Это позволяет отказаться от решения системы дифференциальных уравнений, а свести задачу к системе алгебраических уравнений. Однако использование в данной работе метода множителя Лагранжа для учета условия несжимаемости приводит к трудностям при использовании стандартных приемов при решении систем уравнений, записанных в матричной форме, за счет появления нулей на главной диагонали матрицы системы.

1.3 Математическое моделирование электромеханических процессов при магнитно-импульсной обработки металлов

В случае переменной величины рабочего зазора, например, в процессе формоизменения заготовки, импульсное магнитное поле в системе «индуктор-заготовка» неоднородно, что резко усложняет расчет его величины и распределения по поверхности заготовки при создании инженерных методик расчета.

Кроме того, изменение размеров заготовки в процессе деформирования ведет к изменению индуктивности системы «индуктор-заготовка» и, следовательно, к изменению частоты тока, а увеличение зазора между индуктором и заготовкой приводит к уменьшению давления. При этом за счет пересечения заготовкой магнитных силовых линий в ней и индукторе возникают дополнительные токи, которые могут оказывают влияние на величину давления ИМП.

Учесть эти факторы можно, если рассматривать процесс магнитно-импульсной обработки как электромеханический, т. е. процесс деформирования описывать системой электрических уравнений, полученных на основе теории цепей, совместно с уравнениями движения [44, 56]. Но так как методы теории цепей позволяют исследовать только интегральные параметры системы, то с их помощью трудно получить достоверную картину напряженно-деформированного состояния индуктора и заготовки, однако, как будет показано ниже, индуктор и заготовку можно представить как совокупность параллельно соединенных контуров с токами и исследовать их силовое взаимодействие друг с другом.

Изучению процессов раздачи и обжима тонкостенных цилиндрических заготовок посвящено большое количество работ [60,14]. Среди этих работ следует отметить работы Иванова Е. Г. [14], который, используя решения безразмерных уравнений движения с широким диапазоном варьирования входных параметров, получил приближенные аналитические выражения, позволяющие судить о степени влияния того или иного параметра на величину деформации заготовки и определять параметры МИУ по заданному формоизменению. Однако следует заметить, что универсальность полученных решений ограничена видом аппроксимирующей кривой Рисунок убран из работы и доступен только в оригинальном файле., которая выбрана в виде Рисунок убран из работы и доступен только в оригинальном файле..

Основной недостаток описанных моделей состоит в априорном задании усилий в виде давления, изменяющегося со временем по гармоническому закону, тогда как в действительности индуктор и заготовка находится под действием объемных пондеромоторных сил.

Определенный интерес представляет работа [60], в которой проведен анализ процесса обжима тонкостенной трубной заготовки. Получено приближенное решение и более точное численное решение системы дифференциальных уравнений. Оба метода позволяют провести анализ влияния различных параметров установки, индуктора и заготовки на конечный результат обжима. Из приближенного решения выделены три условия для оптимального расчета процесса, одно из которых - выражение для оптимальной частоты, при которой достигается максимальная деформация. Приведены зависимости для расчета тока в группе конденсаторов и тока, индуцированного в заготовке, давления магнитного поля, частоты разрядного тока. Отмечается удовлетворительное совпадение результатов теоретического и экспериментального исследований.

В работе Батыгина Ю. В., Лавинского В. И. [7] предложен подробный анализ проблем магнитно-импульсной обработки тонкостенных металлических заготовок, толщина которых, как минимум на порядок, меньше эффективности глубины проникновения поля в соответствующую проводящую среду. Также сформированы, обоснованы новые предположения по увеличению эффективности силового воздействия на обрабатываемые объекты при существенной диффузии магнитных полей. Был сделан вывод, что максимальная эффективность магнитно-импульсного воздействия имеет место в случае, когда толщина заготовки много больше глубины проникновения поля.

В работах А. А. Орлова [38] была разработана согласованная по времени математическая модель электромеханических процессов, протекающих индукторе и заготовке при магнитно-импульсной обработки металлов в процессе разряда магнитно-импульсной установки, учитывающая влияние распределения плотности тока в индукторе и заготовке. Оригинальным в этих работах является то, что исследование электродинамических процессов и напряженно-деформированного состояния индуктора и заготовки выполнены на базе метода конечных элементов. При этом формоизменение заготовки описывалось с помощью деформационной теории пластичности с учетом объемного характера пондеромоторных сил, действующих на неё.

1.4 Интенсификация процессов магнитно-импульсной обработки

Одним из путей повышения эффективности работы индукторов является интенсификация процесса МИОМ.

В работах А. К. Талалаева [48] экспериментально показано, что на эффективность процесса магнитно-импульсной обработки существенное влияние оказывает не только количество витков спирали, но и их форма. При этом форма сечения витка должна обеспечивать равномерное распределение импульсного тока по его рабочей поверхности. Выбор оптимальной формы сечения витка производился экспериментально из нескольких вариантов (рис. 1.1).

№1 №2 №3

Рисунок убран из работы и доступен только в оригинальном файле.

№4 №5 №6

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.1.1. Варианты различного исполнения сечения спирали индуктора

Наиболее удачными формами профиля сечения оказались круглая и прямоугольная с закругленными кромками под радиус 1,5-2мм, при которых исключаются острые кромки – концентраторы тока и источники образования усталостных трещин.

Для более равномерного распределения токовых нагрузок на рабочей поверхности индуктора целесообразно выполнять спиральные проточки прямоугольного профиля, глубина которых больше глубины проникновения тока в металл индуктора в 1,5 – 2раза. Количество спиральных проточек зависит от высоты витка. При высоте витка 10-12мм выполняется одна проточка шириной 3-4мм в средней части витка индуктора.

В работах [28, 19] рассмотрен другой подход к данному вопросу, который заключается в нахождении оптимальной частоты разряда магнитно-импульсной установки, при которой достигается максимальное формоизменение заготовки при минимуме энергозатрат. Кроме того, было показано, что существует частота разряда магнитно-импульсной установки при которой предельная степень деформации материала максимальна. Значение этой частоты практически не зависит от механических характеристик материала и схемы напряженного состояния, а зависит от величины декремента затухания: увеличение декремента затухания ведет к увеличению оптимальной частоты и предельной степени деформации, т. е. при деформировании заготовок на высокочастотных установках достигаются большие степени деформации за один переход.

На величину предельной степени деформации при оптимальной частоте разрядного тока оказывают влияние механические свойства материала заготовки, её геометрические размеры и схемы напряженного состояния.

Однако, в этих работах не учитывался объемный характер пондеромоторных сил, действующих на заготовку.

Интенсифицировать процесс обжима также можно за счет управления импульсными магнитными полями.

Существует два самостоятельных метода управления импульсными магнитными полями в процессе магнитно-импульсной штамповки:

1. Управление формой эпюры давления, это возможно при варьировании конструкцией индукторной системы, геометрией её токоведущих секций [19], а также введением специальных экранов [1].

2. Управление формой импульса давление, что возможно при изменении в процессе нагружения параметров разрядного контура [2] или наложении нескольких импульсных полей с различными параметрами [3, 45].

В работе [46] были разработаны методы управления формой импульса давления ИМП в процессе формоизменения детали, путем программируемого дискретного изменения параметров разрядного контура, наложения нескольких полей и наложением токов, позволяющие задавать требуемую кинематику деформационного процесса. Получены расчетные зависимости описывающие форму импульса при программном изменении параметров разрядных контуров.

Численное моделирование показало возможность интенсификации процессов МИОМ при оптимальном программировании и управлении формой импульса давления. Это позволяет в 1,5-2раза повысить точность деталей в режимах упругого соударения с податливой (трансформируемой) оснасткой.

1.5 Выводы по разделу

1.  МИОМ – сложный электромагнитно-механический процесс, в котором одновременно протекают и взаимодействуют электрические, магнитные и механические процессы. Поэтому при моделировании этих процессов необходимо учитывать их взаимное влияние друг на друга.

2.  При описании формоизменении заготовки, как правило, использовались модели деформационной теории пластичности или теории пластического течения для модели жестко-пластического материала.

3.  Отсутствуют научно-обоснованные методики проектирования формы спирали индуктора для реализации процесса обжима с наименьшими энергозатратами.

4.  Известные работы по управлению процессом разряда многоблочных магнитно-импульсных установок были направлены на получение заготовок заданной геометрии и обеспечение заданной скорости подхода заготовки к сопрягаемой детали.

1.6 Постанов ка задачи исследования

Диссертационная работа направлена на решение важной народно-хозяйственной задачи заключающаяся в снижении энергоемкости операций магнитно-импульсной штамповки трубчатых заготовок по схеме обжима путем научно обоснованного выбора геометрии спирали индуктора и управлением процессом разряда магнитно-импульсной установки.

Для решения поставленной задачи необходимо:

1. усовершенствовать математическую модель функционирования «установка-индуктор-заготовка»;

2. исследовать энергосиловые и температурные условия функционирования индукторов различной геометрии;

3. разработать методику проектирования геометрии спирали индуктора, позволяющую наиболее эффективно реализовать процесс обжима трубчатой заготовки;

4. разработать математическую модель функционирования многоблочной магнитно-импульсной установки при неодновременном разряде блоков конденсаторных батарей и обосновать выбор временного интервала включения очередного блока конденсаторных батарей в разрядную цепь;

5. разработать ряд технологических процессов сборки трубчатых заготовок с использованием энергии импульсного магнитного поля.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В СИСТЕМЕ «УСТАНОВКА-ИНДУКТОР-ЗАГОТОВКА» ДЛЯ МИОМ

2.1 Основные соотношения электромеханики твердых тел

Принципиальная схема магнитно-импульсной установки приведена на рис.2.1. Через повышающий высоковольтный трансформатор и выпрямитель производят зарядку конденсаторной батареи, состоящей из групп параллельно включенных между собой импульсных конденсаторов. По окончании заряда конденсаторная батарея с помощью специального коммутирующего устройства-разрядника тригатрона разряжается на индуктор, внутри которого размещается заготовка.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2.1. Принципиальная схема МИУ: 1- трансформатор повышающий; 2 - накопитель энергии (батарея конденсаторов);

3 - поджигающие устройства (разрядник); 4 - индуктор;

5 – заготовка

В момент разряда конденсаторной батареи в индукторе протекают импульсные токи, распределенные по сечению весьма неравномерно, соответственно распределены силы и температуры. Их распределение влияет как на деформацию заготовки, так и на прочность и стойкость самого индуктора.

Для учета сложного характера электромеханических процессов, протекающих в системе «установка – индуктор - заготовка», необходимо получить общую систему уравнений, учитывающую взаимное влияние электродинамических и механических процессов.

Далее рассматриваемую систему тел, в которой протекают электромеханические процессы, будем называть электромеханической системой.

Модель электродинамических процессов в электромеханической системе строилась на основе следующих гипотез:

1)  токами смещения можно пренебречь по сравнению с токами проводимости;

2)  в системе «установка-индуктор-заготовка» отсутствуют ферромагнетики.

3)  распределение токов, а, следовательно, объемных сил и температур симметрично относительно оси индуктора. Многовитковый индуктор представляется как набор электрически связанных витков;

4)  деформации и перемещения индуктора по сравнению с заготовкой, считаем, малы, поэтому задача механики для индуктора не решаем;

5)  заготовку будем считать осесимметричной, а ее материал – упруго-пластическим;

6)  время процесса мало, и теплопередача не происходит.

Первое предположение избавляет от необходимости исследования поля в диэлектриках. Оно может быть вычислено через токи, текущие в проводниках. Считается, что все возмущения поля мгновенно распространяются в исследуемой области.

Второе предположение дает возможность исключить влияние пути изменения магнитного поля на свойства материала и таким образом линеаризовать задачу.

Приведенные выше предположения приводят к квазистатической задаче электродинамики. Уравнения Максвелла в этом случае:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.1) |
---------------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.2) |
---------------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.3) |
---------------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.4) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле.- вектор магнитной индукции, Тл; Рисунок убран из работы и доступен только в оригинальном файле.- напряженность электрического поля, В/м; Рисунок убран из работы и доступен только в оригинальном файле.- напряженность индуцированного электрического поля, В/м; Рисунок убран из работы и доступен только в оригинальном файле.- плотность тока; m0 - магнитная постоянная; m0=4p×10-7; m - относительная магнитная проницаемость.

Для замыкания системы необходимо добавить закон Ома с учетом движения среды и напряженности стороннего электрического поля Рисунок убран из работы и доступен только в оригинальном файле., создаваемого батареей конденсаторов и закон сохранения заряда:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.5) |
---------------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.6) |

  |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле.- удельная проводимость материала, 1/(Ом×м), а v - cкорость в данной точке и закон сохранения заряда, Рисунок убран из работы и доступен только в оригинальном файле.-плотность заряда.

Выражение для вектора плотности пондеромоторных сил имеет вид

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (2.7) |
--------------------------------------------------------- --------------------------------------------------

Для описания движения элементов электромеханической системы в систему уравнений были введены уравнения движения деформируемого твердого тела с учетом гипотезы о малых деформациях:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (2.8) |
---------------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле. j = 1..3

| (2.9) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле.- компоненты симметричных тензоров напряжений и деформаций, Рисунок убран из работы и доступен только в оригинальном файле. - компоненты вектора перемещений, Рисунок убран из работы и доступен только в оригинальном файле.- компоненты вектора пондеромоторных сил.

Эти уравнения являются общими как для упругих, так и для упруго-пластических сред.

Для упругой среды связь напряжений и деформаций можно записать в виде

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.10) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле.- объемный модуль, Рисунок убран из работы и доступен только в оригинальном файле. - упругий модуль сдвига, Рисунок убран из работы и доступен только в оригинальном файле..

А для пластической среды использовать, например, основные соотношения теории пластического течения:

1) Приращение деформации Рисунок убран из работы и доступен только в оригинальном файле. на шаге по времени складывается из приращения упругой деформации Рисунок убран из работы и доступен только в оригинальном файле.и пластической Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.. (2.11)

2) приращение пластической деформации может быть получено из ассоциированного закона пластического течения

Рисунок убран из работы и доступен только в оригинальном файле.. (2.12)

В данной задаче в качестве условия текучести принят критерий Мизеса

Рисунок убран из работы и доступен только в оригинальном файле..

Здесь Рисунок убран из работы и доступен только в оригинальном файле. - напряжения в элементе, Рисунок убран из работы и доступен только в оригинальном файле. - предел текучести, Аp - работа пластического формоизменения.

Для описания нагрева проводников при условии адиабатности процесса применимо выражение

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2.13) |
--------------------------------------------------------- --------------------------------------------------

где r – плотность материала; с – удельная теплоемкость материала; t - время процесса.

Приведенные выше уравнения достаточны для расчета электромагнитного поля, плотности тока, перемещений, напряжений и деформаций в любой точке исследуемой электромеханической системы, если задать начальные и граничные условия.

Спецификой уравнений Максвелла является то, что выделяют 2 типа граничных условий: условия сшивания полей в разных областях, являющиеся следствием интегральной формы уравнений Максвелла, и граничные условия на бесконечности. Первые выполняются автоматически после перехода от дифференциальных уравнений к интегральным уравнениям относительно потенциалов, а вторые - за счет рассмотрения токов в конечной области.

Граничные условия задачи механики сводятся к заданию на части поверхности Г1 напряжений, а на части Г2 – перемещений:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (2.14) |
--------------------------------------------------------- --------------------------------------------------

Начальные условия задают распределения плотности тока Рисунок убран из работы и доступен только в оригинальном файле., напряженности стороннего электрического поля Рисунок убран из работы и доступен только в оригинальном файле., перемещений Рисунок убран из работы и доступен только в оригинальном файле. и скоростей Рисунок убран из работы и доступен только в оригинальном файле. в момент начала процесса:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (2.15) |
--------------------------------------------------------- --------------------------------------------------

где r – радиус-вектор, u0 - начальное перемещение; v0 - начальная скорость.

В уравнения Максвелла входят параметры электромагнитного поля. Оно существует не только в проводниках, но и в окружающей элементы электромеханической системы среде. Чтобы исключить необходимость рассмотрения поля вне проводников, в системе уравнений электродинамики параметры магнитного поля были выражены через плотность тока. С целью обеспечить тождественное выполнение равенства (2.1), введем векторную функцию Рисунок убран из работы и доступен только в оригинальном файле., называемую векторным потенциалом магнитного поля, так что

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (2.16) |
--------------------------------------------------------- --------------------------------------------------

Тогда уравнение (2.2) перепишется в виде

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (2.17) |
--------------------------------------------------------- --------------------------------------------------

Или, полагая Рисунок убран из работы и доступен только в оригинальном файле. и m=const,

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

|

(2.18)

|
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле.- оператор Лапласа.

Уравнение (2.4) преобразуется следующим образом:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (2.19) |
--------------------------------------------------------- --------------------------------------------------

Решение уравнения (2.18), исчезающее на бесконечности, имеет вид:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

|

(2.20)

|
--------------------------------------------------------- --------------------------------------------------

где а, b – радиус-векторы двух произвольных точек, принадлежащих проводникам, V – объем, занимаемый проводниками.

Подставим Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.в выражение закона Ома

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (2.21) |
--------------------------------------------------------- --------------------------------------------------

Используя выражение (2.20) и преобразовывая двойное векторное произведение, дифференцируя (2.20) по времени и пренебрегая скоростями, получим

Рисунок убран из работы и доступен только в оригинальном файле.

или после преобразований

Рисунок убран из работы и доступен только в оригинальном файле. (2.22)

Получили интегральное по пространству и дифференциальное по времени уравнение относительно плотности тока. Все дальнейшие уравнения для математической модели электродинамических процессов будут основаны на (2.22).

2.2 Математическая модель электродинамических процессов в одновитковом индукторе

Как отмечалось выше, задачу электродинамики для МИОМ можно считать осесимметричной. При этом одновитковый индуктор (или виток) представляется кольцом прямоугольного сечения, а многовитковый - набором таких колец. Так как токи текут исключительно по окружности (следствие осевой симметрии), вектор плотности тока характеризуется только одной компонентой. Тогда можно перейти от векторных уравнений к скалярным, проинтегрировав (2.22) по длине витка индуктора и представив объемный интеграл в виде интеграла по площади и интеграла по контуру и перейдя к цилиндрическим координатам. С учетом того, что

Рисунок убран из работы и доступен только в оригинальном файле., (2.23)

еще раз проинтегрируем (2.22) по контуру и получим

Рисунок убран из работы и доступен только в оригинальном файле. (2.24)

Выражение Рисунок убран из работы и доступен только в оригинальном файле. есть ни что иное, как взаимная индуктивность двух элементарных круговых контуров l1 и l2. Перепишем (2.24) с учетом этого

Рисунок убран из работы и доступен только в оригинальном файле., (2.25)

где Рисунок убран из работы и доступен только в оригинальном файле.- плотность тока, Рисунок убран из работы и доступен только в оригинальном файле.– напряжение на конденсаторной батарее, Рисунок убран из работы и доступен только в оригинальном файле.- удельная проводимость, Рисунок убран из работы и доступен только в оригинальном файле. - емкость конденсаторной батареи, Рисунок убран из работы и доступен только в оригинальном файле. – общая площадь сечения индуктора и заготовки.

Дополнительно к (2.25) требуется уравнение изменения напряжения на конденсаторе со временем. Оно получается с использованием закона сохранения заряда на пластинах конденсатора и выглядит так:

Рисунок убран из работы и доступен только в оригинальном файле., (2.26)

гдеРисунок убран из работы и доступен только в оригинальном файле.– площадь сечения витка индуктора.

Интегрирование в (2.26) осуществляется по площади сечения витка индуктора. Таким образом, полная система дифференциальных по времени и интегральных по пространству уравнений относительно плотности тока и напряжения на конденсаторе, описывающая электрические процессы в одновитковом индукторе и заготовке, выглядит следующим образом:

Рисунок убран из работы и доступен только в оригинальном файле. (2.27)

Для решения системы (2.27) необходимо задать начальные условия–распределение плотности тока и напряжение на конденсаторной батарее в начальный момент времени:

Рисунок убран из работы и доступен только в оригинальном файле.

2.3 Математическая модель электродинамических процессов в многовитковом индукторе

Для обобщения математической модели (2.27) на случай многовиткового индуктора необходимо учесть дополнительно закон сохранения заряда между витками. Интегральная форма приведена ниже

Рисунок убран из работы и доступен только в оригинальном файле., (2.28)

где Рисунок убран из работы и доступен только в оригинальном файле.– номер витка индуктора, а Рисунок убран из работы и доступен только в ори
<p>Здесь опубликована для ознакомления часть дипломной работы Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 470

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>