Дипломная работа на тему "Автоматизированная система управления компрессорной установки"

ГлавнаяПромышленность, производство → Автоматизированная система управления компрессорной установки




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Автоматизированная система управления компрессорной установки":


ВВЕДЕНИЕ

Компрессорные машины - важные виды продукции машиностроения. Они применяются во многих отраслях народного хозяйства: химической, нефтяной, газовой и машиностроительной, на транспорте, в металлургии, геологии, строительстве, агропромышленном комплексе, а также - в новых перспективных направлениях техники и технологии, в частности, в космонавтике, робототехнике, производстве искусственного топлива и др. Сердцем любой холодильной и криогенной установки является компрессор. От эффективности и надежности его работы зависят КПД и долговечность комплекса в целом.

В настоящее время в России и в странах СНГ эксплуатируется свыше 500 тысяч промышленных компрессоров, которые вместе с вентиляторами и насосами потребляют около 20% вырабатываемой в стране электроэнергии. Производством и ремонтом компрессоров занято свыше 1 млн. человек. В связи с этим вопросы повышения технического уровня компрессоров и холодильных установок, в частности, их эффективности и надежности, имеют важное народнохозяйственное значение и поэтому являются основными в деятельности многих научно-исследовательских и конструкторско-технологических организаций, а также промышленных предприятий отрасли холодильного и компрессорного машиностроения.

Основными направлениями развития опытно-конструкторских и научно-исследовательских работ являются:

1.  Дальнейшая разработка и создание гибких унифицированных рядов компрессоров общего назначения, на основе которых должны создаваться специальные компрессоры по единичным и малым заказам, совершенствование систем регулирования для расширения диапазона эффективной работы.

2.  Дальнейшая разработка и внедрение моноблочных и блочных компрессорных установок с максимальной степенью заводской готовности и установок с воздушным охлаждением, в том числе устанавливаемых на открытых площадках.

3.  Проведение мероприятий, направленных на экономию материальных и энергетических ресурсов путем повышения быстроходности компрессоров, совершенствования конструкций теплообменной аппаратуры, использования вторичных энергоресурсов, внедрения прогрессивных технологических процессов и новых материалов, в том числе пластмасс и керамики.

4.  Разработка на основе функциональных исследований новых принципов и схем сжатия и перемещения газов, в частности, водорода с использованием гидридов металлов, наддувных волновых компрессоров.

5.  Проведение работ по совершенствованию компрессоров путем организации рабочего процесса и конструкций машин на основе фундаментальных экспериментальных и теоретических исследований, математических моделей и подсистем САПР, создание комплексных математических моделей отдельных типов машин, описывающих рабочие процессы с учетом прочности и надежности конструкций и металлоемкости. Создание и внедрение норм расчета, оптимизированных программ экспериментальных исследований, стандартов на методы испытаний компрессоров и их элементов.

6.  Исследования и разработка мероприятий по уменьшению шума и вибраций компрессорного оборудования, по повышению его надежности, безопасности и экологичности.

7.  Завершение формирования испытательной базы для проведения сертификационных испытаний с целью максимального использования накопленного в компрессоростроении и холодильном машиностроении научно-технического потенциала и обеспечить их аккредитацию органам сертификации. Привлекать к работам по сертификации ведущих специалистов институтов, организаций, предприятий в области компрессоростроения и холодильного машиностроения.

8.  Ускорение создания системы стандартизации, внедрение единой классификации, терминологии и обозначений в области компрессоростроения и холодильного машиностроения с учетом международных стандартов.

9.  Разработка и создание стандартных и передвижных автоматизированных измерительных комплексов для проведения испытаний компрессоров в соответствии с типовыми методиками при одновременной обработке опытных данных с использованием ЭВМ. Разработка и внедрение типовых схем и программ измерений, увязанных с соответствующими датчиками, преобразователями сигналов, программами обработки и анализа опытных данных в ходе испытаний.

10.  Продолжение разработки и создание эффективных устройств очистки и осушки газов перед входом в компрессоры различных типов, а также антиобледелительных систем.

11.  Организация на предприятиях-изготовителях сервисного обслуживания выпускаемых машин и введение спецремонта компрессоров.

12.  Расширение работ по модернизации эксплуатируемого компрессорного оборудования с сохранением основных, особенно крупногабаритных элементов, и повышению основных технико-экономических характеристик с учетом требований эксплуатации.

13.  Продолжение работы по созданию систем охлаждения компрессорных установок и эффективного теплообменного оборудования, обеспечивающих решение вопросов снижения водопотребления и утилизации теплоты сжатия.

Большая часть парка компрессорного и холодильного оборудования в России и СНГ морально и физически изношена, требует в значительной части замены или модернизации. Поэтому в настоящее время более актуальной становится задача по ремонту и модернизации компрессорного и холодильного оборудования, в особенности крупного эксплуатируемого оборудования. При этом заказчик, как правило, выдвигает требования по частичному изменению параметров компрессора или установки в целом, с одновременным повышением критериев по надежности, безопасности, экономичности и экологичности.

В основном, компрессорные установки являются неотъемлемой составной частью большинства промышленных и общественных комплексов (химических, нефтеперерабатывающих, газовых, автомобильных, научно-исследовательских). Основная задача КУ – бесперебойное обеспечение объекта газовой смесью с заранее установленными параметрами. Следовательно отказ КУ приводит к простою всего комплекса или, как минимум, его большую часть, а это колоссальные убытки. Снижение расходов на обслуживание и продление межремонтного срока, а также упрощение диагностики неполадок в совокупности с повышением надежности, позволяет говорить о значительной выгоде связанной с применением новой системы управления вместо традиционной при модернизации существующих станций.

КУ требует постоянного контроля со стороны обслуживающего технического персонала, и предусматривает сохранение нормативных показателей работы основных узлов. Однако нестабильность нагрузки, которой подвергается КУ, приводит сокращению как общих часов наработки, так и межремонтных сроков эксплуатации оборудования. Внедрение новой линейки управляющих средств, так и исполнительных механизмов позволило значительно улучшить показатели надежности, ремонтопригодности и экономической выгоды КУ. В основном, применялось оборудование из семейства, прошедшего тестирование на подобных агрегатах и показавших себя наилучшим образом, с расширенными функциональными возможностями (расширение основной платформы интегрированных модулей, наличие сетевых узлов, оптимизация и упрощение программных компонентов), приемлемыми показателями точности измерений.


1. ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ КОМПРЕССОРНОЙ УСТАНОВКИ КОМПЛЕКСА ГИДРООЧИСТКИ МОТОРНОГО ТОПЛИВА (Л-24/6)

Компрессорная установка является неотъемлемой частью комплекса гидроочистки моторного топлива. Используемое оборудование должно отвечать нормам и критериям экологичности, безопасности, а главное, обоснованности применения в данной области. Система управления позволяет контролировать КУ, не загружая всю систему в целом, а лишь предоставляя отчет о ведение технологического процесса. Модульность построения архитектуры всего комплекса гидроочистки позволяет производить замену частей оборудования без остановки системы.

Общая характеристика комплекса

Установка гидроочистки Л-24/6 предназначена для удаления сернистых соединений из прямогонных дизельных фракций с содержанием серы до 2,0 %мас., керосиновых фракций с содержанием серы до 1,0 %мас., бензиновых фракций первичного и вторичного происхождения с содержанием серы до 1,0 %, вторичных фракций каталитического крекинга. На установке можно перерабатывать смесь первичных и вторичных дизельных фракций в соотношении 1:1 с содержанием серы до 1,5 %мас. (основное сырье).

Основные реакции каталитического гидрирования

Удаление примесей из нефтепродуктов происходит в результате частичной деструкции в основном сераорганических и частично кислородных и азотистых соединений в присутствии катализатора гидроочистки в среде водородсодержащего газа.

Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.

Кроме реакций взаимодействия сернистых, азотистых и кислородных соединений, в процессе гидроочистки протекают также реакции гидрокрекинга, насыщения олефинов, дегидрирования нафтеновых углеводородов, циклизации парафиновых углеводородов в нафтеновые (в области повышенных температур), гидрирования ароматических углеводородов при низких температурах и высоких давлениях.

Факторы, влияющие на ход процесса

В соответствии с механизмом протекания реакций гидроочистки моторных топлив скорость реакции зависит:

־  от химической природы сырья;

־  физических свойств сырья;

־  типа катализатора и его состояния;

־  парциального давления водорода;

־  объемной скорости;

־  конструкции реактора, например, от распределительного устройства газо-сырьевой смеси.

Поскольку скорость реакции является сложной функцией каждого из этих параметров и многие из них взаимосвязаны, очевидно, что количественно оценить влияние каждого параметра раздельно практически невозможно. Практически проанализировав параметры, выявим основные, которые будут наиболее важными при проектировании нашей системы.

1. Температура:

правильно выбранный интервал рабочих температур обеспечивает как требуемое качество, так и длительность безрегенерационного пробега и общего срока службы катализатора. Наиболее благоприятным для загруженных катализаторов является интервал рабочих температур 320 - 380 оС.

Рост степени обессеривания пропорционален повышению температуры до определенных пределов.

Каждый вид сырья имеет свой максимум температур, после которого увеличивается скорость реакций разложения и насыщения непредельных углеводородов по сравнению со скоростью реакций гидрирования сернистых соединений, в связи с чем уменьшается избирательность действия катализатора по отношению к сере и рост степени обессеривания замедляется, возрастает выход газа, легких продуктов и кокса. Увеличивается расход водорода и количество образовавшегося на катализаторе кокса.

Слишком занижать температуру также не следует, так как при этом значительно замедляется скорость реакций обессеривания.

2. Парциальное давление водорода:

повышение давления при неизменных прочих параметрах процесса вызывает изменение степени превращения в результате увеличения парциального давления водорода и углеводородного сырья и содержания жидкого компонента в системах, находящихся при давлениях и температурах соответственно выше и ниже условий начала конденсации.

Первый фактор способствует увеличению степени превращения, второй замедляет протекание реакции.

Увеличение давления в системе до уровня, превышающем давление начала конденсации, при неизменной температуре реакции способствует образованию жидкой фазы, что приводит к замедлению основных реакций процесса.

Сильное увеличение давления ухудшает сепарацию водородсодержащего газа и увеличивает потерю его с сухим газом.

Быстрое понижение давления может привести к повреждению катализатора.

Понижение давления без предшествующего понижения температуры может вызвать образование отложений кокса.

С ростом общего давления в процессе, при прочих равных условиях, растет парциальное давление водорода. Поскольку водород является одним из основных химических реагентов, то повышение его парциального давления ускоряет реакции гидрирования и способствует уменьшению возможности отложения кокса на катализаторе, что увеличивает его срок службы.

Суммарное влияние парциального давления водорода слагается из раздельных влияний:

־  общего давления,

־  концентрации водорода в циркуляционном газе,

Требование к содержанию водорода в циркулирующем газе определяется качеством сырья: прямогонные фракции очищаются при меньшей концентрации, крекинговые - при большей концентрации водорода.

С понижением концентрации водорода в циркуляционном газе несколько уменьшается безрегенерационный цикл работы катализатора.

־  отношения «водород: углеводородное сырье».

В промышленной практике объемное отношение «водород: сырье» (или кратность циркуляции) выражается отношением объема водорода при нормальных условиях к объему сырья.

С точки зрения экономичности процесса заданное отношение целесообразно поддерживать циркуляцией водородсодержащего газа. В этом случае большое влияние приобретает концентрация водорода в циркуляционном газе.

Увеличение отношения «циркуляционный газ: сырье» в значительной степени определяет энергетические затраты. Заметное возрастание скорости реакций при увеличении кратности циркуляции происходит только до определенного предела.

Описание технологической схемы комплекса

Технологическая схема комплекса состоит из следующих блоков:

а) реакторный блок и блок стабилизации первого потока;

б) реакторный блок и блок стабилизации второго потока;

в) блок очистки циркулирующего газа, газа стабилизации и регенерации МЭА.

Описание технологического цикла, в котором участвует компрессорная установка

Реакторный блок - 1 поток.

Исходное сырье - дизельное топливо из сырьевого парка по трубопроводу поступает на прием сырьевых насосов Н-1, 2. С выкида насосов сырье подается на щит смешения с циркулирующим водородосодержащим газом (ВСГ).

Постоянство расхода сырья в тройник смешения поддерживается автоматически регулятором расхода, клапан которого расположен на линии подачи сырья к щиту смешения.

Количество циркулирующего газа, подаваемого с выкида компрессоров ПК-1 (2) на щит смешения, контролируется по показаниям регистрирующего прибора. Сигнал на блокировку по уменьшению расхода циркуляционного водородсодержащего газа поступает от ОПС.

Температура циркуляционного водородсодержащего газа контролируется в САУ, от термопреобразователей, установленных на линии всасывания компрессоров ПК-1,2 и на линии нагнетания компрессоров ПК-1,2.

Давление на линии всасывания компрессоров ПК-1,2,3 контролируется в САУ, на линии нагнетания - манометрами.

Газосырьевая смесь из узла смешения поступает в межтрубное пространство теплообменников Т-1, 2, 3, 4, где нагревается до температуры 290оС за счет тепла газопродуктовой смеси. После теплообменников газосырьевая смесь поступает в печь П-1, где нагревается до температуры реакции 350-4250С.

Температура сырья на выходе из печи П-1 поддерживается автоматически клапанами-регуляторами температуры, которые установлены на линиях подачи топливного газа на форсунки.

Из печи газосырьевая смесь в газожидкостной фазе поступает в два последовательно работающих реактора Р-1, Р-2. Температура в зонах реакции контролируется по показаниям регистрирующих приборов поз.TI 1012, TI 1013, TI 1014, TI 1015, получающих импульсы от двух многозонных термопар в Р-1 и Р-2.

Газопродуктовая смесь выходит из последнего реактора с температурой 350 – 425 оС и направляется в трубное пространство теплообменников Т-4, 3, 2, 1. Из подогревателей Т - 4, 3, 2, 1 газопродуктовая смесь с температурой 1600С поступает в АВГ (секции 2, 3, 4, 5, 11, 12, 13, 14), где охлаждается до температуры 50оС и далее направляется в сепаратор высокого давления С-1.

В сепараторе С-1 при давлении до 42 кгс/см2 происходит разделение гидрогенизата и водородосодержащего газа.

Водородосодержащий газ, насыщенный сероводородом, поступает на очистку от сероводорода в абсорбер К-4.

Очищенный от сероводорода циркулирующий газ с верха абсорбера К-4 направляется на щит отдува и в сепаратор С-7, откуда забирается компрессорами ПК-1 (2) и вновь подается на щит смешения.

Избыток ВСГ сбрасывается со щита отдува в топливную сеть завода или на дежурные горелки ГФХ.

С целью уменьшения перепада давления между приемом и выкидом компрессоров ПК-1 (2) часть циркулирующего ВСГ с выкида компрессора перепускается через кожухотрубный холодильник Х-3. Подача свежего ВСГ предусматривается с установок 35/11-300, 35/11-600 в линию циркуляционного газа из К-4 в С-7 или в линию выхода газопродуктовой смеси из АВГ (секции 2, 3, 4, 5, 11, 12, 13, 14) в С-1. По отдельному трубопроводу в эти же линии осуществляется подача «свежего» ВСГ с установки 35/6.

Постоянство давления в системе реакторного блока поддерживается автоматически регулятором давления, клапан которого расположен на линии очищенного циркулирующего газа из К-4 на щит отдува.

Общие сведения о компрессорной установке, ее составе, назначении отдельных узлов и принципов построения автоматизированной системы

В состав стационарной компрессорной установки входят: поршневой крейцкопфный компрессор, электродвигатель, а также системы охлаждения, смазки, автоматического управления и защиты.

Компрессор:

поршневой крейцкопфный с оппозитным или угловым расположением цилиндров. Конструкции компрессоров построены на основе принятых, на заводе-изготовителе нормальных параметрических рядов диаметров цилиндров. Основой параметрических рядов являются оппозитная база 4M и угловые базы 5П и 2П, однако встречаются и специально разработанные системы для ориентированного производства типа 5ГЦ, 5РЦ.

Компрессор включает следующие основные узлы: базу, цилиндры, систему охлаждения и привод.

База:

состоит из унифицированных узлов кривошипно-шатунного механизма (коленчатого вала, шатуна и крейцкопфа), рамы, блока смазки механизма движения и многоплунжерного насоса (для смазки цилиндров и уплотнительных устройств штоков). В компрессорах без смазки многоплунжерный насос (смазочная станция) отсутствует.

Рама:

чугунная литая, коробчатой формы, с внутренними ребрами усиления. В верхней части рамы предусмотрены плотно закрываемые крышками люки, обеспечивающие доступ к деталям механизма движения. Нижняя часть рамы служит резервуаром для масла. На верхней части рамы установлен указатель уровня масла. Для крепления цилиндров компрессора к раме имеются специальные приливы. В отверстиях поперечных ребер рамы установлены крейцкопфные чугунные гильзы, служащие направляющими для крейцкопфов. Гильзы в случае износа могут быть повернуты или заменены новыми.

Коленчатый вал:

стальной штампованный, с кривошипами для установки шатунов, опирается на роликовые подшипники (для угловых баз коленчатый вал выполняется однокривошипным, для уравновешивания на вал устанавливаются противовесы). На одном конце коленчатого вала установлен ротор электродвигателя (соединение шпоночное), а в закрепленном на торце вала фланце выполнено квадратное отверстие для обеспечения проворачивания вала компрессора с помощью рукоятки перед запуском. (Рукоятка входит в комплект ЗИП). На другом конце вала крепится шестерня для передачи вращения валу масляного насоса блока смазки.

Крейцкопфы:

чугунные или алюминиевые литые или штампованные, изготовляются заодно с ползунами. Крейцкопф соединен со штоком закладной гайкой и контргайкой, законтренными стопорными болтами. С шатунами крейцкопф соединяется посредством пальца.

Пальцы крейцкопфов:

стальные, при сборке запрессовываются в крейцкопф и стопорятся пружинными кольцами.

Шатуны:

стальные штампованные двутаврового сечения. Шатун имеет кривошипную головку с отъемной крышкой и неразъемную крейцкопфную головку. Разъемные вкладыши кривошипной головки с антифрикционным слоем из алюминиевого сплава. В крейцкопфную головку запрессована бронзовая втулка. Смазка пальца крейцкопфа осуществляется через отверстие шатуна.

Крышка кривошипной головки шатуна соединяется со стержнем шатуна, двумя шатунными болтами легированной стали и гайками. На головке каждого шатунного болта указывается его начальная длина, необходимая для оценки остаточного удлинения болта за время эксплуатации.

Цилиндры:

в зависимости от схемы компрессорных машин могут быть одно-, двух- или трехступенчатыми, простого или двойного действия, с уравнительной полостью или без нее.

Одноступенчатые компрессоры имеют цилиндры двойного действия одинакового диаметра.

В двухступенчатых компрессорах установлены цилиндры двойного действия разного диаметра.

В трехступенчатых — цилиндр первой ступени двойного действия, цилиндры второй и третьей ступеней объединены в одном блоке, с дифференциальным поршнем и уравнительной полостью между ступенями.

В четырехступенчатых применяются два цилиндра с дифференциальным поршнем и уравнительной полостью. В пятиступенчатых в одном ряду установлен цилиндр с двумя, а в другом с тремя ступенями сжатия, при этом поршень первой ступени двойного действия.

В шестиступенчатых компрессорах установлены два цилиндра, каждый с тремя ступенями сжатия, цилиндры первой и второй ступеней — чугунные литые с охлаждающими рубашками.

Цилиндры последующих ступеней многоступенчатых компрессоров изготовлены из различных материалов в зависимости от рабочего газа и конечного давления, большинство имеют сменные рабочие гильзы из специального износостойкого чугуна, уплотняемые по диаметру резиновыми кольцами, а по торцу паронитовыми прокладками. Клапаны (всасывающие и нагнетательные): самодействующие пластинчатые кольцевые, прямоточные и ленточные закрепляются в гнездах нажимным стаканом и упорными болтами или нажимными шпильками с колпачковыми гайками. В ступенях высокого давления устанавливаются комбинированные клапаны, состоящие из всасывающих и нагнетательных клапанов.

Уплотнение:

цилиндров, люков, клапанных крышек и фланцевых соединений достигается применением паронитовых прокладок, а на ступенях высокого давления устанавливаются прокладки из мягкой (отожженной) меди.

Поршни:

из чугуна, алюминия или стали. На одно- и двух- ступенчатых компрессорах – дисковые, двойного действия, на многоступенчатых дифференциальные.

Поршневые кольца:

чугунные. В компрессорах без смазки цилиндров применяются кольца из самосмазывающихся композиционных материалов.

Штоки:

из углеродистой стали с поверхностным уплотнением.

Стандартная схема исполнения поршневого компрессора представлена на рис. 1.6.1


Рисунок убран из работы и доступен только в оригинальном файле.

Рис.1.6.1 - Стандартная схема исполнения поршневого компрессора:

1 - головка блока цилиндров;2 - прокладка головки блока; 3 - блок цилиндров; 4 - шатун; 5 - картер; 6 - передняя крышка; 7 - шкив; 8 - шарикоподшипник; 9 - уплотнительная манжета; 10 - шпонка;               11 - шайба;12, 15 - прокладки; 13 - коленчатый вал; 14 - нижняя крышка картера; 16 - задняя крышка; 17 - уплотнитель; 18 - пружина уплотнителя; 19 - седло; 20 - нагнетательный клапан; 21 - пружина клапана;


Основные виды привода компрессора в данной области

Пуск осуществляется от электродвигателя, ротор которого насаживается на вал компрессора, а статор крепится к раме компрессора.

В зависимости от базы компрессора сжимаемого агента (воздух или различные газы) применяются следующие электродвигатели:

1) Воздушные компрессоры на базе 4М

־  двухскоростного асинхронного электродвигателя А2К 85/24-8/16 160/75 кВт, 750/375 об/мин (синхр.), 380 В, 50 Гц.

Пуск двигателя осуществляется при полном напряжении сети при разгруженном компрессоре.

Переход из состояния покоя на частоту вращения 6 с-1 (360 об/мин) – ступенчатым переключением обмотки статора.

Двигатель допускает два пуска подряд на частоту вращения 6,17 с" (370 об/мин) из холодного состояния или один пуск из горячего. Количество пусков в час не более пяти и интервалом не менее 12 мин. Общее количество пусков в год не более 10000. Количество изменений частоты вращения не более 20 в час с интервалом не менее 3 мин.

2) Воздушные компрессоры на базе 5П:

־  синхронного бесщеточного электродвигателя

БСДКМ 15-21-12200 кВт, 500 об/мин, 380 В, 50 Гц;

־  асинхронного электродвигателя АСК 560-12200 кВт, 500 об/мин, 380 В, 50 Гц;

3) Воздушные компрессоры на базе 2П:

־  асинхронного электродвигателя АВ2-101-8 75кВт, 735 об/мин, 380 В, 50 Гц;

Газовые компрессоры на базах 4М, 5П, 2П, 5ГЦ комплектуются электродвигателями во взрывозащищенном продуваемом исполнении «2ExpllTS» (H4TS-П) с аналогичными характеристиками.

Все электродвигатели комплектуются пусковой аппаратурой.

Условные обозначения.

Условное обозначение компрессоров отражает основные характеристики и параметры машины:

Для компрессоров на оппозитной базе 4М

цифра «2», стоящая непосредственно перед буквами «ВМ», «ГМ» и «НП», указывает на то, что компрессор двухрядный;

буквы «ВМ», «ГМ» и «НП» означают, что компрессор предназначен для сжатия воздуха, водорода или невзрывоопасного газа и выполнен на оппозитной базе;

цифра «4», стоящая после букв «ВМ», «ГМ» и «НП», указывает номинальную нагрузку на шток в «тс»;

за цифрой «4» дробью указаны производительность в м3/мин (числитель) и конечное абсолютное давление сжатия в кгс/см' (знаменатель), Для дожимающих компрессоров в знаменателе указываются давления всасывания нагнетания, абс., кгс/см2;

буква «С» означает, что компрессор выполнен без смазки цилиндров и относительная влажность сжимаемого газа должна быть не менее 30%;

«M1», «М2» означает порядковый номер или модернизации.

Буква «С», стоящая непосредственно перед буквами «ГМ» и «НП», указывает на то, что относительная влажность сжимаемого газа не более 30%.

Например: 2СНМ4-24/9CM2 УХЛ4 компрессорная установка двухрядная, для сжатия нейтрального газа относительной влажностью менее 30%, оппозитная, с усилием на штоке поршня 4 тс, производительностью 24 м3/мин, абсолютным конечным давлением 9 кгс/см', работает без смазки цилиндров и уплотнительных устройств, модернизированная.

Климатическое исполнение компрессорной установки — УХЛ4 по ГОСТ 15150-69.

Для компрессоров на угловых базах 5П и 2П:

буквы «ВП» или «ГП» указывают, что компрессор предназначен для сжатия воздуха («В») или газа («Г») и выполнен по прямоугольной схеме («П»);

цифры «2» и «5», стоящие непосредственно перед буквами «ВП», указывают номинальную нагрузку на шток в «тс»;

за буквами «ВП» или «ГП» дробью указаны производительность в м'/мин (числитель) и избыточное конечное давление нагнетания в кгс/см2 (знаменатель);

цифра, стоящая первой, указывает порядковый номер модификации.

Смазка компрессоров:

осуществляется двумя независимыми системами:

־  системой смазки низкого давления (циркуляционной) для подачи масла к механизму базы;

־  системой смазки высокого давления для подачи масла в цилиндр

1.  Система смазки низкого давления:

масло заливается в нижнюю часть рамы компрессора. Оттуда через сетчатый фильтр грубой очистки, расположенный в начале масловсасывающей трубы, шестеренчатым насосом подается в блок смазки и далее через напорную трубу во внутренний канал коленчатого вала, который имеет подводы масла на рабочую поверхность кривошипных шеек и к шатунам. Для предотвращения подтекания масла из рамы компрессора на подшипниках коленчатого вала устанавливаются уплотнительные устройства. Масло заливается в раму через одну из люковых крышек; уровень его измеряется стержневым маслоуказателем. Для слива масла из рамы предусмотрен сливной кран.

2.  Система смазки высокого давления:

Привод многоплунжерного насоса осуществляется от ведущего валика шестеренчатого насоса блока смазки механизма движения. Масло, пройдя через плунжерный насос, поступает к отверстиям в крышках и гильзах цилиндров, равномерно распределяется по поверхностям трения, обеспечивая смазку.

Контроль подачи масла к цилиндрам через смотровое окно насоса. Для смазки механизма движения могут применяться масла марок И-50А (ГОСТ 20799-75) и MC-20 (ГОСТ 21743-76) К-310 TУ38.401479-84; ИГП-49 ТУ38.101413-90; для цилиндров и уплотнительных устройств масло К-12, К-19 ГОСТ 1861-73 и MC-20 в зависимости от марки компрессора.

В компрессорах без смазки цилиндров система смазки высокого давления с подачей масла в цилиндры и к уплотнительным устройствам не предусмотрена, На таких компрессорах лубрикаторы отсутствуют. Поршни этих компрессоров имеют опорные и разрезные (из двух половин) кольца из самосмазывающихся материалов на основе фторопласта с различными наполнителями.

В компрессорах, предназначенных для сжатия воздуха и влажных газов, поршневые кольца выполняются из фторопласта 4К20. Если давление сжимаемого газа до 0,8 МПа (8 кгс/см'), допускается изготовление колец из материала АФГ-80С, при работе с осушенными газами применяется фторопласт с графитом и дисульфидом молибдена АФГМ или ГФЭ-5м.

Для предотвращения попадания масла из рамы в полость сжатия, каждый цилиндр в компрессорах без смазки цилиндров снабжен фонарем, маслослизывающим уплотнительным устройством, маслоотбойником и маслослизывающими кольцами.

Охлаждение компрессоров:

водяное. Компрессоры поставляются с открытой системой охлаждения (слив воды из компрессора и газоохладителей с разрывом струи через сливные воронки).

При эксплуатации компрессоров с закрытой системой охлаждения должны выполняться требования «Правил устройства и безопасной эксплуатации стационар ных компрессорных установок, воздуховодов и газопроводов», утвержденных Госгортехнадзора РФ от 5 июня 2003 г. N 60, для воздушных компрессоров и «Правил устройства и безопасной эксплуатации компрессорных установок с поршневыми компрессорами, работающими на взрывоопасных и вредных газах», ПБ 09-297-03 для газовых компрессоров.

Качество охлаждающей воды должно соответствовать требованиям вышеназванных правил.

Система автоматики:

предназначена для управления работой, защиты и контроля параметров компрессорных машин.

Система автоматики состоит из ряда подсистем и в совокупности с электроприводом в зависимости от предназначения компрессорных машин (для сжатия воздуха или газа) осуществляет аварийное прекращение работы компрессорной установки с остановкой приводного электродвигателя;

1) в компрессорных установках для сжатия газа:

а) при понижении давления воды в системе охлаждения компрессора;

b) при коротких замыканиях и повреждениях в системе электропривода и управления;

с) при падении давления масла в циркуляционной системе смазки механизма движения;

d) при отклонениях давления газа от допустимых значений на линии всасывания;

е) при повышении давления газа выше допустимого после каждой ступени сжатия;

f) при прекращении продувки воздухом корпуса электродвигателя;

g) при повышении давления газа выше допустимого в корпусе компрессора.

Аварийное отключение электродвигателя компрессоров сопровождается подачей светового и звукового сигналов.

В системе автоматики компрессорных машин для сжатия газа предусмотрена дистанционная пневматическая передача показаний контролируемых параметров на приборы релейного шкафа. Расстояние передачи выходного сигнала на пневмотрассе не более 200 м.

Кроме того, системы автоматики компрессоров отличаются в зависимости от модификации функциональными возможностями и элементной базой (релейной, микроэлектронной, микропроцессорной).

Системы автоматики выпускаются в климатическом исполнении У при эксплуатации в помещении для изделий 4 ГОСТ 15150-69.


- - -
Дипломная работа на тему: "Автоматизированная система управления компрессорной установки" опубликована на сайте http://rosdiplomnaya.com/

Здесь опубликована для ознакомления часть дипломной работы "Автоматизированная система управления компрессорной установки". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 915

Другие дипломные работы по специальности "Промышленность, производство":

Технология и организация производства молока

Смотреть работу >>

Изготовление фужера 150 мл методом литья под давлением

Смотреть работу >>

Расчет и конструирование лифтов и комплектующего их оборудования

Смотреть работу >>

Выбор электродвигателя установки и его назначение

Смотреть работу >>

Техническое обслуживание и ремонт холодильного шкафа ШХ-0,8 м

Смотреть работу >>