Дипломная работа на тему "Устройство измерения отношения двух напряжений"

ГлавнаяНаука и техника → Устройство измерения отношения двух напряжений




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Устройство измерения отношения двух напряжений":


СОДЕРЖАНИЕ

Содержание…………………………………………………………………….………………….

Введение…………………………………………………………………………………….……..

Innroduction…………………………………………………………………………………………

1 Обзор методов построения измерителей отношения………………………………..….

1.1 Анализ требований технического задания………………………………………….

1.2  Методы измерения отношения……………………………………….………………

1.2.1 Мостовой метод…………………………………………………………….……

1.2.2  Логарифмический метод……………………….……………………….………

1.2.3  Применение АРУ для нахождения отношения напряжений…………..…

1.2.4  Разносный метод нахождения отношения напряжения……………..……

1.2.5  Цифровой метод измерения отношения………………………….………...

1.3  Методы построения усилителей постоянного тока………………………………..

1.3.1  Дрейф нуля в усилителях постоянного тока…………………………………

1.3.2  Стабилизация точки покоя в транзисторных каскадах………………..…..

1.3.3 Дифференциальные каскады……………………………………………………

1.3.3  Усилители постоянного тока с преобразованием частоты

усиливаемых сигналов………………………………………………….………

1.4 Выводы…………………………………………………………………………………....

2 Разработка принципов построения измерителя отношений………………………….…

Заказать дипломную - rosdiplomnaya.com

Новый банк готовых защищённых на хорошо и отлично дипломных работ предлагает вам скачать любые работы по требуемой вам теме. Правильное выполнение дипломных проектов под заказ в Воронеже и в других городах РФ.

2.1 Функциональная схема………………………………………………………………….

2.2 Выбор типа микропроцессора………………………………………………………….

2.3 Оценка погрешности измерения отношения……………………………………..…

3 Разработка и расчет узлов принципиальной схемы……………………………………..

3.1 Коммутатор сигналов………...………………………………………………………….

3.2 Предварительный усилитель…………………………………………………………..

3.3 Усилитель с управляемым коэффициентом передачи…………………………...

3.4 Фильтр нижних частот……………………………………………………………….…..

3.5 Цифровой фильтр………………………………………………………………………..

3.6 Дискретное преобразование Фурье….……………………………………………...…

4 Конструкторско-технологический раздел ………………………………………………....

4.1Анализ условий проектирования………...………………………………………..……

4.2 Выбор общей компоновки разрабатываемого устройства ………………………

4.3 Выбор параметров печатного монтажа блока аналоговой обработки …………

4.4 Разработка конструкции корпуса ………………………………………………..……

4.5 Выбор системы амортизации ………………………………………………………....

4.6 Расчет показателей надежности ………………………………….………………..…

4.7 Разработка технологии сборки печатного узла………………………………..……

5 Технико–экономическое обоснование …………………………………………….……….. .

5.1 Маркетинговые исследования ………………………………………………………….

5.2 Расчет капитальных и текущих затрат, связанных с разработкой

и изготовлением изделия ………….…………………………………………………….

5.3 Формирование цены ………………………………………..…………………………...

5.4 Расчет затрат при эксплуатации устройства измерения отношения напряжений на основе микропроцессорного вычислителя…………………..…..

5.5 Определение экономической эффективности..…………………………………….

6 Охрана труда и окружающей среды ……………………………………….…….…………. .

6.1 Анализ условий труда при производстве устройства измерения

отношения напряжений на основе микропроцессора.……………………….………….

6.1.1 Освещение………………………….…………………………………………..

6.1.2 Шум и вибрация………………………………….…………………………….

6.1.3 Пожаробезопасность………………………………….………………………

6.1.4 Метеорологические условия……………….………………………………..

6.1.5 Эргономика и техническая эстетика…………..……………………………

6.1.6 Электробезопасность……………………………..…………………………..

6.2 Расчет зануления ………….………………………….………………………………….

6.3 Охрана окружающей среды……………………………..……..………………….……

7 Гражданская оборона …………………………………………………….………………….. .

7.1 Оценка устойчивости производства измерителя отношения

напряжений при загрязнении радиоактивными веществами после

аварии на АЭС ……………………………………………………………….…………..

Выводы………………………………………………………….…………………………………..

Перечень ссылок……………………………………………….………………………………….

Приложение………………………………………………………………………………………..


1 ОБЗОР МЕТОДОВ ПОСТРОЕНИЯ ИЗМЕРИТЕЛЕЙ ОТНОШЕНИЯ

1.1 Анализ требований технического задания

В данной работе требуется разработать микропроцессорный измеритель отношения напряжений, в основном предназначенный для использования в качестве прецизионного средства измерения при исследовании параметров СВЧ узлов. Разрабатываемый прибор призван заменить широко используемые для этих целей приборы В8-6, В8-7, которые в настоящее время морально устарели и их характеристики уже не обеспечивают современным требованиям. Кроме того разрабатываемый прибор может найти широкое применение в других областях, связанных с контролем относительных изменений параметров различных объектов, а также с контролем параметров технологических процессов.

Приборы В8-6 и В8-7 по своему принципу действия обеспечивают последовательное измерение отношения. Т. е. на один и тот же вход подается сначала больший сигнал, измерительный канал калибруется, а затем подается второй сигнал и только после этого измеряется отношение. Разрабатываемый прибор, в отличие от вышеуказанных, по своему принципу действия должен обеспечивать параллельное измерение отношения. Это значит, что у него должно быть предусмотрено два входа, на которые будут подаваться одновременно оба сигнала. При этом измерение отношения будет проводиться в автоматическом режиме в реальном масштабе времени. Такой подход позволяет увеличить производительность измерений и исключить процедуру калибровки при каждом измерении без потери точности.

В соответствии с техническим заданием разрабатываемый прибор должен обладать широким диапазоном измеряемых отношений: 60 дБ. Причем в этом диапазоне должна обеспечиваться высокая точность измерений. В связи с этим в работе необходимо рассмотреть различные способы измерения отношений, выбрать наиболее приемлемый в этом смысле и обеспечить его реализацию на соответствующей элементной базе.

В соответствии с техническим заданием разрабатываемый прибор должен обладать широким динамическим диапазоном входных напряжений: 60 дБ. В связи с этим необходимо провести анализ способов расширения динамического диапазона входных сигналов, выбрать наиболее приемлемый и осуществить его реализацию. Последнее можно обеспечить усилителем с управляемым коэффициентом усиления.

Так как в соответствии с техническим заданием прибор должен измерять отношение сигналов постоянного напряжения, то в разрабатываемом приборе необходимо использовать усилитель постоянного тока. Усилителями постоянного тока называют усилители, усиливающие сколь угодно медленные электрические колебания. Так как усилитель постоянного тока усиливает как переменную, так и постоянную составляющие входного сигнала, при отсутствии сигнала на входе усилителя на его выходе должна отсутствовать как переменная, так и постоянная составляющие напряжения; в противном случае нарушится пропорциональность между выходным и входным напряжениями сигнала. Основной проблемой, которую следует решать при проектировании таких усилителей, – это уменьшение дрейфа нуля. Дрейф нуля, который присущ этому классу усилителей, может существенно повлиять на метрологические характеристики разрабатываемого устройства. Поэтому в данной работе необходимо провести анализ методов построения усилителей постоянного тока и методов борьбы с дрейфом нуля, выбрать и реализовать вариант, обеспечивающий требования технического задания.

В соответствии с техническим заданием минимальная величена входного сигнала Umin=10мкВ. При таком малом уровне сигнала на ряду с дрейфом нуля негативное влияние на результат измерения будут оказывать шумы. Поэтому для выполнения требований технического задания необходимо проанализировать возможные пути шумоподавления, выбрать и реализовать в проекте наиболее оптимальный вариант.

1.2 Методы измерения отношения

Классификация измерителей отношения в зависимости от выполняемых функций зависит от вида входных и выходных преобразователей [1,2]. Основные показатели: динамический диапазон, погрешность деления и быстродействие, в основном определяются параметрами делительных схем. Измерители отношения в общем виде можно классифицировать по выполняемым ими функциям на измерители отношения электрических и неэлектрических величин. В обоих случаях приборы различаются только входными преобразователями. Измерители отношения электрических величин по виду сигнала разделяют на измерители отношения постоянного и переменного тока. В свою очередь последние делят на импульсные, низкочастотные и высокочастотные. В зависимости от полосы частот различают узкополосные и широкополосные. Их также можно разделить по динамическому диапазону и быстродействию. В связи с этим важно разобраться в свойствах существующих делительных схем с тем, чтобы для требуемой измерительной задачи выбрать наиболее оптимальную.

1.2.1 Мостовой метод Простейшая схема позволяющая найти отношение двух напряжений представляет собой перестраевоемое сопротивление позволяющее установить баланс моста [1]. Данная схема представлена на рисунке 1.1.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------  


Рисунок 1.1 - Мостовая схема измерения отношения напряжения

В случае, когда схема сбалансирована, т. е. измерительный прибор (И) показывает нуль, будет иметь место равенство [1]:

Рисунок убран из работы и доступен только в оригинальном файле.. (1.1)

После несложного преобразования получим

Рисунок убран из работы и доступен только в оригинальном файле.. (1.2)

Из формулы (1.2) видно, что отношение сопротивлений при условии баланса является мерой измеряемого отношения напряжений. Следовательно, отградуировав переменное сопротивление соответствующим образом можно определять отношение подаваемых на схему напряжений путём балансировки схемы.

Однако, данная схема крайне непроизводительна, т. е. обладает малым быстродействием, так как требует постоянной балансировки. Дополнительным источником погрешности служит неточность балансировки, возникающая вследствие усталости оператора.

1.2.2 Логарифмический метод

Существует множество различных методов нахождения отношения напряжений, которые выполняют операцию деления двух электрических величин при помощи моделирования промежуточных математических операций [1]. Характерным примером устройств такого типа являются делительные схемы, использующие известные из элементарной математики соотношения

Рисунок убран из работы и доступен только в оригинальном файле.; (1.3)

Рисунок убран из работы и доступен только в оригинальном файле.. (1.4)

Логарифмирование независимых переменных x1 и x2 и последующее вычитание обеспечивают выполнение операции деления в логарифмическом масштабе.

Логарифмические делительные схемы различаются в основном видом логарифмического преобразования, от которого в значительной степени зависят точность, динамический диапазон и сложность логарифмических делительных схем. Структурная схема измерителя отношения основанная на логарифмическом методе представлена на рисунке 1.2.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
---------------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------  

Рисунок 1.2 – Структурная схема логарифмического измерителя отношения

В основном логарифмические схемы предназначены для определения частного от деления двух постоянных напряжений. Для реализации данного метода можно использовать логарифмические усилители, цепи, работа которых обоснована на линейно-кусочной аппроксимации, операционные усилители с нелинейной экспоненциальной обратной связью.

В качестве экспоненциальных элементов, выполняющих логарифмическое преобразование сигнала, можно использовать кремневые p-n переходы. В кремневых диффузионных мезатранзисторах, а также в транзисторах планарной конструкции коэффициент α не зависит от величины тока и близок к единице. Если прямое напряжение на p-n переходе превышает 100 мВ, тогда можно аппроксимировать их вольтамперную характеристику выражением

Рисунок убран из работы и доступен только в оригинальном файле. , (1.5)

где Iк - ток коллектора, Iэо – начальный ток эмиттера, α – параметр p-n перехода, Uбэ – напряжение между эмиттером и базой. Экспоненциальная характеристика сохраняется в интервале изменения токов до пяти декад. Это позволяет реализовать деление напряжений в широком динамическом диапазоне.

1.2.3 Применение АРУ для нахождения отношения напряжений

Существует большой класс элементов, коэффициенты передачи которых зависят от управляющего воздействия. Практически все известные виды характеристик регулирования коэффициентов передачи различных элементов можно выразить в общем виде зависимостью

Рисунок убран из работы и доступен только в оригинальном файле., (1.6)

где k0 – начальный коэффициент передачи, S(up) =dk(up)/dup – крутизна управления коэффициентом передачи, up– управляющее напряжение.

Поскольку коэффициент К0 может принимать значения от нуля до любой положительной величины, а S(up) может быть любой функцией аргумента up при любом его знаке, то очевидно, что выражение (1.6) справедливо для всех возможных реализаций элементов с регулируемым коэффициентом передачи. Когда начальный коэффициент передачи Ко равен нулю, а крутизна S(up) имеет отрицательную величину, не зависящую от up, получаем выражение коэффициента передачи множительной схемы.

Рассматривая работу схемы с двумя управляемыми элементами, которая изображена на рисунке 1.3, можно доказать, что при выполнении определённых условий, напряжение u3 будет равно [1] :

Рисунок убран из работы и доступен только в оригинальном файле. . (1.7)

Эти условия сводятся к тому, что для правильного деления необходим бесконечный коэффициент усиления замкнутой цепи АРУ, что в основном обеспечивается увеличением коэффициента усиления обратной связи, а характеристики регулирования обоих управляемых элементов должны быть строго идентичными.

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле. --------------------------------------------------
--------------------------------------------------

СС

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- -------------------------------------------------- --------------------------------------------------
--------------------------------------------------

УЭ1

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- -------------------------------------------------- U2 U’ E0

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. Up у ΔU

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------  

--------------------------------------------------
--------------------------------------------------

УЭ2

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- --------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.U1 U3

Рисунок 1.3 - Структурная схема измерителя отношения на принципе АРУ

.Надо отметить, что требования к виду зависимости k(up) отсутствуют. Это позволяет применять любые элементы с управляемым коэффициентом передачи, лишь бы их характеристики управления были идентичными.

Но идеального совпадения характеристик регулирования двух элементов, равно как и бесконечного коэффициента усиления замкнутой системы АРУ, добиться нельзя. Этим и объясняется появление систематических погрешностей. Так можно доказать, что для получения погрешности деления порядка 2% требуется совпадение характеристик не хуже 1% во всём динамическом диапазоне [1], что вряд ли может быть реализовано.

1.2.4 Разносный метод нахождения отношения напряжения

Для измерения отношения напряжений близких по величине, целесообразно применять разносный метод, который сводится к следующему: сначала надо измерить разность входных напряжений, разделить полученную разность на одно из входных напряжений, а затем измерить выходное напряжение [1]. Указанное выше записывается как

Рисунок убран из работы и доступен только в оригинальном файле., (1.8)

где С – константа деления, Uвых – выходная величина напряжения, r =u1/u2 – требуемое отношение напряжений. Из формулы (1.20) следует

Рисунок убран из работы и доступен только в оригинальном файле.. (1.9)

Структурная схема, реализующая описанный выше метод, изображена на рисунке 1.4.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------  

Рисунок 1.4 – Структурная схема измерителя отношения реализующего

разносный метод

Погрешность измерения отношения в этом случае равна [1]

Рисунок убран из работы и доступен только в оригинальном файле.. (1.10)

Величины dС и dUвых имеют следующий физический смысл. В любой делительной схеме в результате климатических воздействий, изменений напряжения питания в некоторых пределах изменяется выходная величина, что соответствует изменению постоянной деления C и вносит погрешность, обозначенную как dC. Погрешность измерения выходной величины напряжения обозначена dUвых. Из выражения (1.10) следует, что для dС=2% и dUвых=1% измерения отношения r=0.99 будут обеспечиваться с предельной погрешностью dr=0.003% [1].

1.2.5 Цифровой метод измерения отношения

При вычислении отношения при помощи микропроцессора, напряжения, отношения которых необходимо найти преобразуются в цифровой код, а затем осуществляется операция деления одного числа на другое. Известно, что представление числовой информации в вычислительной машине ограничено разрядностью [3]. И если результат выполнения арифметического действия по количеству разрядов превышает разрядную сетку устройства, то часть разрядов теряется В настоящее время существует множество алгоритмов выполнения деления одного числа, представленного в двоичном коде на другое. Причем выполнения операции деления зависит от вида формата в котором представлено число.

Операции над числами с фиксированной точкой наиболее часты в практике программирования. Это объясняется тем, что большинство прикладных задач не требует такой точности, какую может дать плавающая точка, а скорость обработки, особенно в регистровых командах, значительно выше.

Для представления чисел с фиксированной точкой используется двоичная система счисления. Числа размещаются в формате полуслова (16 бит), слова (32бита) и двойного слова (64 бита). Размером этих полей фиксированной длины определяется диапазон представления чисел, а при фиксированном диапазоне – точность представления числа.

Для представления чисел с плавающей точкой используется полулогарифмическая форма, которая имеет вид

Рисунок убран из работы и доступен только в оригинальном файле., (1.11)

где М – мантисса числа А, r – порядок числа. Положение запятой определяется значением порядка r. С изменением порядка в ту или другую сторону точка перемещается (плавает) в лево или право. Под мантиссу и порядок в машине отводится определенное число разрядов. Например, при представлении в формате слова - 24. Диапазон представления десятичных чисел, взятых по абсолютному значению, определяются неравенством [3]: 10-77≤│A(10)│≤1076. Преобразование числовой информации в формат с плавающей точкой осуществляется программным путем.

1.3 Методы построения усилителей постоянного тока

1.3.1 Дрейф нуля в усилителях постоянного тока

Дрейфом начального уровня или дрейфом нуля называется самопроизвольное изменение выходного напряжения при неизменном или равном нулю входном напряжении. Дрейф нуля является основным источником погрешностей в измерительных приборах, в которых необходимо усиливать сигналы постоянного напряжения [4,5,6].

Причины возникновения дрейфа начального уровня напряжения или тока в УПТ различные. Во-первых, колебания температуры окружающей среды вызывают изменения токов коллекторного и эмиттерного р-п переходов, напряжения база - эмиттер и коэффициента усиления тока биполярных транзисторов. У полевых транзисторов с изменением температуры также изменяются соответствующие параметры. Во-вторых, при изменении напряжений источников питания усилительных каскадов изменяется напряжение на выходе усилителя, даже если его входное напряжение оставалось неизменным. В-третьих, происходит старение параметров транзисторов, т. е. их изменение во времени. В-четвертых, в соединениях, выполненных с помощью паек, а также в других соединениях элементов или микросхем, которые являются неоднородными, могут возникать термоЭДС. Последние усиливаются в каскадах, и на выходе усилителя возникает изменение напряжения. Перечисленные дестабилизирующие факторы протекают медленно во времени и усиливаются наравне с входным медленно изменяющимся сигналом, вызывая определенную погрешность выходного напряжения.

Для уменьшения дрейфа начального напряжения в УПТ прямого усиления применяют специальные балансные или разностные схемы каскадов, а иногда электрическую изоляцию каскадов друг от друга с помощью оптопар, которая позволяет получить изолирующие каскады. В УПТ с преобразованием (модуляцией) усиливаемого сигнала уменьшение дрейфа нуля достигается другим способом, однако и здесь возникают трудности, которые преодолеть непросто.

1.3.2 Стабилизация точки покоя в транзисторных каскадах

Ток покоя выходной цепи усилительного каскада в рабочих условиях не должен сильно отклоняться от величины, обеспечивающей нормальную работу, так как иначе свойства каскада ухудшатся и он даже может стать неработоспособным.

При питании от одного источника достаточную стабильность тока покоя выходной цепи (или, что то же самое, достаточную стабильность положения точки покоя на семействе статических выходных характеристик транзистора), обеспечивающую работоспособность транзисторных каскадов при изменении температуры и замене транзисторов, можно получить при использовании схем стабилизации тока покоя выходной цепи (схем стабилизации точки покоя)[4,5].

Простейшей и наиболее экономичной из таких схем является коллекторная стабилизация (рис.1.5), в которой стабилизация положения точки покоя осуществляется параллельной отрицательной обратной связью по напряжению, снимаемой с коллектора транзистора.

Рисунок убран из работы и доступен только в оригинальном файле. 

Рисунок 1.5 - Коллекторная стабилизация точки покоя при включении

транзистора с общим эмиттером

Здесь к резистору R1 приложена разность напряжения источника питания Е и падения питающего напряжения на сопротивлении коллекторной нагрузки Z. Если почему-либо ток покоя выходной цепи стремится возрасти, падение напряжения на Z увеличивается, приложенное к R1 напряжение уменьшается и ток смещения базы падает, что не дает току покоя сильно увеличится; при стремлении тока покоя уменьшиться описанный процесс автоматического регулирования происходит обратным образом.

1.3.3 Дифференциальные каскады

Эффективным схемным решением, резко уменьшающим дрейф нуля, вызванный как температурной нестабильностью транзисторов, так и изменением питающих напряжений, является использование в усилителе так называемых дифференциальных каскадов[4,5,6].

Простейшая схема дифференциального каскада на биполяр­ных транзисторах изображена на рис. 1.6. Если транзисторы одинаковы, то при любом большом значении их дрейфа потенциалы на коллекторах изменятся на одинаковую величину, а напряжение Uвых между ними останется неизменным. Таким образом, в этой схеме напряжение Uвых оказывается нечувствительным к синфазным сигналам, т. е. к дрейфу нуля. Для создания между коллекторами транзисторов полезного усиливаемого сигнала необходимо подавать его на базы транзисторов в противоположных фазах.

Для создания между коллекторами транзисторов полезного усиливаемого сигнала необходимо подавать его на базы транзисторов в противоположных фазах. В этом случае напряжение Uвых определяется только входным (дифференциальным) сигналом и совершенно не зависит от дрейфа нуля (синфазный сигнал). В реальных условиях полной идентичности транзисторов добиться нельзя и синфазные сигналы будут проникать на выход устройства, создавая выходное напряжение ошибки (дрейфа). Однако его величина в таком дифференциальном каскаде оказывается очень малой.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------  

Рисунок 1.6 - Дифференциальный каскада на биполяр­ных транзисторах

1.3.4 Усилители постоянного тока с преобразованием частоты усиливаемых сигналов

Для усиления сигналов с напряжением ниже сотен микровольт усилители постоянного тока прямого усиления непригодны, и для этой цели приходится использовать усилители постоянного тока с преобразованием частоты усиливаемых сигналов.

В таких усилителях напряжение усиливаемых сигналов, имеющих спектр частот от 0 до W при помощи балансного модулятора модулирует по амплитуде напряжение генератора несущей частоты w, в результате чего на выходе модулятора получают модулированные колебания несущей частоты со спектром боковых, частот w±W

Эти колебания подают на вход усилителя переменного тока рассчитанного на пропускание полосы частот w±W; усиленные модулированные колебания детектируются балансным демодулятором, выделяющим из этих колебаний усиленный сигнал первоначальной формы который после отфильтровывания остатка несущей частоты и ее гармоник поступает в нагрузку. Для неискаженного усиления несущая частота w должна по крайней мере в 5—10 раз превышать наивысшую частоту Wв усиливаемых сигналов.

Дрейф усилителей постоянного тока с преобра­зованием в основном определяется дрейфом балансного модулятора. К достоинствам усилителей постоянного тока с преобразованием можно отнести малый уровень дрейфа, отсутствие необходимости стабилизации источников питания, простоту введения обратной связи и регулировки усиления; их недостатком является сложность устройства, включающего в себя, кроме усилителя (У), генератор несущей частоты (Г), балансные модулятор (М), демодулятор (ДМ) и фильтр(фнч). В УПТ с модуляцией сигнала удаётся получить дрейф начального уровня менее 2мкВ/°С [6]. Схема описываемого УПТ представлена на рисунке 1.7.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------  

Рисунок 1.7 – Структурная схема усилителя постоянного тока с преобразованием частоты усиливаемых сигналов

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальном файле. | Рисунок убран из работы и доступен только в оригинальном файле. |
--------------------------------------------------------- --------------------------------------------------
1.4 Выводы

На основании анализа, проведенного в данном разделе обозначим основные принципы построения разрабатываемого устройства. Так для выполнения непосредственно операции деления в микропроцессоре необходимо воспользоваться алгоритмом деления, при котором числа представляются в формате с плавающей запятой. Это позволит обеспечить необходимую точность вычислений и избежать дополнительной погрешности при измерении отношения напряжений.

Усиливать входные сигналы стоит при помощи усилителей постоянного тока, в которых постоянное напряжение преобразуется в переменное, а только затем усиливается. Однако необходимости преобразовывать переменное напряжение обратно в постоянное при решении нашей задачи нет. Поэтому при реализации разрабатываемого устройства целесообразно перейти от сигналов с постоянным напряжением к переменным, что можно осуществить при помощи обычного коммутатора. Таким образом, это решение существенно облегчит реализацию усилительного тракта прибора и решит проблему дрейфа нуля, не увеличив при этом погрешность измерений. Так как в соответствии с техническим заданием динамический диапазон входных напряжений достаточно большой (60 дБ ) то в тракте усиления необходимо использовать усилитель с переменным коэффициентом передачи, которые в настоящее время выпускаются промышленностью. Это обеспечит сжатие динамического диапазона сигнала, поступающего на вход аналого-цифрового преобразователя АЦП. Такое решение позволяет резко снизить относительную погрешность, возникающую из-за квантования преобразуемого сигнала. Процесс обратного расширения динамического диапазона будет осуществлять в процессоре.

Для снижения погрешности, причиной которой являются шумы, необходимо применять малошумящие усилители. Кроме того необходимо будет реализовать цифровую фильтрацию, что обеспечит увеличение отношения сигнал – шум, а следовательно уменьшит погрешность измерения.

2 РАЗРАБОТКА ПРИНЦИПОВ ПОСТРОЕНИЯ ИЗМЕРИТЕЛЯ ОТНОШЕНИЙ.

2.1 Функциональная схема

На основании выводов, сделанных в первом разделе проведем разработку функциональной схемы прибора. Эта схема приведена на рис.2.1.

Так как разрабатываемое устройство должно измерять отношения весьма малых напряжений ( от 10 мкВ до 10мВ ) то совершенно очевидно, что данные напряжения необходимо усиливать. Причём целесообразно данные напряжения усиливать по одному тракту усиления. Данное техническое решение позволит исключить дополнительную погрешность связанную с нестабильностью параметров элементов схемы. Два тракта усиления собранные на одной элементной базе будут всегда иметь небольшое различие в коэффициентах передачи из за временной нестабильности, (воздействие на схему различных дестабилизирующих факторов) и старения. В свою очередь это небольшое отличие является причиной неточности при измерении той или иной величины, например, как в данной работе, при измерении отношения двух напряжений. Кроме того, использование одного тракта усиления позволит уменьшить стоимость разрабатываемого устройства за счёт сокращения используемых элементов, что также не маловажно при проектировании реального устройства. Для реализации выбранного технического решения входные сигналы будем подавать на единый тракт усиления последовательно, через коммутатор К, управляемый центральным процессором П1.

Как было описано в первой главе данной работы, причиной большой погрешности в измерениях при усилении постоянных напряжений может являться дрейф нуля. Во избежание данного явления целесообразно перейти от постоянных напряжений к переменным. Этот переход можно осуществить при помощи коммутатора К, который последовательно будет подключать ко входу предварительного усилителя ПУ либо один из входных сигналов, либо общий провод, потенциал которого равен нулю. Таким образом, для осуществления схемы с одним трактом усиления и перехода от сигналов постоянного напряжения к сигналам с переменным напряжением используем трехканальный коммутатор, на один вход которого подается первый входной сигнал, на второй вход – второй входной сигнал. Третий вход коммутатора необходимо присоединить к общему проводу. Центральный процессор должен управлять коммутатором таким образом, чтобы на выходе коммутатора было сформировано две последовательности прямоугольных импульсов одинаковой частоты со скважностью равной двум. Причем амплитуды сформированных последовательностей будут равны величинам напряжений входных сигналов. (Рисунок 2.2)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 2.2 – Сигнал, формируемый на выходе коммутатора

Как уже было упомянуто выше, управляться четырехканальный коммутатор будет центральным микропроцессорным устройством. Причем частоту последовательностей прямоугольных импульсов выберем равной F=1 кГц. Частоту смены импульсных последовательностей следует выбрать исходя из расчётов времени, которое требуется на установление переходного процесса цифрового фильтра описанного далее, и времени, которое требуется процессору для выполнения заложенных в него алгоритмов обработки поступающей информации.

Далее сформированные коммутатором импульсные последовательности усиливаются предварительным усилителем ПУ. Так как поступаемый на вход ПУ сигнал имеет малый уровень (в худшем случае 10 мкВ в соответствии с техническим заданием), то усилитель, дабы не вносить большую погрешность в измерение требуемой величены, должен иметь малый коэффициент шума. Основным требованием, которому должен соответствовать выбираемый усилитель является низкий коэффициент шума. Поэтому следует выбрать малошумящий операционный усилитель. Коэффициент передачи по напряжению предварительного усилителя выберем позже.

Так как в соответствии с техническим заданием динамический диапазон входных напряжений достаточно большой (60 дБ ) то в тракте усиления необходимо использовать усилитель с переменным коэффициентом передачи. Это обеспечит сжатие динамического диапазона сигнала, поступающего на вход аналого-цифрового преобразователя АЦП. Такое решение позволяет резко снизить относительную погрешность, возникающую из-за квантования преобразуемого сигнала (абсолютное значение этой погрешности равно единице младшего разряда). Обратное расширение динамического диапазона будем осуществлять в центральном процессоре путем деления полученного кода на коэффициент усиления управляемого усилителя. Используем двуполярный двенадцатиразрядный АЦП с максимальной амплитудой сигналов подаваемых на АЦП равной Umax=2 В. В двенадцатиразрядном АЦП один разряд знаковый. Зная это можно найти число уровней квантования, которое равно N=211=2048. Тогда шаг квантования

Рисунок убран из работы и доступен только в оригинальном файле.. (2.1)

Относительную погрешность вносимую при оцифровке сигнала можно оценить как отношение шага квантования к входному сигналу.

Рисунок убран из работы и доступен только в оригинальном файле.. (2.2)

При максимальном значении амплитуды подаваемого на АЦП сигнала погрешность равна: δmin =(0,001/2)*100% =0,05%. Это будет минимальная погрешность вносимая АЦП. Подберём коэффициент передачи всего усилительного тракта таким образом, чтобы минимальная амплитуда сигнала подаваемого на вход АЦП была в два раза меньше максимального значения амплитуды, то есть 1 В. Погрешность при этом будет равна δmax=(0,001/1)*100% =0,1%. Это и будет максимальная погрешность АЦП. Для того чтобы погрешность не превышала данное значение, необходимо чтобы при любом значении входного сигнала, на АЦП поступала импульсная последовательность, амплитуда которой попадала бы в диапазон от 1 В до 2 В. Это можно реализовать при помощи управляемых усилителей УУ1-УУ3 коэффициенты передачи которых устанавливаются цифровым кодом с процессора.

Для обеспечения заданного динамического диапазона используем три таких усилителя включённых каскадно. Коэффициент передачи каждого может быть равен 1, 2, 4, 8. Тогда диапазон изменения коэффициента передачи всех трёх усилителей изменяется от 1 до 29=512. Управление коэффициентами усиления микросхем DA3 – DA5 осуществляет микроконтроллер DD1 типа AT90S1200 фирмы Atmel.

Для сжатия динамического диапазона сигнала используется дискретная система автоматической регулировки усиления (АРУ), анализирующая сигнал на выходе последнего усилителя и осуществляющая переключение коэффициента усиления, если уровень этого сигнала выходит за пределы диапазона 1 - 2 вольта.

Напряжение с выхода третьего управляемого усилителя поступает на первый вход компаратора, который встроен в микроконтроллер DD1 (вывод 12). На второй вход этого же компаратора (вывод 13 микроконтроллера DD1) подается напряжение с ЦАП. Напряжение на выходе ЦАП может иметь только два значения, соответствующие верхнему значению (2 вольта), либо нижнему значению диапазона выходного сигнала (1 вольт).

Управление работой ЦАП осуществляет микроконтроллер DD1, который вырабатывает соответствующие сигналы на выводах 14, 15, 16. Сначала на первый (старший) разряд ЦАП (резистор R14) подается напряжение +5В, а на второй разряд (резистор R12) – нулевое напряжение. При этом на втором входе компаратора формируется высокий уровень напряжения (2 вольта), который и сравнивается с напряжением на первом входе.

Если напряжение на первом входе компаратора превышает напряжение на втором входе, то происходит уменьшение коэффициента усиления управляемого усилителя в два раза, После этого процесс повторяется до тех пор, пока напряжение на первом входе компаратора не станет меньше, чем на втором.

Если напряжение на первом входе компаратора меньше напряжения на втором входе, то контроллер DD1 на второй разряд подает напряжение +5В, а на первый разряд – нулевое напряжение. При этом на втором входе компаратора формируется низкий уровень напряжения (1 вольт), который и сравнивается с напряжением на первом входе. Если после этого напряжение на первом входе компаратора меньше напряжения на втором входе, то происходит увеличение коэффициента усиления управляемого усилителя в два раза и процесс повторяется до тех пор, пока напряжение на первом входе компаратора не станет меньше, чем на втором.

Таким образом, в следящем режиме дискретная система АРУ удерживает напряжение на выходе третьего усилителя с управляемым коэффициентом передачи (1-2 вольта) при изменении входного сигнала во всем динамическом диапазоне изменения.

Для исключения циклических переключений на границах диапазона (1 и 2 вольта) предусмотрено введение гистерезиса. Это осуществляется с помощью младших разрядов ЦАП, которые включаются одновременно со старшим путем подачи на них напряжения +5 вольт (резистор R8) . При этом несколько увеличивается опорное напряжение, подаваемое на второй вход компаратора.

Непосредственное управление коэффициентом усиления проводит микроконтроллер DD1, устанавливая соответствующие коды на выводах 2, 3, 6. Эти коды поступают на выводы 15, 16 микросхем DA3 – DA5 и осуществляют изменение коэффициента усиления. Для проведения операции восстановления динамического диапазона (экспандирования) микроконтроллер DD1 7, 8, 9 формирует трехразрядный код коэффициента усиления управляемого усилителя, который поступает на центральный микроконтроллер. Значение коэффициентов передачи устанавливается сигналом с центрального процессора.

Зная максимальные значения коэффициентов передачи этих усилителей, можем оценить, каким должен быть коэффициент передачи предварительного усилителя. Известно, что минимальное значение амплитуды входного сигнала после коммутатора и разделительного конденсатора Uвхmin=5мкВ. При этом амплитуда сигнала подаваемого на АЦП: UАЦП=1В. тогда максимальный коэффициент передачи всего усилительного тракта :

Рисунок убран из работы и доступен только в оригинальном файле. . (2.3)

Вычислив, получим КОБЩ=200000. Найдём максимальный коэффициент передачи трёх управляемых усилителей с переменными коэффициентами передачи, который равен

Рисунок убран из работы и доступен только в оригинальном файле. . (2.4)

где К1 , К2, и К3 - коэффициенты передачи трёх усилителей соответственно. Тогда КПЕР=512. теперь можно найти коэффициент передачи предварительного усилителяРисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.. (2.5)

Вычислив, получим Кпу≃391.

Рассмотрим принцип сжатия динамического диапазона сигнала. Рассмотрим ситуацию, когда входной сигнал линейно изменяется от 10мкв до 10 мв Этот случай иллюстрируется рисунком 2.3. При подаче минимального напряжения на вход устройства процессор устанавливает на всех управляемых усилителях максимальные значения коэффициентов передачи. К1=К2=К3=8. На АЦП поступает сигнал с амплитудой приблизительно 1В. При увеличении напряжения входного сигнала увеличивается амплитуда сигнала поступающего на АЦП. Если напряжение входного сигнала превысит значение 20 мкВ, на вход АЦП будет поступать сигнал, амплитуда которого будет превышать 2 В. При этом АЦП выдаст на процессор код, во всех разрядах которого, кроме знакового, будут единицы. В этом случае процессор установит коэффициент передачи последнего управляемого усилителя равным четырём, оставив коэффициенты передачи первых двух на прежнем значении. При дальнейшем увеличении напряжения входного сигнала, процессор понизит коэффициент передачи последнего управляемого усилителя сначала до двух, затем до единицы. При этом важно, чтобы амплитуда сигнала, подаваемого на АЦП не упала ниже значения 1 В, а следовательно погрешность не превысила установленного значения. Это возможно из-за нестабильности входного сигнала и шумов. Поэтому процессор необходимо запрограммировать таким образом, чтобы при уменьшении напряжения на АЦП больше чем на какое-то значение ΔU относительно минимально допустимого, коэффициент передачи управляемого усилителя увеличивался.

При последующем увеличении напряжения входного сигнала процессор установит коэффициент передачи второго управляемого усилителя равным четырём, затем двум, затем единице. Если на вход устройства буден подан сигнал с максимальным в соответствии с техническим заданием напряжением 10 мкВ, коэффициенты передачи трёх управляемых усилителей установятся равными единице.

Перед АЦП необходимо поставить фильтр нижних частот ФНЧ, который бы ограничивал спектр сигнала подаваемого на АЦП пятой гармоникой. Тогда максимальная частота в спектре этого сигнала равна: Fmax=5F=5 кГц. В соответствии с теоремой Котельникова, найдём интервал дискретизации

Рисунок убран из работы и доступен только в оригинальном файле.. (2.6)

Δt=10-4 c=0.1мс. Требуемый ФНЧ может быть легко реализован на операционном усилителе.

С АЦП оцифрованный сигнал подается на центральный процессор, где осуществляется цифровая обработка. Сначала проводится цифровая узкополосная фильтрация, которая обеспечивает подавление шумов и повышает отношение сигнал-шум. На выходе цифрового фильтра имеем импульсную последовательность, огибающая которой соответствует гармоническому колебанию с частотой равной F=1 кГц. Далее при помощи дискретного преобразования Фурье (ДПФ) находится амплитуда первой гармоники, которая пропорциональна напряжению входного сигнала. Это значение запоминается. После того как с коммутатора поступает последовательность импульсов с амплитудой равной напряжению второго сигнала, и обрабатывается аналогично первому сигналу, выполняется операция деления одного числа на другое. При этом необходимо учитывать, какие коэффициенты передачи были установлены на управляемых усилителях. Результат выполнения операции деления выводится на индикатор. Для этих целей используем однострочный восьми символьный жидкостно-кристаллический индикаторный модуль GBM0801A фирмы XIAMEN.

2.2 Выбор типа микропроцессора

В настоящее время разработано и выпускается отечественной и зарубежной промышленностью множество микропроцессоров, которые имеют различные возможности. Разрабатываемое устройство требует от центрального процессора обеспечение выполнения требуемых операций за короткий промежуток времени. А именно цифровую фильтрацию, дискретное преобразование Фурье, операцию деления двух чисел. Кроме того, центральный процессор должен формировать управляющие сигналы для коммутатора, АЦП и для схемы индикации. Поэтому необходим быстродействующий процессор с высокой производительностью. Выберем микроконтроллер фирмы Texas Instruments TMS320VC5409A. Этот микроконтроллер обладает шестнадцатиразрядной шиной данных, имеет два вывода общего назначения (для управления коммутатором), три многоканальных последовательных порт, которые также могут быть запрограммированы как вывода общего назначения (для управления АЦП, схемой индикации). Кроме того, TMS320VC5409A снабжен встроенной оперативной памятью объемом 32 x 16 бит, которая состоит из четырех блоков объемом 8 x 16 бит каждый. Тактовая частота микроконтроллера 160 МГц. Питается от двух источников напряжения, а именно 3,3 В и 1,6 В, которые формируются специализированной микросхемой фирмы Texas Instruments - TPS70445. Данный микроконтроллер построен по улучшенной гарвардской архитектуре и имеет одну шину программной памяти и три шины памяти данных. Раздельные пространства программной памяти и памяти данных обеспечивает одновременный доступ к программным командам и данным. Для работы микроконтроллеру необходима внешняя ПЗУ. Выберем микросхему Am29LV200B объемом 256 x 8 бит, которую выпускает фирма AMD.

2.3 Оценка погрешности измерения отношения

Важнейшим показателем качества любого измерительного прибора является его точность. Поэтому при разработке измерителя отношения напряжений необходимо оценить погрешность измерения. Очевидно, что погрешность измерения отношения двух напряжений будет в первую очередь определяться погрешностью измерения самих напряжений. Так абсолютную погрешность измерения отношения можно найти по формуле

Рисунок убран из работы и доступен только в оригинальном файле.. (2.7)

Так как отношение двух напряжений определяется выражением

Рисунок убран из работы и доступен только в оригинальном файле., (2.8)

то относительную погрешность измерения отношения двух напряжений можно записать так:

Рисунок убран из работы и доступен только в оригинальном файле.. (2.9)

Определим частные производные для выражения (2.9).

Рисунок убран из работы и доступен только в оригинальном файле., (2.10)

Рисунок убран из работы и доступен только в оригинальном файле.. (2.11)

Подставим формулы (2.10) и (2.11) в выражение (2.9) и проделаем несложные преобразования. В результате получим

Рисунок убран из работы и доступен только в оригинальном файле.. (2.12)

Из выражения (2.12) заметим, что относительная погрешность измерения отношения равна разности относительных погрешностей напряжений, отношение которых необходимо определить. То есть мультиплексивная погрешность будет вычитаться. Однако нам необходимо оценить предельную погрешность, поэтому рассмотрим случай, когда ΔU1 и ΔU2 будут иметь различные знаки. При этом максимальная относительная погрешность измерения отношения двух напряжений равна

Рисунок убран из работы и доступен только в оригинальном файле.. (2.13)

Для оценки относительной погрешности измерения напряжений проанализируем причины её возникновения. Так основными источниками погрешности измерения напряжений являются погрешность возникающая при квантовании сигнала, погрешность, связанная с нелинейностью тракта усиления и погрешность, причиной которой являются шумы. Первая была оценена выше, при разработке функциональной схемы. Ее максимальное значение составляет 0,1%. Погрешность связанная с нелинейностью тракта усиления при питании операционных усилителей ±5 В и максимальной амплитуде сигнала 2 В, она составляет менее 0,01% [4]. Она мала по сравнению с погрешностью возникающей при квантовании сигнала, поэтому ее учитывать не будем. Погрешность, причиной которой являются шумы учитывать не будем ввиду сложности методики ее оценки. Тогда ΔU1/U1= ΔU2/U2=0.1%. А максимальная относительная погрешность измерения отношения двух напряжений, в соответствии с (2.13) будет равна (ΔK/K)MAX=0.2%.

Следует также учесть погрешность цифровой индикации. При работе схемы индикации в режиме плавающей запятой она будет оставаться неизменной во всем диапазоне измеряемых напряжений, и равна единице младшего цифрового разряда. Относительную погрешность цифровой индикации оценим при максимальном измеряемом отношении КMAX=1000. При этом вес единицы младшего цифрового разряда равен ΔЦИ=1. Тогда погрешность равна

Рисунок убран из работы и доступен только в оригинальном файле.. (2.14)

Таким образом δЦИ=0,1%. Суммарная погрешность разрабатываемого прибора будет равна

Рисунок убран из работы и доступен только в оригинальном файле. , (2.15)

и равна δИЗМ=0,3%. То есть разрабатываемый прибор способен измерять отношения двух напряжений во всем диапазоне изменения отношений с погрешностью 0,3%.

5 ТЕХНИКО–ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ

5.1 Маркетинговые исследования

Целью технико-экономического обоснования (ТЭО) является определение народно-хозяйственной эффективности производства устройства на основе учета технико-экономических показателей. Решение о целесообразности разработки, изготовления, внедрения и эксплуатации проектируемого устройства принимается из расчета обобщенного показателя – экономического эффекта, в котором отражены частные показатели эффективности, характеризующие прибор. Именно его нам необходимо рассчитать.

Для рыночных условий производства и эксплуатации новой техники следует предусмотреть возможные варианты конкуренции, сопоставив спрос и предложение на аналогичную технику на предлагаемом рынке.

Определим потребителя разрабатываемого устройства, для этого составим его портрет.

При производстве устройства измерения отношения напряжений на основе микропроцессорного вычислителя потребитель определяется из следующих соображений. По географическому положению предприятие-покупатель может находиться где угодно. Если устройство будет иметь выгодные технико-экономические показатели, при его технических показателях заинтересованность могут проявить как предприятия нашей страны, так и ближнего и дальнего зарубежья.

Потребителем могут быть и мелкие и крупные предприятия, т. к. цена прибора на рынке подобных устройств относительно не велика, соответственно по форме финансирования это могут быть и частные фирмы и госпредприятия. Величина закупок данного вида устройств не может быть высока, т. к. операция измерения отношения двух напряжений является весьма специфической, хотя как таковая она может быть использована в управлении различными техпроцессами на заводах. Приобретая разрабатываемое устройство, потребитель, прежде всего, выигрывает в цене и затратах на обслуживание, т. к. эксплуатация предлагаемого устройства не требует специального обучения персонала. Область применения относительно не велика: различные лаборатории, институты, конструкторские бюро, измерительные центры.

5.2 Расчет капитальных и текущих затрат, связанных с разработкой и изготовлением изделия

В состав единовременных капитальных затрат, связанных с проектированием устройства дистанционного управления радиостанцией, относятся затраты на:

а) научно-исследовательские и опытно-конструкторские работы (НИОКР);

б) приобретение, доставку, монтаж и освоение технологического и другого оборудования;

в) освоение производства и доработку новых образцов;

г) создание социальной инфраструктуры, а также обеспечение мероприятий по охране труда.

Так как разработка ведется на действующем предприятии с развитой инфраструктурой, капитальные вложения складываются из затрат на НИОКР.

Затраты на НИОКР определяются по следующим статьям.

- материалы и комплектующие изделия;

- заработная плата основная и дополнительная;

- отчисления на социальные нужды;

- специальное оборудование, приборы;

- накладные расходы.

К материалам и комплектующим изделиям относят те, которые используются для разработки, макетирования разрабатываемого изделия. Стоимость основных материалов приведена в таблице 5.1.

Таблица 5.1 – Cтоимость материалов --------------------------------------------------

пп

| Наименование материала |

Вид,

марка

| Единица измерения | Цена за единицу | Норма расхода на 1 изд. |

Сумма,

грн.

|
---------------------------------------------------------
1 | Стеклотекстолит фольгированный |

СФ-2-35-1.5

ГОСТ 10316-70 |

м2

| 12 | 0,01955 | 0,235 |
---------------------------------------------------------
2 | Припой |

Пр ПОС-61

ГОСТ 21930-76

| кг | 9 | 0,01 | 0,1 |
---------------------------------------------------------
3 | Канифоль |

КС-В

ГОСТ 19113-84

| Кг | 5 | 0,003 | 0,015 |
---------------------------------------------------------
4 |

Хлорное

железо

| НХЖК 2-12 | Кг | 7 | 0,04 | 0,28 |
---------------------------------------------------------
5 |

Спирт

этиловый

|

ХЧДА

ГОСТ 17299-78

| Кг | 2 | 0,2 | 0,4 |
---------------------------------------------------------
6 | Лак |

ЭП-73

ГОСТ 20824-81

| кг | 4 | 0,004 | 0,016 |
--------------------------------------------------------- --------------------------------------------------

Продолжение таблицы 5.1

--------------------------------------------------
1 | 2 | 3 | 4 | 5 | 6 | 7 |
---------------------------------------------------------
7 | Ударопрочный полистирол | ТУ 6-05-1604-72 |

м3

| 250 |

4,5*10-5

| 0,009 |

  |
---------------------------------------------------------
8 | Провод монтажный | МТВ-0,25 | м | 0,007 | 2,3 | 0,161 |

  |
---------------------------------------------------------
9 |

Провод

медный

| ПЭЛ-0,45 | м | 0,05 | 2 | 0,1 |

  |
---------------------------------------------------------
Итого | 1,316 |

  |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

В стоимость материалов включают транспортно-заготовительные расходы в размере 5% от их стоимости.

Затраты на покупные комплектующие изделия на один прибор определяются на основании принципиальной схемы прибора с учетом транспортно-заготовительных расходов в размере 5% от стоимости. Затраты на комплектующие изделия приведены в таблице 5.2.

Таблица 5.2 – Стоимость комплектующих изделий

--------------------------------------------------
№ пп | Наименование комплектующих изделий |

Марка,

Тип

|

Цена за

1 шт., грн

| Норма расхода на 1 изделие |

Сумма,

грн

|
---------------------------------------------------------
1 | Резистор | 0805 | 0,11 | 16 | 1.76 |
---------------------------------------------------------
2 | Резистор | СП3-22 | 0.5 | 2 | 1 |
---------------------------------------------------------
3 | Конденсатор | 0805 | 0,11 | 20 | 2,2 |
---------------------------------------------------------
4 | Конденсатор | K10-26 | 0,10 | 1 | 0,10 |
---------------------------------------------------------
5 | Конденсатор | К10-7В | 0,10 | 1 | 0,10 |
---------------------------------------------------------
6 | Кварц | РК179 БА | 2 | 1 | 2 |
---------------------------------------------------------
7 | Стабилитрон | TL431 | 1 | 2 | 2 |
---------------------------------------------------------
8 | ключ | 5 | 2 | 1 |
---------------------------------------------------------
9 | Трансформатор | ТОТ35 | 5 | 1 | 5 |
---------------------------------------------------------
10 | Микросхема | жки | 25 | 1 | 25 |
---------------------------------------------------------
11 | Микросхема | Дионый мост | 2 | 1 | 2 |
---------------------------------------------------------
12 | Микросхема | ИЛИ-НЕ | 0,5 | 1 | 0,5 |
---------------------------------------------------------
13 | Микросхема | K1402EH1 | 2 | 1 | 2 |
---------------------------------------------------------
14 | Микросхема | DCP010515DP | 10 | 1 | 10 |
---------------------------------------------------------
15 | Микросхема | DCP010505P | 10 | 1 | 10 |
---------------------------------------------------------
16 | Микросхема | LTC1402 | 15 | 1 | 30 |
---------------------------------------------------------
17 | Микросхема | PGA204 | 15 | 3 | 45 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Продолжение таблицы 5.2

--------------------------------------------------
1 | 2 | 3 | 4 | 5 | 6 |
---------------------------------------------------------

  | 18 | Микросхема | OPA627 | 10 | 2 | 20 |
---------------------------------------------------------

  | 19 | Микросхема | TMS320VC5409A | 45 | 1 | 45 |
---------------------------------------------------------

  | 20 | Микросхема | TPS70445 | 15 | 1 | 15 |
---------------------------------------------------------

  | 21 | Микросхема | Am29LV200B | 20 | 1 | 20 |
---------------------------------------------------------

  | 22 | Микросхема | AT90S1200 | 40 | 1 | 40 |
---------------------------------------------------------

  | 23 | Микросхема | NP100A | 40 | 1 | 40 |
---------------------------------------------------------

  | Итого | 290,3 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Таким образом затраты на материалы и комплектующие изделия по таблицам 5.1, 5.2 с учетом транспортно-заготовительных расходов:

ЗМ = 1,316+0,05*1,316 = 1,38 грн;

ЗКИ = 290,3+0,05*290,3 = 304,82 грн.

При расчете заработной платы положим, что ее получают на этапе проектирования инженеры конструкторы, и при проектировании устройства дистанционного управления радиостанцией нам достаточно двух инженеров, проектирование ведется 1 месяц.

Оклад инженера по различным источникам составляет 1,26 грн/час, при трудоемкости 192 часа на один прибор. Коэффициент, учитывающий доплаты к основной заработной плате Кд = 1,5. Тогда основная зарплата составит:

ОЗП = 2*Тр*Сч*Кд ; (5.1)

ОЗП = 2*192*1,26*1,5 = 725,76 грн.

Дополнительная заработная плата для инженеров на данном этапе не рассчитывается.

Отчисления на социальное страхование и др. составляют 37% от суммы зарплаты:

ОСС = 0,.37*ОЗП = 0,.37*725,76 = 268.53 грн.

Накладные расходы составляют укрупнено в объеме 200% от суммы зарплаты и составляют:

НР = 2*ОЗП = 2*725,76 = 1451,52 грн.

Полученные в результате расчета капитальные затраты будут:

К = ОЗП + ОСС + НР + ЗМ + ЗКИ ; (5.2)

К = 725,76 + 268.53 + 1451,52 + 1,38 + 304,82= 2752.01 грн.

В состав текущих затрат входят затраты, непосредственно связанные с серийным изготовлением аппаратуры. Расчет текущих затрат сводится к определению полной себестоимости изделия в соответствие с порядком калькуляции принятом в отрасли. Себестоимость изделия рассчитаем методом прямого счета, применяемого в радиопромышленности. При этом основная зарплата производственных рабочих определяется по трудоемкости изготовления одного изделия. Расчетная зарплата рабочих представлена в таблице 5.3.

Таблица 5.3 – Прямая зарплата основных производственных рабочих --------------------------------------------------
№ пп | Виды работ | Разряд | Часовая тарифная ставка, грн. |

Трудоемкость,

час

|

Прямая зарплата,

Грн.

|
---------------------------------------------------------
1 | Гальванические | 5 | 0,29 | 1,6 | 0,464 |
---------------------------------------------------------
2 | Сборочные | 5 | 0,29 | 2,0 | 0,58 |
---------------------------------------------------------
3 | Монтажные | 5 | 0,29 | 1,8 | 0,522 |
---------------------------------------------------------
4 | Настроечные | 6 | 0,35 | 1 | 0,35 |
---------------------------------------------------------
5 | Регулировочные | 5 | 0,3 | 1 | 0,3 |
---------------------------------------------------------
Итого | 2,216 |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Основная заработная плата будет составлять:

ОЗППР = 1,3*ПЗП = 1,3*2,216 = 2,88 грн.

Дополнительная зарплата составляет 16% от основной:

ДЗППР =0,16*ОЗППР = 0,16* 2,88 = 0,46 грн.

Отчисления на социальные нужды:

ОССПР = 0,37*(ОЗППР + ДЗППР) = 0,.37(2,88 + 0,46) = 1.24грн.

Расходы на подготовку и освоение производства составляют 4% от суммы основной заработной платы:

РПОП = 0,04*ОЗППР = 0,04*2,88 = 0,115 грн.

Расходы на содержание и эксплуатацию оборудования составляют 60% от суммы основной заработной платы:

РСЭО = 0,6*ОЗППР = 0,6*2,88 = 1,73 грн.

Общепроизводственные расходы составляют 80% от суммы основной заработной платы:

ЦР = 0,8*ОЗППР = 0,8*2,88 = 2,3 грн.

Общехозяйственные расходы составляют 90% от суммы основной заработной платы:

ОЗР = 0,9* ОЗППР = 0,9* 2,88 = 2,59 грн.

Прочие производственные расходы составляют 7% от всех предыдущих статей:

ПР = 0,07*(ОЗППР + ДЗППР + ОССПР + ЗМ + ЗКИ + РПОП + РСЭО + ЦР + ОЗР) ; (5.3)

ПР = 0,07*(2,88 + 0,46 + 1,24 + 1,38 + 304,82+ 0,115 + 1,73 + 2,3 + 2,59) = 13,13 грн.

Производственная стоимость изделия есть по существу общая сумма расходов по пунктам статей приведенных выше, т. е.

С = ОЗППР + ДЗППР + ОССПР + ЗМ + ЗКИ + РПОП + РСЭО + ЦР + ОЗР + ПР = 330,56 грн.

Внепроизводственные расходы определяются как 3% от производственной себестоимости

ВПР = 0,03*С = 9,92 грн.

Полная себестоимость, таким образом, будет:

СП = С + ВПР =330,56+9,92 = 340,48 грн.

Полученные результаты сводим в таблицу калькуляции себестоимости.

Таблица 5.4 – Калькуляция себестоимости изделия --------------------------------------------------
Статья расхода | Сумма, грн. | % к итогу |
---------------------------------------------------------
Основные материалы | 1,38 | 0,4 |
---------------------------------------------------------
Покупные комплектующие изделия | 304,82 | 89.5 |
---------------------------------------------------------
Основная зарплата производственных рабочих | 2,88 | 0.86 |
---------------------------------------------------------
Отчисления на соцстрахование | 1,24 | 0.36 |
---------------------------------------------------------
Расходы на подготовку и освоение производства | 0,115 | 0,04 |
---------------------------------------------------------
Расходы на содержание и эксплуатацию оборудования |

Здесь опубликована для ознакомления часть дипломной работы "Устройство измерения отношения двух напряжений". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 692

Другие дипломные работы по специальности "Наука и техника":

Описание работы электрической схемы охранного устройства с автодозвоном по телефонной линии

Смотреть работу >>

Самолет Хаукер Харрикейн

Смотреть работу >>

Усилитель модулятора лазерного излучения

Смотреть работу >>

Цивилизация богов. Прогноз развития науки и техники в 21-м столетии

Смотреть работу >>

Крестовый поход солнца

Смотреть работу >>