Дипломная работа на тему "Цивилизация богов. Прогноз развития науки и техники в 21-м столетии"

ГлавнаяНаука и техника → Цивилизация богов. Прогноз развития науки и техники в 21-м столетии




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Цивилизация богов. Прогноз развития науки и техники в 21-м столетии":


Андрей Капаций

Выделение из генетики новых наук и направлений. Рост частных инвестиций в генетику и медицину. Восстановление функций стареющего организма человека. Восстановление функционирования желез внутренней секреции. Применение сенсоров слежения и контроля в организме человека. Универсальные прививки. Увеличение средней продолжительности жизни человека на двадцать лет. Понимание в основном механизмов формообразования человеческого организма. Расшифровка множества маршрутных карт «ген – белок – биохимическая реакция». Создание базы данных строения и функций белков человеческого организма. Работа над созданием компьютерной модели метаболизма человеческого организма. Создание компьютерной модели эталонного генома человека. Компьютерная модель нейрона человека с элементами интерактивности. Генное конструирование. Достижения в сельском хозяйстве. Успехи генной инженерии в фармацевтике. Массовое применение технологий генной инженерии в мировом хозяйстве. Изучение генетических текстов редких, экзотических, исчезнувших видов микроорганизмов, животных и растений. Исследовательские работы по улучшению человеческого организма. Применение медицинских микромашин для оперативного и профилактического воздействия на человеческий организм. Средства доставки нормализаторов генов к большим массивам клеток. Способы извлечения из клеток ненужных веществ. Ликвидация рака как заболевания. Препараты, регулирующие температуру человеческого организма и скорость обмена веществ. Расшифровка маршрутных карт вида «ген – белок – биохимическая реакция» некоторых морских животных и рыб. Улучшение природных молекул белка путем компьютерного моделирования. Начало работ по созданию человека с эталонными генами. Тайные попытки создания улучшенного человека для военных целей. Трудности создания искусственных генов. Восстановление геномов вымерших животных и растений. Управление процессами роста растительных трансгенных организмов. Конструирование новых продуктов питания. Единая база данных компьютерных моделей химических соединений. Высокий уровень развития нанотехнологий. Получение сверхчистых химических элементов и соединений. Крупнотоннажное производство неорганических материалов методами молекулярной сборки. Эволюционирующие катализаторы. Катализаторы последовательного действия как основа безотходных технологий. Разработка саморазрушающихся после выполнения функций материалов. Отработка химических технологий в «едином пространстве виртуального моделирования». Искусственные фотокатализаторы для различных частот электромагнитного излучения. Создание новых классов химических соединений. Технологии сверхдавления и сверхплотные материалы. Конструкционные материалы, полученные под высоким давлением. Сверхпроводящие конструкционные материалы. Применение водорода в промышленности и в быту. Биологическое извлечение химических соединений. Применение систем компьютерной визуализации в быту. Изучение деятельности мозга при помощи молекулярных роботов. Медицинские препараты, улучшающие запоминание. Эксперименты по введению простых программ поведения, мышления и чувствования в мозг человека. Понимание механизмов возникновения психологических состояний у человека. Оперативный контроль над параметрами человеческого мозга. Первые эксперименты по корректировке психологических состояний человека. Настоящее и будущее ЕПВМ. Применение роботов-воспитателей для воспитания молодого поколения.

Ведущей наукой современности по-прежнему оставалась генетика. За последние годы из этой важнейшей для человека науки выделилось более десятка самостоятельных наук и множество новых направлений. Диапазон, охватываемый новыми науками и направлениями, был чрезвычайно широк и включал в себя изучение всех живущих ныне представителей земной биосферы, а также по возможности вымерших ее представителей. Огромную ценность для дальнейшего прогресса генетики представляла зачастую самая незначительная информация, наработанная естественными науками. Одинаково важной была информация как об устройстве генома человека, так и о метаболизме самого бесполезного вида микроорганизмов, как о причинах мутации вируса гриппа, так и о строении генома вымерших животных и растений. Интерес к генетическим и биологическим исследованиям со стороны общественности был велик как никогда. Причиной этого являлось то, что мировое общественное мнение приняло генетику как всесильную науку, способную обеспечить каждому человеку реальное долголетие, активную жизнь в старости, возможность обновления и улучшения собственного организма.

Так уж традиционно сложилось в нашем мире, что у подавляющего большинства людей значительные финансовые возможности появляются в пожилом и старческом возрасте. Иными словами, значительная часть мирового капитала находится в собственности, либо в управлении людей, давно миновавших пору зрелости. Выбор вариантов инвестирования капитала для этой части населения определяется в основном заботой о будущем собственных детей и родственников. По сути, инвестирование капитала пожилыми людьми носит вынужденный характер, поскольку им давно известно, что никакие денежные вливания в продление собственной жизни, а это для них есть приоритет первого порядка, в принципе не могут дать кардинальных результатов. В этих условиях человек ориентируется на приоритеты второго порядка, которыми являются благополучие и помощь близким людям. Однако бурное развитие генетики и сопутствующих наук пробило брешь в сложившемся стереотипе поведения и мышления относительно возможности продления собственной жизни. В последнее время все больше и больше богатых людей активно инвестировали средства в собственное долголетие и здоровье, вкладывая их в развитие наук и технологий. В недалекой перспективе уже маячила притягательная возможность личного бессмертия. И это не было самообманом или иллюзией. Каждый новый день приносил реальные достижения и открытия, не видеть которые мог только слепой.

Денежные средства частных лиц, которые инвестировались в развитие генетических наук, были колоссальными. Не существовало еще прецедентов в истории человечества столь массового и яркого интереса к какой-либо науке со стороны людей, владеющих практически неограниченным капиталом. Лучшие ученые, лучшее оборудование, все лучшее, лучшее… Наличие достаточного финансирования предопределило революционные прорывы в генетике. Перетекание финансов в науки смежные с генетикой стимулировало и там множество открытий. Импульс развития получили даже многие академические второстепенные исследования, финансирование которых сдвинулось с мертвой точки только благодаря небывалому всплеску интереса мировой общественности к естественным наукам. Несомненно, наиглавнейшим направлением денежного инвестирования в развитие генетики являлись аспекты практического ее использования для целей медицины.

Медицина, отзываясь на настрой и потребности общества, поставила перед собой, кроме иных важных задач, в качестве приоритетной задачу поддержания и восстановления функций стареющего человеческого организма. Именно в это направление частные инвестиции были максимальными. Именно это направление медицины более всего интересовало стареющую и уже постаревшую общность богатых людей всего мира. Для удовлетворения пожеланий инвесторов активно стали разрабатываться следующие направления медицинских исследований.

Одним из признаков старости является нарушение деятельности желез внутренней секреции человека, а также их несбалансированная работа. Нарушения эти являются отражением сложных процессов, происходящих в стареющем организме, и определяются низким качеством метаболических реакций, а также искажением сложившихся взаимосвязей между частями организма. Если смотреть в корень, то первопричиной являются одновременные массовые нарушения функционирования внутриклеточной деятельности. С точки зрения голой теории оптимальным вариантом обновления стареющего организма человека было бы одновременное обновление всех желез внутренней секреции, поскольку функции любой из них к этому возрасту являются нарушенными в той либо иной степени. Вариант же частичной замены наиболее поврежденных желез внутренней секреции являлся всего лишь полумерой. Операция полной замены органов была предпочтительна, как преследующая максимальные цели, но практическое ее воплощение требовало тяжелого хирургического вмешательства по имплантации желез внутренней секреции, что являлось нелегким испытанием для стареющего организма и несло в себе существенные элементы риска.

Сам по себе процесс выращивания новых органов человека, в том числе и желез внутренней секреции, был к этому времени достаточно изучен и неплохо отработан. Выращивание нового органа происходило максимально приближенно к этапам и срокам естественной программы роста, реализуемой в организме человека. Гены и группы генов, определяющие процессы роста и сроки дифференцирования клеток различной специализации, отрабатывали свои программы в строгой последовательности, той же, что и в растущем организме. Управление этими процессами было смешанным. Часть управленческих функций выполнялась принудительно, извне, путем единовременного воздействия на все количество растущих клеток, которое осуществлялось через механизмы активирования или ингибирования отдельных генов либо групп генов. Другая часть управленческих функций базировалась на использовании природных регуляторных механизмов, а именно на процессах активирования и ингибирования генов и их групп, осуществляемых тем же естественным образом, что при росте органа внутри живого развивающегося организма.

Выращивание новых органов являлось трудным и сложным делом. Над отработкой процессов выращивания только одного органа трудились, как правило, несколько исследовательских институтов и множество лабораторий. Теоретически ясный процесс при практической реализации был сопряжен с преодолением множества трудностей, когда помимо выращивания основной для конкретного органа функциональной ткани, требовалось сопроводить этот рост пропорциональным ростом нервной, мышечной, соединительной ткани, кровеносными сосудами и капиллярами и т. п. Таким образом, выращивание новых желез внутренней секреции являлось делом реальным, но длительным и дорогостоящим. Тем не менее, устойчивый спрос стимулировал предложение. Технологии выращивания органов вне организма человека совершенствовались, стоимость выращивания желез внутренней секреции постоянно уменьшалась, от всего этого человечество только выигрывало.

Иной подход реализовывала технология ренессанса желез внутренней секреции. Понимание механизмов функционирования клеток желез внутренней секреции, а также расшифровка маршрутных карт «ген (группа генов) – биохимическая реакция – гормон», заложили теоретический фундамент целевого воздействия на определенные гены. Способствовало восстановлению на некоторый срок функций желез внутренней секреции также и введение дополнительных химических веществ непосредственно в цитоплазму клеток. Срок такого ренессанса мог быть достаточно длительным для одного организма, и непродолжительным для другого – слишком много индивидуальных факторов влияли на исход внутриклеточного вмешательства. Возраст человека, состояние тканей, сила иммунитета, наличие в клетках индивидуальных химических соединений – все это влияло на срок функционирования обновленных желез.

К этому времени были хорошо изучены гормональная и ферментная системы человеческого организма, поняты процессы взаимодействия этих систем между собой и их влияние на организм в целом. Расшифровка молекулярной и пространственной структуры всех гормонов и ферментов человека позволила наладить их массовое производство в достаточном количестве. Средства целевой доставки лекарственных препаратов с успехом применялись для адресной доставки необходимых гормонов или ферментов, непосредственно к нуждающемуся органу или ткани.

На практике восстановление функций желез внутренней секреции осуществлялась следующим образом. Имплантированные в организм больного сенсоры слежения осуществляли оперативный контроль над концентрацией гормонов в ключевых местах организма человека и передавали текущую информацию в медицинский компьютер. При нарушении гормонального баланса в организме человека, компьютер в режиме реального времени выдавал текущие рекомендации по доставке к тем либо иным участкам организма гормональных препаратов. Постоянный медицинский контроль над уровнем и балансом гормонов в организме человека делал чудеса, гормональная система пожилых людей постоянно корректировалась и поддерживалась на уровне, соответствующем юношескому и молодому возрастам. Такое воздействие на организм человека могло осуществляться на протяжении длительного периода без какого-либо ущерба для его здоровья. Положительным дополнительным эффектом являлось восстановление функционирования желез внутренней секреции, после получения ими серии корректирующих воздействий. Здесь играли свою роль тонкие механизмы автоматической регуляции, выработанные человеческим организмом в процессе эволюции.

В медицине активизировалась работа по разработке технологий улучшения, восстановления и оптимизации функций всех органов и тканей стареющего человека. Универсальным подходом являлась имплантация в человеческий организм сенсоров слежения, круглосуточно связанных с медицинским компьютером, которые контролировали те, либо иные параметры внутренней среды человека. Медицинский компьютер выдавал рекомендации больному либо команды непосредственно исполнительным механизмам для приведения параметров организма в норму путем введения необходимых препаратов. Как правило, в организме человека создавались многочисленные депо – места складирования и хранения (а в некоторых случаях и производства) гормонов, белков, ферментов, необходимых химических соединений и лекарственных препаратов. Это были как имплантированные искусственные устройства, так и ткани человеческого организма, выполняющие функции длительного хранения своего содержимого.

Комплексное применение разработанных технологий резко снижало для больного возможность летального исхода, связанного с отказом органов и желез внутренней секреции, нарушением обмена веществ, типичных причин гибели стареющего организма. Имплантация в организм больного систем слежения, контроля и некоторых исполнительных механизмов на практике носила крайне щадящий характер. Использование методов микрохирургии и последних достижений в области нанотехнологий позволяли осуществлять оперативное вмешательство без заметного дискомфорта для больного. Человек после имплантации не чувствовал присутствия инородных предметов в своем организме, как из-за малости их размеров, так и по причине биологической инертности применяемых материалов.

Еще одной точкой приложения усилий научных коллективов стали работы по улучшению иммунной системы человека. К этому времени были полностью изучены и поняты механизмы функционирования иммунной системы человека, взаимное влияние иммунных органов друг на друга, а также их воздействие на другие органы и ткани в процессе выработки иммунного ответа. Кроме этого были изучены и поняты молекулярные механизмы воздействия биологически активных веществ на иммунную систему в целом. Все это позволило начать практическое улучшение иммунной системы человека путем применения биологически активных препаратов с учетом особенностей организма. Для этих целей ученые разработали и синтезировали ряд универсальных биологически активных препаратов, а также множество препаратов индивидуального действия, направленных на активизацию и укрепление иммунной системы человека. Индивидуальный подход способствовал поддержанию иммунной системы человека в течение длительного времени на максимальном, определенном природой уровне, без вредных для организма последствий, таких как истощение либо переутомление.

Заказать дипломную - rosdiplomnaya.com

Новый банк готовых успешно сданных дипломных работ предлагает вам приобрести любые проекты по необходимой вам теме. Качественное выполнение дипломных проектов под заказ в Новосибирске и в других городах РФ.

Развитие компьютерных технологий и совершенствование программного обеспечения не обошли стороной иммунологию. Накопленная информация, характеризующая молекулярную структуру наиболее известных и опасных антигенов, постоянно обрабатывалась с помощью специализированных программ, что в конечном итоге позволило сделать обобщающие выводы и заключения, имеющие серьезное значение для здоровья человека. Была доказана возможность создания искусственных белков, которые одновременно несли бы на себе поверхностные признаки десятков опасных антигенов, но были бы лишены их болезнетворной силы. Такие синтетические соединения были похожи на опасные природные антигены своими мембранными специфическими белками. Для иммунной системы человеческого организма они представлялись типичными чужеродными белками (антигенами), на внедрение которых требовалось сформировать иммунный ответ, независимо от степени их опасности и болезнетворности. Подобные искусственные белки являлись универсальными прививками. После такой прививки организм человека вырабатывал стойкий иммунитет ко многим болезнетворным микробам и вирусам, имеющим в своем составе белки и белковые фрагменты, аналогичные имеющимся в универсальной белковой прививке. Применение универсальных прививок позволило на порядок сократить заболеваемость бактериальными и вирусными инфекциями. Также значительно уменьшилось число отравлений пищевыми и промышленными токсинами.

Параллельно были разработаны активные синтетические сорбенты нового поколения, которые успешно выполняли некоторые функции иммунной системы человека. Активные синтетические сорбенты избирательно связывали при введении в кровеносную систему человека чужеродные химические соединения, попавшие из окружающей среды в организм человека. Кроме этого они также обезвреживали и связывали продукты метаболизма человеческого организма, в первую очередь токсины, свободные радикалы, некоторые другие нежелательные химические соединения.

Уверенное продвижение вперед естественных наук, главными из которых являлись генетика и медицина, привели к увеличению средней продолжительности жизни в развитых странах на двадцать лет. На общем среднестатистическом фоне выделялись индивидуальные впечатляющие случаи продления срока насыщенной, активной жизни. Существующее состояние науки и техники позволяло для состоятельных людей уверенно прогнозировать срок их активной жизни в пределах ста лет. Конечно же, при условии реализации всего комплекса медицинских мероприятий, направленных на омоложение и оздоровление стареющего организма. Учитывая темпы прогресса в ключевых для человека направлениях генетики и медицины, можно было предположить увеличение продолжительности активной жизни всех жителей планеты, а не только небольшого количества богатых людей, уже в ближайшем будущем. Выражаясь простыми словами, все люди, родившиеся в шестом десятилетии двадцатого века и позже, имели шансы на долголетие и активную здоровую жизнь. Насколько реальным было эти шансы использовать каждому, зависело от воли человека, его значимости в обществе, финансового состояния и многого другого.

Планомерное изучение генома человека продолжалось во всех странах мира. Этот процесс перешел в организованную, упорядоченную стадию. Не было более революционных прорывов на этом направлении, просто сотни тысяч и миллионы ученых скрупулезно, шаг за шагом складывали все новые кусочки генетической мозаики, за которыми реально просматривалась стройная картина функционирования человеческого генома. В прошлом осталась эйфория первых успехов и открытий, теперь исследовательский процесс шел безостановочно в тиши лабораторий и институтов, ежечасно отображая новые достижения и наработки путем совершенствования компьютерных моделей клеток, органов, целостных организмов, пополняя, таким образом, общедоступные базы данных. Геном человека являлся достоянием всего человечества, и давно уже информация об устройстве и механизмах его функционирования стала открытой и общедоступной для ученых и любителей всего мира, за небольшим исключением по причине безопасности. Экспериментальной информации было накоплено и систематизировано чрезвычайно много.

Анализ накопленной информации позволил полностью понять механизмы формообразования человеческого организма, реализуемые через последовательную активизацию так называемых «архитектурных генов». Стали понятными процессы роста и развития человеческого организма от момента первого деления оплодотворенной яйцеклетки до стадии половой зрелости, включая механизмы пространственной организации клеток, тканей, органов, механизмы дифференциации клеток, а также механизмы последовательного включения тех либо иных генов и групп генов. Были составлены полные маршрутные карты общего вида «ген – белок – признак», которые содержали информацию разной степени сложности о подчиненности и взаимоотношениях генов, белков и признаков между собой.

Близилась к завершению гигантская работа по составлению полного списка маршрутных карт типа «ген – белок – биохимическая реакция». Итогом этой работы виделось создание единой карты всех метаболических реакций человеческого организма. Последовательности «белок – биохимическая реакция» после расшифровки состыковывались между собой, выстраивались в длинные ветвящиеся цепи. При этом наглядно отображались механизмы сложных процессов и функций, присущие живым клеткам и тканям человека. Такие сложные цепи, переплетаясь между собой, отображали в табличном либо виртуальном трехмерном виде пока еще не полную единую карту всех метаболических реакций человеческого организма.

Единая карта метаболических реакций с каждым днем становилась все более полной, точной и всеобъемлющей. К концу десятилетия в ней нашли свое отображение около двухсот пятидесяти тысяч биохимических реакций, присущих человеческому организму, как на протяжении всего срока существования, так и в определенные периоды его развития. В этом всеобъемлющем научном исследовании нашлось место и для полумиллиона различных видов белков, вырабатываемых в организме человека, чьи функции и устройство были определены к этому времени. Изучение сотен тысяч белков, которые остались пока неисследованными, успешно продолжалось учеными многих странах мира в рамках программы «Белок человека». Трудности при изучении белков, связанные с их малым количеством, кратковременностью существования внутри клетки, необходимостью изучать поведение белковых молекул непосредственно в живой клетке, а также неоднозначным взаимодействием с другими веществами, успешно преодолевались. Шаг за шагом ученые раскрывали тайны строения белковых молекул, нюансы их поведения в биохимических реакциях.

Систематизация полученных наукой знаний позволила приступить к созданию компьютерной модели метаболизма человеческого организма, отображающей полный перечень свойственных человеческому организму жизнеобеспечивающих реакций. Несмотря на недостаток знаний о строении и функциях полумиллиона различных белков человеческого организма было вполне реально и весьма заманчиво изложить их функции и строение в приближенном виде, чтобы получить готовый инструмент для дальнейших исследований. Однако ученые пошли по пути создания компьютерной модели, построенной исключительно на достоверных, проверенных и подтвержденных фактах. Подобные факты формировали фундамент, на котором строились, проверялись и оттачивались новые теории и гипотезы, а также уточнялись ранее полученные знания и представления.

Создаваемая компьютерная модель метаболизма человеческого организма стала наиболее полной и ежеминутно обновляемой базой данных, которая в режиме реального времени пополнялась информацией, полученной в ходе реализации программ «Белок человека» и «Геном человека». Данная модель, хотя и не была достаточно полной, поскольку не учитывала все присущие человеческому организму белки и биохимические реакции, все же давала достаточно подробное представление о тонкостях основных метаболических процессов в клетках, тканях и органах человека. Важной особенностью компьютерной модели стала ее способность представить метаболические процессы в человеческом организме и строение белковых молекул в виде объемного виртуального изображения. Если выражаться просто, многое в строении и функционировании человеческого организма было уже изучено и понято. Информация о функциях и структуре неизученных белков, о предназначении неисследованных метаболических реакций, имела для ученых второстепенное значение, поскольку затрагивала процессы, признаки и реакции, не угрожающие человеческому организму гибелью. Существующие белые пятна, конечно же, требовали самого тщательного изучения, но даже при отсутствии этих знаний уже сегодня можно было успешно использовать возможности компьютерной модели метаболизма человеческого организма для продвижения вперед в медицине, фармацевтике, геронтологии и других науках.

Для координации усилий мировой научной общественности по совершенствованию и пополнению базовой компьютерной модели был создан на территории объединенной Европы научный центр, в котором трудились сотни специалистов различного профиля из многих стран. К сожалению, созданная компьютерная модель не могла пока работать в интерактивном режиме, что затрудняло работу ученых по доводке гипотез и предположений в режиме реального времени. Ввод новых знаний в базу данных осуществлялся как автоматически в соответствии с алгоритмами программного обеспечения, так и непосредственно специалистами в случаях, не предусмотренных компьютерными программами. Все новые знания подвергались тщательному анализу на предмет состыковки с уже имеющимися данными. Процесс анализа новых данных осуществлялся специальной рабочей группой, состоявшей из представителей разных наук. Эта группа также производила необходимые корректировки компьютерной модели при поступлении новых данных, с периодичностью один раз в неделю, и чаще, в случае какого-либо серьезного прорыва на одном из научных участков.

Все научные учреждения мира имели равные права на пользование базовой компьютерной моделью метаболизма человеческого организма для решения собственных задач. Сверхмощные компьютеры и высокоскоростные информационные магистрали позволяли делать это быстро и из любой части мира. Специальная служба безопасности осуществляла контроль над чистотой экспериментов при использовании базовой компьютерной модели. Любые попытки разрабатывать на ней генетическое, цитологическое, биохимическое оружие пресекались на корню, как службой безопасности, так и встроенными охранными программами.

К концу десятилетия закончилась кропотливая работа по сопоставлению человеческих генов и групп генов кодируемым ими признакам, белкам и биохимическим реакциям. За время исследований при расшифровке и сопоставлении генов и кодируемых ими признаков, белков и биохимических реакций был использован обширный материал, насчитывающий более пятидесяти тысяч индивидуальных геномов. Генетический материал для исследований подбирался по критериям максимальной несхожести геномов между собой, поэтому исследовательские работы закончились получением достоверных результатов. При отборе геномов, которые должны были достоверно представлять весь генофонд человечества, учитывались генеалогические нюансы, место проживания, профессиональная деятельность, расовая принадлежность, возраст людей, предоставивших наследственный материал. Результаты компьютерного анализа наследственной информации позволили выделить группу генов, ответственных за наиболее удачные проявления признаков человеческого организма, которые легли в основу компьютерной модели эталонного генома человека. Эта модель вобрала в себя все «лучшие» гены, найденные за годы исследований индивидуальных геномов и имела огромное значение для будущего всего человечества. Например, ребенок, появившийся на свет с таким эталонным геномом, от рождения будет иметь преимущества перед другими детьми, никогда не будет болеть, и будет иметь резервы «мощности» всех систем организма, в несколько раз большие, чем среднестатистический человек. Реальное рождение человека, имеющего эталонный набор генов, явилось бы важным шагом на пути эволюции человека, новым этапом в развитии человечества, определенным не самой Природой, но подготовленным мощью человеческого разума.

Однако теоретическая возможность создания в недалеком будущем совершенного человека (на базе эталонного генома) особенно никого в мире не взволновала и не воодушевила. Данная тема была интересна и актуальна сегодня. Завтрашний день многие преимущества совершенного, эталонного человека делал несущественными. При всех своих замечательных физических и морфологических признаках человек с эталонным набором генов не являлся фактором, кардинально влияющим на эволюцию человеческого общества. Запрограммированный генетически срок человеческой жизни в 110-120 лет, мог стать реальностью уже сегодня, и достичь этого можно было относительно несложными медицинскими средствами и технологиями. Перспектива для своих детей иметь здоровые органы в пожилом возрасте не волновала всерьез сегодняшних родителей, которые жили в мире, где замена изношенных органов и тканей была повседневной реальностью. Понимание механизмов реализации генетических программ, которое навсегда убрало завесу тайны над волшебством преобразования двух слившихся воедино клеток в мыслящего индивидуума, сделало современного человека более уверенным в собственных силах.

Потенциал лучших наработок эволюции, реализуемый в геноме совершенного человека, хотя и был значительным, все же имел свой предел, не слишком превосходящий предел возможностей среднестатистического человека. Многие ученые, философы и просто мыслящие люди, считали, что использование в близком будущем естественных эталонных генов для выращивания нового поколения неоправданно, что задачи, которые ставит перед собой и решает цивилизация, должны быть масштабнее и сложнее. Не увеличение продолжительности жизни до 120-150 лет, а увеличение срока активного долголетия до 500-1000 лет, такая задача должна решаться уже сегодня. Не повышение резервов организма и ресурсов органов на тридцать - пятьдесят процентов, а создание новых органов и систем, обеспечивающих жизнедеятельность в широком диапазоне условий окружающей среды. Не повышение коэффициента полезного действия пищеварительной системы при переработке пищи, а использование других видов энергии, помимо энергии химических связей.

Одним словом, речь шла об улучшении человека, как вида не путем постепенных эволюционных преобразований, а путем активного использования знаний и передовых технологий. Сама возможность подобного варианта развития событий нашла во всем мире, как сторонников, так и противников. Дискуссии на эту тему стали неотъемлемым атрибутом общественных и научных форумов, а также предметом длительных обсуждений в политических и государственных институтах. Мировые религиозные организации также присоединились к дискуссиям о путях эволюции человека, и мнения их по этому поводу также разделились.

На фоне происходящих в мире дискуссий появление компьютерной модели эталонного генома человека не произвело заметного ажиотажа. Новая модель заняла подобающее ей место как составная часть базовой компьютерной модели метаболизма человеческого организма, наиболее полной и обширной из существующих моделей. Надлежащее место в базовой модели также заняли другие существующие компьютерные модели специализированных клеток человека, некоторых клеток животных, а также компьютерные модели функциональных тканей, органов, систем и подсистем человека.

К этому времени весь мир перешел на единые стандарты программного обеспечения для компьютерного моделирования. Это позволило без проблем состыковывать воедино разрозненные модели различной степени детализации, разрабатываемые в различных странах и ориентированные на использование специалистами различных направлений. Семейство компьютерных моделей животных и растительных клеток было представлено несколькими достаточно полными моделями, разработанными учеными США, Японии, Европы, Китая и России.

Наиболее полной и завершенной являлась разработанная в США компьютерная модель нервной клетки мозга человека. Уровень детализации компонентов и структурных составляющих нервной клетки в данной компьютерной модели был чрезвычайно высок. Все клеточные структуры и процессы в этой модели были разработаны с детализацией на уровне молекул, а наиболее ответственные и важные из них на уровне отдельных атомов. Высокий уровень изученности компонентов нервной клетки и хорошая детализация позволили реализовать в компьютерной модели опции интерактивности и автоматической настройки. После воздействия на модель возмущающего фактора, которым мог быть ввод новых данных либо проверка теоретических представлений, она переходила в новое, адекватное вмешательству, состояние. Например, после введения в компьютерную модель нервной клетки мозга человека виртуального химического соединения, можно было визуально получить ответ на вопрос: «Является ли данное химическое соединение нейтральным, улучшает или ухудшает процессы, происходящие во время передачи сигнала между нейронами?».

После ввода информации суперкомпьютер начинал расчет вариантов взаимодействия виртуального химического соединения со всеми способными к реакции химическими соединениями, принимающими участие в моделируемом процессе. При этом взаимодействие молекул и атомов химических соединений рассматривалось как взаимодействие поверхностей потенциальной энергии. Образующаяся при взаимодействии двух поверхностей потенциальной энергии новая интегральная поверхность задавала структуру всех возможных химических соединений, чье строение вписывалось в такую поверхность. Невозможность получения интегральной поверхности потенциальной энергии указывала на невозможность осуществления химической реакции между данными химическими соединениями. После определения потенциально возможных продуктов химических реакций, тут же автоматически отображаемых в виде распределенных в пространстве структур, которые могли образоваться при взаимодействии исследуемого химического соединения со всеми способными к реакции клеточными компонентами, процедура поиска ответа продолжалась. Такой перечень возможных продуктов химических реакций принято было называть перечнем первого рода.

Вновь образованные химические соединения также проверялись на предмет химического взаимодействия со всеми, имеющимися в оперативном пространстве химическими соединениями и способными к реакции клеточными компонентами и между собой. Итогом второго этапа компьютерного анализа являлся новый перечень потенциально возможных химических соединений, то есть перечень второго рода. В дальнейшем, в зависимости от принятой глубины исследования поставленной задачи, для нахождения ответа необходимой степени точности могли проводиться дополнительные этапы анализа.

Все случаи получения новых интегральных поверхностей потенциальной энергии (продукты химического реагирования исследуемых соединений) изучались на предмет их дальнейшего участия во всей цепочке метаболических реакций моделируемого процесса. В нашем примере ответом на поставленный вопрос являлось виртуальное изображение возможных реакций активных химических соединений и мембранных белков, контролирующих возбудимость нервной клетки и обеспечивающих генерацию и передачу нервных импульсов между нейронами. Анализируя последовательность таких изображений, легко сделать выводы о характере влияния исследуемого химического соединения на процессы, происходящие в момент передачи сигналов между нейронами.

Основанный на квантовой теории способ моделирования химических реакций, при котором анализу подвергались взаимоотношения между ядрами и электронами, являлся самым точным из используемых способов моделирования. Однако данный способ требовал использования компьютеров огромной мощности и применялся в особо ответственных случаях. Для этих целей, как правило, задействовались компьютерные ресурсы суммарной мощностью не менее десяти миллионов Терафлоп. При всей своей сложности задачи моделирования взаимодействия двух и более сложных химических соединений успешно решались на практике. В этом была заслуга не только разработчиков и производителей суперкомпьютеров. Количество операций в секунду, которое требовалось для расчета взаимодействия двух относительно простых белковых молекул, было астрономическим и не могло быть достигнуто в ближайшем будущем экстенсивным путем наращивания мощности суперкомпьютеров.

Основная заслуга в повышении эффективности суперкомпьютеров при решении задач повышенной сложности принадлежала разработчикам программного обеспечения. Именно совершенное программное обеспечение отсекало те сотни и тысячи миллиардов тупиковых вариантов и бесполезных операций, которые только занимали машинное время, и позволяло отделять в режиме реального времени зерна от плевел. При этом в технологиях компьютерного моделирования огромную роль играл опыт разработки прежних компьютерных моделей. Ничто существенное в мире программирования не пропадало бесследно, а служило дальнейшему прогрессу науки. К тому же при компьютерном моделировании взаимодействия разных химических соединений число комбинаций реагирующих веществ, было хотя и очень велико, но все же конечно. Количество потенциально полезных вариантов составляло весьма малую часть от всех теоретически возможных. При этом особое значение имело создание базы данных, содержащей информацию о свойствах важнейших для человечества химических и биохимических соединений, отображенных в универсальном виде, подходящем для использования в технологиях компьютерного моделирования. На практике это означало, что плановый перевод свойств химических соединений в электронную форму, который значительно ускорит и облегчит процессы разнообразного компьютерного моделирования, становился одной из главных точек приложения усилий ученых различных специальностей.

Сотни научных учреждений химического и физического профиля во всем мире начали планово заниматься расчетом поверхностей потенциальной энергии химических и биохимических соединений, а также взаимодействием уже рассчитанных поверхностей потенциальной энергии между собой. Шаг за шагом древние науки химия и биология совместно с новейшей наукой генетикой все больше свои натурные исследования и эксперименты смещали в область компьютерного моделирования и конструирования. Ожидалось, что именно универсальные методы компьютерного моделирования свойств и строения вещества в ближайшем будущем объединят в единую интегральную науку сегодняшние химию, генетику и биологию.

К средине третьего десятилетия впечатляющего уровня развития достигла генная инженерия, особенно в области конструирования новых генов, не существующих в земной биосфере. В своей работе генные инженеры руководствовались традиционным подходом использования генов и целостных генетических структур растительных и животных организмов для генетической модификации другого организма. Если объяснить эти технологии максимально упрощенно, можно было сказать, что человек пытался перетасовывать гены, взятые из генофонда земной биосферы по-своему, для получения желаемого результата. На практике этот процесс не происходил случайным образом, наоборот он осуществлялся под строжайшим контролем, с существенными ограничениями, налагаемыми на цели и способы исполнения. Отрасли промышленности, основанные на достижениях генной инженерии, уверенно занимали четвертое месте в мире по объему производимых товаров. Их опережали только энергетика, добывающая промышленность и производство компьютеров и программного обеспечения.

За неполных пятьдесят лет, прошедших с момента становления генной инженерии как прикладной науки, ее результаты значительно повлияли на развитие сельского хозяйства, медицины, химической промышленности, энергетики, экологии и другие области человеческой деятельности. Например, оптимизированные сельскохозяйственные растения, которые в последние годы получили распространение во всем мире, имели урожайность в среднем в три раза выше самых лучших традиционных сортов. Такие растения обладали наследуемыми устойчивыми признаками и не подвергались самопроизвольным мутациям. По сути, на практике были реализованы преимущества эталонных растительных организмов, важнейших для человека видов. Дальнейшее улучшение полезных признаков у эталонных растений также осуществлялось методами генной инженерии, путем внедрения в эталонный наследственный материал генов, взятых от других растений. Подобные улучшенные сорта, сохранив высокую урожайность, приобретали новые полезные качества. Самыми существенными из них являлись устойчивость к засухе и заморозкам, способность самостоятельно бороться с различными вредителями, малая потребность в минеральных удобрениях, возможность выращивания на одном растении нескольких полезных продуктов, неприхотливость к выполнению правил агрокультуры, быстрый распад растительных тканей после сбора урожая.

Столь существенные достижения привели к распространению по всей планете высокоурожайных и устойчивых сортов полезных растений, что в принципе ликвидировало угрозу голода для населения развивающихся стран. Негативным следствием этого процесса стало то, что без работы и доходов осталось множество фермеров в таких странах как США, Канада и страны объединенной Европы. С прогрессом бесполезно бороться, его невозможно остановить, поэтому многочисленные попытки возмущенных фермеров ограничить распространение новых сортов смогли лишь ненадолго отодвинуть процесс банкротства фермерских хозяйств во всех странах мира.

Достижения генной инженерии в животноводстве были впечатляющими, хотя и не столь революционными, как в случае с сельскохозяйственными растениями. Далеко не для всех видов полезных животных был к этому времени определен эталонный геном. Улучшение многих видов сельскохозяйственных животных осуществлялось путем внедрения в их наследственный материал хорошо изученных генов других организмов, с последующим наследованием полезных признаков. Большое количество ошибок и неудачных опытов существенно сдерживали быстрое продвижение в этом направлении. Общественное мнение, настороженно наблюдая за трансгенными операциями на животных, с ужасом представляло применение подобных технологий для создания мутантов-людей, так что ученые, работающие в данном направлении, отнюдь не продвигались на зеленый свет. Однако же, даже осторожные эксперименты, учитывающие возможное общественное недовольство, привели к появлению улучшенных видов сельскохозяйственных животных, с показателями в два раза лучшими, чем у традиционных видов животных в начале века. Такие улучшенные животные нуждались в меньшем количестве пищи, значительно реже болели, давали высокие привесы, приросты и надои, быстрее росли. К тому же они были похожими на тех домашних животных, которых мы и наши предки видели последние несколько тысяч лет. Этот фактор являлся очень важным и благоприятным для дальнейшего применения генной инженерии в животноводстве, поскольку появление животных непривычного внешнего вида привело бы к возмущениям общественного мнения.

Достижения генной инженерии в совокупности с технологиями компьютерного конструирования веществ с заданными свойствами совершили переворот в фармацевтике. За прошедшие годы нового века мировая лекарственная база претерпела фундаментальные изменения. Около девяноста процентов применявшихся в начале века лекарственных препаратов были заменены более эффективными, более естественными для человеческого организма лекарствами, не имеющими побочных эффектов. Большая часть этих новых лекарственных препаратов синтезировалась не прежними методами в лабораторных и промышленных реакторах, а в живых биологических реакторах. В качестве таких биологических реакторов для производства медицинских препаратов, особенно белков, гормонов, ферментов и многих других веществ, использовались трансгенные животные и растения. Необходимые для людей лекарственные препараты являлись теперь продуктами жизнедеятельности трансгенных животных и растений, либо продуктами дальнейшей переработки сырья, получаемого из них. Не остались в стороне и традиционно используемые в фармацевтике микроорганизмы. Сотни видов трансгенных микроорганизмов, дрожжей, грибов трудились на благо человека в фармацевтических и производящих продукты питания компаниях. Во многих случаях конкретный штамм микроорганизмов в процессе жизнедеятельности продуцировал готовые лекарственные препараты, которые после доочистки и стерилизации можно было использовать непосредственно для лечения и профилактики болезней.

Количество видов трансгенных млекопитающих, задействованных в производстве фармацевтического сырья и препаратов, было велико. С их помощью производилась значительная часть современных лекарственных препаратов. Однако биологический синтез многих лекарственных препаратов не мог быть осуществлен в биологических реакторах, в качестве которых выступали трансгенные млекопитающие. Необходимые для медицины и фармацевтики биологические яды и токсины приходилось получать, используя в качестве биологических реакторов экзотические виды змей, рыб, моллюсков и других видов животных. Достойное место в ряду продуцентов лекарственных препаратов заняли также улучшенные виды насекомых.

Что касается химической промышленности, то за последние годы было разработано около десятка эффективных технологий получения химических продуктов на основе низкоэнергетических биокаталитических реакций. Новые технологии работали в условиях реальных земных температур и давлений с минимальным расходованием энергоресурсов. Достижением генной инженерии являлось то, что биологические катализаторы, применяемые в этих технологиях, вырабатывались трансгенными микроорганизмами, дрожжами, грибами, морскими организмами в промышленных количествах. Новые технологии способствовали дроблению огромных, угнетающих природу химических предприятий, на небольшие, дружественные окружающей среде производства, использующие биологические катализаторы.

На энергетику со стороны генетики также было оказано существенное влияние. Созданные методами генной инженерии микроорганизмы, способные осуществлять биокаталитическое разложение воды позволили начать производство молекулярного водорода для потребностей промышленности и быта. Водородная энергетика, вооруженная экологически чистым способом добычи основного сырья, уверенно начала теснить традиционную энергетику, основанную на сжигании природных невозобновляемых ресурсов. Еще одним фактором влияния на энергетику стало использование искусственных микроорганизмов для разработки обедненных и труднодоступных месторождений нефти, угля и сланцев, путем биологического извлечения из них горючих газов.

В вопросах экологии и защиты окружающей среды достижения генной инженерии также привели к значительному прогрессу. Если говорить обобщенно, то любое использование наработок этой прикладной науки сопровождалось снижением экологической нагрузки на планету. В основном благодаря массовому применению биотехнологий в химической и фармацевтической отраслях промышленности, впервые за последние два века показатели давления цивилизации на окружающую среду стабилизировались, а по некоторым позициям снизились, несмотря на увеличение населения планеты и увеличение потребностей человечества. Иными словами, наметилась стойкая тенденция излечения планеты Земля от хронического заболевания, носящего название экологическое загрязнение.

Биотехнологии, уверенно взяв старт, начали исполнять свое основное предназначение по переводу обслуживающих цивилизацию производств и технологий на безотходную основу. Идеальным конечным результатом этого процесса в близком будущем виделась замена всех существующих технологий на биологические технологии. Конечно, возможность полного перевода на биотехнологии всего мирового хозяйства казалась нереальной, однако практика их применения часто опережала самые смелые фантазии. Такие отрасли промышленности, как металлургия черных и цветных металлов, производство строительных материалов, добыча полезных ископаемых, традиционная энергетика, производство станков и оборудования, на первый взгляд имели весьма отдаленное отношение к биотехнологиям. Но при более пристальном рассмотрении становилось ясным, что добыча полезных ископаемых, извлечение чистых металлов ни что иное, как типичная функция трансгенных микроорганизмов, уже практически реализуемая в некоторых процессах извлечения полезных ископаемых. Производство экологически чистых строительных материалов может осуществляться, как микроорганизмами, так и искусственными организмами более высокой степени организации. Что касается перспектив применения биотехнологий в энергетике, то к этому времени уже были получены обнадеживающие результаты исследований, направленных на создание модифицированных трансгенных микроорганизмов и генерирующих биологических тканей, использующих энергию фотосинтеза, хемосинтеза и тепла окружающей среды для непосредственного производства биологического электричества.

Потребность в станках и оборудовании во многих отраслях промышленности при широком внедрении биотехнологий будет уменьшаться, либо вообще отпадет, как это произошло в фармацевтике при переходе от промышленных методов синтеза лекарственных препаратов к синтезу в биологических реакторах, или живых организмах.

Конечно, построить гиперзвуковой летательный аппарат на основе одних биотехнологий вряд ли получиться. Но вот получить необходимые для этого конструкционные материалы вполне возможно. Технологии получения сверхчистых металлов, равно как и технологии направленной кристаллизации в многокомпонентных расплавах и растворах, вполне могут быть заменены селективными биотехнологиями извлечения сверхчистых металлов из природных и искусственных сред и биокаталитическими технологиями создания материалов с заданными свойствами. Однако природа не терпит односторонних подходов, и в своем творчестве использует самые разнообразные методы и способы воздействия на материю, и это правило взял на вооружение человек.

Если взглянуть на первооснову, благодаря которой стало возможным широчайшее применение биотехнологий, то такой первоосновой являлись уникальные и разнообразные свойства белковых молекул, астрономическое число их возможных структурных форм. Главным достоинством белковых молекул является то, что с их помощью можно контролировать и управлять ходом едва ли не всех возможных химических реакций. При этом в среде характеризуемой стабильными параметрами температуры, давления, и концентраций могут одновременно осуществляться различные химические реакции с участием белковых молекул. Прямым доказательством значимости белковых молекул является факт существования белковой жизни на нашей планете. Форма существования белковых тел, базирующаяся на фундаменте из двадцати аминокислот, представляет собой совокупность устойчивых логических связей, реализованных в виде повторяющихся биохимических реакций с участием белковых молекул. Всего двадцать различных аминокислот и миллионы различных белковых молекул, каждая из которых уникальна по своему строению и функциям.

Природа использовала для создания жизни на Земле всего двадцать аминокислот, не задействовав при этом несколько сотен других существующих аминокислот. Этого оказалось вполне достаточно для сотворения всего окружающего нас разнообразия белковой жизни. Можно представить себе масштабы и возможности творчества, открывающиеся перед учеными в случае использования других аминокислот для конструирования и создания новых организмов. Даже не стоит упоминать о тысячах других классов химических соединений, многие из которых представлены тысячами различных молекул, и на базе которых вполне могут быть построены специализированные химические соединения, способные объединяться в самовоспроизводящиеся системы.

Именно вера в неограниченные возможности белковых молекул, овладевшая умами ученых и философов, привела к возникновению очередного бума в изучении генов и белков биосферы нашей планеты. Не последнее место в этом процессе занимали финансисты и промышленники. И те, и другие, одни в ожидании прибылей от вложения капитала, другие в ожидании революционных, прорывных технологий, инвестировали огромные суммы в исследования, связанные с поиском и конструированием функциональных белков. В рамках этого процесса происходило массовое изучение генетических текстов экзотических и редких животных и растений, а также палеоорганизмов, с целью последующего сравнительного анализа и нахождения перспективных различий для практического применения.

В свою очередь биологи и биохимики обратили пристальное внимание на механизмы функционирования нестандартных, уникальных и выдающихся биологических объектов в биосфере Земли. Особенный интерес представляли метаболические процессы, свойственные живым организмам, существующим в экстремальных условиях. Жизнедеятельность таких организмов осуществлялась в условиях повышенного давления окружающей среды, высокого уровня радиоактивного излучения, при высоких концентрациях тяжелых металлов и высоких температурах. В борьбе за расширение своего ареала обитания, многие виды организмов в процессе эволюции заняли такие ниши, которые согласно нашим представлениям о возможностях белковой жизни должны быть необитаемыми. Например, существование белковых организмов при температуре около трехсот градусов по Цельсию и давлении более трехсот атмосфер, в среде, насыщенной водными растворами химически агрессивных и ядовитых соединений, вблизи вулканических разломов на дне океана являлось ярким примером неограниченных возможностей белковых организмов.

Отдельным направлением биологических исследований стали поиски оригинального генетического материала и специфических биохимических реакций. Самые интересные и перспективные находки совершались при изучении представителей экстремальных сред обитания, экзотических и реликтовых организмов. Они несли в своем наследственном материале память о механизмах функционирования в сложных неблагоприятных условиях древней Земли. Повышенный интерес ученые стали проявлять и по отношению к древнему человеку. Несмотря на серьезный уровень исследований генома человека, явно недостаточное внимание было уделено изучению эволюционных предков человека, людей с яркими аномалиями, представителей исчезающих народностей и племен, что являлось упущением и требовало немедленного исправления. Вновь проводимые исследования, касающиеся ранее неизученного наследственного материала, пополняли базу данных, используемую в технологиях генной инженерии и при разработке биотехнологий.

Исследование генома человека изначально регламентировалось строгими нормами международного права, полученные результаты являлись достоянием всего человечества, и были доступны для ознакомления учеными разных стран. А вот результаты научных исследований генетического и цитологического материала животных и растительных организмов, как правило, являлись собственностью учреждений, организаций и частных исследователей. Диспуты и обсуждения на тему, являются ли такие знания достоянием всего мирового сообщества или собственностью научных организаций и частных лиц, велись уже давно, но без особого результата. Развитые государства, в которых в основном реализовывались программы научных исследований, не были заинтересованы в потере контроля над перспективными разработками, который был напрямую связан с контролем над гражданами и юридическими лицами своей страны, занимающимися научными исследованиями. Подобный контроль прямой или опосредованный всегда существовал. Для государства предпочтительным являлось монопольное владение высокими технологиями. Что касается частных исследовательских организаций и исследователей, то их позиция была еще откровеннее и жестче, поскольку затрагивала такие категории как личное благосостояние, интеллектуальное право, право на самореализацию, коммерческий риск и прочее. Поэтому многочисленные попытки многих стран и организаций, направленные на подписание соглашения о добровольной передаче исследовательской информации в общедоступную базу данных, постоянно проваливались.

Качественный прорыв в знаниях и технологиях, произошедший в последние тридцать лет, позволил приступить к решению тех задач, которые еще вчера казались делом далекого будущего. Наиболее важной для человечества являлась задача улучшения человеческого организма. Все традиционные действия медицинского характера, которые осуществлялись в отношении человеческого организма ранее, были основаны на принципах помощи и ремонта, то есть носили вспомогательный характер, и не приводили к вечному, не ограниченному временем функционированию организма человека. Тем более всерьез никогда не рассматривался вопрос о наследовании таких искусственных улучшений, поскольку подобный вопрос считался преждевременным и технически невыполнимым.

Теперь же вопросы улучшения систем человеческого организма и оптимизации отдельных метаболических реакций стали предметом серьезных исследований. Имеющаяся в распоряжении ученых карта метаболических реакций человеческого организма, хотя и оставалась не полной, но включала в себя множество целостных функциональных звеньев и самодостаточных фрагментов, которые могли стать объектом теоретического, а затем и практического улучшения. Локальные задачи, которые ученые ставили перед собой, приступая к теоретическому улучшению человеческого организма, были довольно непривычными и в чем-то даже экзотическими. Например, одна группа ученых проводила компьютерное моделирование процесса желудочного пищеварения как совокупности химических реакций, и ставила перед собой цель включить в процесс пищеварения разработанные ими ферменты, позволяющие расщеплять на полезные компоненты растительную клетчатку. Анализ полученной информации, показал, что необходимый ген, отвечающий за синтез искусственного фермента, может быть без отрицательных побочных эффектов и угнетения существующих полезных функций пополнить набор генов специализированных клеток из эпителия желудка человека. Улучшенная пищеварительная система человека как ожидалось, приведет к изменению структуры питания, сместив акцент в сторону потребления растительных продуктов широкого ассортимента.

Другая группа ученых занималась улучшением переносящего кислород белка гемоглобина. Целью исследований являлось получение нескольких новых белков, сходных по своим функциональным возможностям с белком гемоглобина и вписывающихся в существующую систему кровоснабжения и кроветворения, которые могли бы транспортировать большее количество кислорода и имели бы функциональный оптимум в интервале температур тридцать-тридцать семь градусов по Цельсию. Подобный белок, синтезируемый в организме человека, позволил бы не только расширить диапазоны физических нагрузок, но и обеспечить продолжительное легочное дыхание под водой в условиях переохлаждения организма. Даже, вводимый просто в кровеносное русло в виде инъекций такой белок мог бы существенно увеличить выживаемость в аварийных ситуациях моряков, подводников, летчиков и облегчить жизнь людей со слабым сердцем, больными легкими и просто тучных.

Еще более экзотичными являлись работы по созданию биологических сенсоров, совместимых с человеческим организмом. Как ожидалось, такие дополнительные органы чувств смогут воспринимать электромагнитные волны в широком диапазоне, ультразвуковые и инфразвуковые акустические колебания, определять концентрации химических веществ, интенсивность радиоактивного излучения. Подобные биологические сенсоры уже миллионы лет использовались земными организмами, и сконструировать на их базе совместимые с человеком устройства (читай новые органы) было делом вполне реальным, хотя и непривычным для общественного мнения. Во всем мире подобными вопросами занимались тысячи исследовательских учреждений, что обещало принести в скором будущем много интересных открытий и разработок.

Набирал силу процесс использования микромашин и микророботов для выполнения оперативных и профилактических процедур внутри человеческого организма. В этой области, как может быть ни в какой другой, для создания совершенных устройств наряду с технологиями молекулярной сборки также широко использовались технологии синтеза биологических соединений с заданными свойствами. Базовая медицинская микромашина состояла из микрочипа, имеющего размеры сравнимые с размерами эритроцита, электрохимического двигателя, представляющего собой блок белковых молекул, реализующих двигательную функцию и грузовой капсулы. В качестве инструмента для выполнения заданной функции использовались расходуемые биологически активные вещества (лекарственные препараты, токсины, ферменты и т. п.), содержащиеся в грузовой капсуле. В случае необходимости могли использоваться также агрессивные химические соединения (кислоты, щелочи). В тех случаях, когда более эффективным являлось применение физических методов воздействия, медицинская микромашина могла нести на себе механические микроинструменты.

Основными задачами, которые выполнялись медицинскими микромашинами первого поколения, стали очистка кровеносных сосудов и протоков различных желез, лечение внутренних язв и воспалений. Кроме этого было возможным также сращение нервов и дробление камней различной дислокации. В таких микромашинах электронный микрочип отдавал команды (двигаться, остановиться, переместиться, открыть капсулу и др.) исполнительным механизмам, после чего в дело вступали имеющийся инструментарий, который выполнял необходимое оперативное или профилактическое воздействие на организм человека.

Расширилась сфера использования нормализующих работу генов лекарственных препаратов. Ранее такие препараты использовались для профилактики и лечения наследственных заболеваний, а также для управления программами роста выращиваемых вне человеческого организма тканей и органов. Теперь же появилась возможность при помощи препаратов нормализующих работу генов воздействовать на целостные органы и ткани функционирующего человеческого организма. Применение нормализующих работу генов препаратов для воздействия на большие массивы клеток стало возможным после того, как новые средства целевой доставки таких препаратов свели к минимуму риск нежелательных побочных эффектов.

Стало реальностью одновременное корректирующее воздействие на гены всех специализированных клеток, выполняющих одинаковые функции в организме, то есть на целостные ткани и органы. Для этого внутрь человеческого организма при помощи средств целевой доставки вводилось большое количество нормализующих работу генов препаратов, ориентированных на выполнения однотипной операции сразу во всех специализированных клетках. Применение подобных технологий на практике означало восстановление угнетенных функций целостных органов и тканей. Так первыми объектами подобного корректирующего воздействия стали клетки сердечной мышцы после инфаркта и старческих изменений, клетки печени при незапущенных стадиях цирроза, а также клетки почечных тканей и различных соединительных тканей. Данные технологии имели хорошие перспективы применения, поскольку позволяли в будущем заменять естественные гены в любой клетке организма человека улучшенными искусственными, что влекло за собой изменение биохимических реакций, синтез новых эффективных белков и в конечном итоге улучшение метаболизма всего организма. Замена изношенных органов и тканей человека новыми, выращенными внутри человеческого организма, выращивание новых, ранее не существующих органов - все это становилось реальным и осуществимым для современников, многие из которых были рождены во времена, когда подобные перспективы описывались только в фантастических романах.

К вопросам улучшения работы человеческого организма на клеточном уровне наука подошла и с другой стороны. В процессе жизнедеятельности, по прошествию определенных сроков, во всех клетках организма помимо поломок и сбоев генетических механизмов, и во многом как следствие этих процессов, происходит накопление различных химических соединений, в той или иной степени мешающих нормальному клеточному функционированию. Поэтому, задачи качественной очистки внутриклеточного пространства от излишних химических соединений ставились перед медициной и генетикой достаточно давно, здесь таились значительные резервы активного долголетия и крепкого здоровья. Средства избирательного извлечения из клеток излишних и вредных веществ разрабатывались во многих научных центрах мира. Проблема извлечения оказалась намного сложнее, чем решенная уже проблема целевой доставки лекарственных препаратов.

В общем случае разрабатываемые способы избирательного извлечения базировались на следующих принципах. Непосредственно в клетку организма доставлялось некое химическое соединение (либо функциональный белковый комплекс), которое должно было связаться с ненужными веществами, не взаимодействуя при этом с полезными соединениями, и совместно с этими веществами покинуть клетку и выйти в кровеносное русло. Кроме этого разрабатывались способы нейтрализации агрессивных и ненужных веществ. Один из них предусматривал доставку в клетку таких химических соединений, которые при взаимодействии с химически агрессивными продуктами жизнедеятельности образуют химически нейтральные соединения, то есть таким способом достигалась как минимум нейтрализа

Здесь опубликована для ознакомления часть дипломной работы "Цивилизация богов. Прогноз развития науки и техники в 21-м столетии". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 538

Другие дипломные работы по специальности "Наука и техника":

Описание работы электрической схемы охранного устройства с автодозвоном по телефонной линии

Смотреть работу >>

Самолет Хаукер Харрикейн

Смотреть работу >>

Устройство измерения отношения двух напряжений

Смотреть работу >>

Усилитель модулятора лазерного излучения

Смотреть работу >>

Крестовый поход солнца

Смотреть работу >>