Дипломная работа на тему "Развитие понятия "Пространство" и неевклидова геометрия"

ГлавнаяМатематика → Развитие понятия "Пространство" и неевклидова геометрия




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Развитие понятия "Пространство" и неевклидова геометрия":


Оглавление

Введение

Глава I. Развитие геометрии

1.1 История геометрии

1.2 Постулаты Евклида

1.3 Аксиоматика Гильберта

1.4 Другие системы аксиом геометрии

Глава II. Неевклидовы геометрии в системе Вейля

2.1 Элементы сферической геометрии

2.2 Эллиптическая геометрия на плоскости

2.3 Геометрия Лобачевского в системе Вейля

2.4 Различные модели плоскости Лобачевского. Независимость 5-го постулата Евклида от остальных акси ом Гильберта

Заключение

Список литературы

Введение

Заказать дипломную - rosdiplomnaya.com

Специальный банк готовых защищённых студентами дипломных проектов предлагает вам приобрести любые проекты по необходимой вам теме. Правильное написание дипломных проектов по индивидуальному заказу в Санкт-Петербурге и в других городах РФ.

Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.

Этот факт многократно подтверждался. Физика Ньютона переросла в релятивистскую физику, а та в квантовую. Теория флогистона стала химией, а самозарождение мышей из грязи обернулось биологией. Такова судьба всех наук, и нельзя сказать, что сегодняшнее открытие через двадцать лет не окажется грандиозной ошибкой. Но это тоже нормально – ещё Ломоносов говорил: «Алхимия – мать химии: дочь не виновата, что её мать глуповата».

Участь эта не обошла и геометрию. Традиционная Евклидова геометрия переросла в неевклидову, геометрию Лобачевского. Именно этому разделу математики, его истории и особенностям и посвящен этот проект.

В своём реферате я хочу показать, что кроме геометрии, которую изучают в школе (Геометрии Евклида или употребительной геометрии), существует еще одна геометрия, геометрия Лобачевского. Эта геометрия существенно отличается от евклидовой, например, в ней утверждается, что через данную точку можно провести бесконечно много прямых, параллельных данной прямой, что сумма углов треугольника меньше 180 В геометрии Лобачевского не существует прямоугольников, подобных треугольников и так далее.

Я выбрал данную тему по нескольким причинам: теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением. Ситуация с геометрией Лобачевского и геометрией Евклида во многом похожа на ситуацию с Теорией относительности Эйнштейна и классической физикой. Геометрия Лобачевского и ОТП Эйнштейна это прогрессивные взаимосвязанные теории, выполняющиеся на огромных величинах и расстояниях, и остающимися верными на приближениях к нулю. В пространственной модели ОТП используется не обычная евклидовая плоскость, а искривленное пространство, на котором верна теория Лобачевского.

Глава I. Развитие геометрии

1.1 История геометрии

Геометрия – это одна из древнейших наук. Исследовать различные пространственные формы издавна побуждало людей их практическая деятельность. Древнегреческий ученый Эдем Родосский в IV веке до нашей эры писал: «Геометрия была открыта египтянами, и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития реки Нил, постоянно смывавшей границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребности человека».

Считается, что геометрия началась в так называемой Ионийской школе. Её основателем считается Фалес Милетский (640-540 (546?) гг. до н. э.). Он считался одним из семи мудрецов Греции, первым математиком, астрономом и философом. Он доказал, что углы при основании равнобедренного треугольника равны, что вертикальные углы равны, что диаметр делит окружность пополам и ещё множество теорем. Предсказание затмения солнца в 585 году также приписывается ему.

Огромный импульс развития этой школе дал Пифагор (569-470 гг. до н. э.). В основном о его личных качествах пишут то же самое, что и о Фалесе. Но к этому ещё можно добавить титул чемпиона по боксу на олимпийских играх – звание, среди математиков редкое.

Несмотря на все его достижения, мнение современников хорошо выразил Гераклит: «Многознание без разума». Что ж, это было вполне заслужено: Пифагор засекречивал открытия и приписывал себе работы учеников. Пифагор также заставлял своих воспитанников исполнять целый свод очень странных правил: например, не прикасаться к белому петуху.

Но факт есть факт - и одна из теорем Пифагора теперь известна каждому – это теорема о равенстве квадрата гипотенузы сумме квадратов катетов. Эта теорема настолько популярна в мире математиков, что одних только доказательств накопилось 39 штук. Их можно посмотреть на сайте www. cut-the-knot. com/pythagoras.

Платон (428-348) знаменит введением принципа дедуктивности в математике, или принципа развития от простого к сложному. Он также знаменит постановкой трех задач на построение. Используя только циркуль и линейку, надо было:

1.  Разделить угол на три части (задача о трисекции угла).

2.  Построить квадрат, равный по площади данному кругу (задача о квадратуре круга).

3.  Построить куб, равный по объему данному (задача об удвоении куба).

Нерешаемость этих задач была доказана только в 19 веке, но перед этим они успели вызвать настоящую бурю: например, задача №2 вызвала появление интегрального исчисления.

Многие первоначальные геометрические сведения получили также шумеро-вавилонские, китайские и другие ученые древнейших времен. Устанавливались они сначала только опытным путем, без логических доказательств.

Как наука, геометрия впервые сформировалась в Древней Греции, когда геометрические закономерности и зависимости, найденные ранее опытным путем, были приведены в надлежащую систему и доказаны.

Закончилось развитие традиционной геометрии Евклидом. В III веке до нашей эры греческий ученый привел в систему известные ему геометрические сведения в большом сочинении «Начала».

Его книга «Начала» только до 1880 года выдержала 460 изданий, уступив только Библии. Способ построения «Начал» стал единственно верным для всех научных работ: Перечисление основных, естественных понятий ® Перечисление основных аксиом ® Перечисление основных определений ® Формулирование теорем (утверждений) и их доказательство.

Метод доказательства от противного – тоже его заслуга. Он же сформулировал пять постулатов геометрии:

1.  Через два точки можно провести одну и только одну прямую.

2.  Прямая продолжается бесконечно.

3.  Из любого центра можно провести окружность любым радиусом.

4.  Все прямые углы равны между собой.

Пятый постулат является своеобразным философским камнем геометрии.

Неевклидова геометрия появилась вследствие долгих попыток доказать V постулат Евклида, аксиому параллельности. Эта геометрия во многом удивительна, необычна и во многом не соответствует нашим привычным представлениям о реальном мире. Но в логическом отношении данная геометрия не уступает геометрии Евклида.

1.2 Постулаты Евклида

Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение настолько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начал» оно было единственным руководством для изучающих геометрию.

«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.

Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Так, например, первой книге предпосланы 23 определения. В частности,

Определение 1. Точка есть то, что не имеет частей.

Определение 2. Линия есть длины без ширины

Определение 3. Границы линии суть точки.

Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.

Постулаты

I. Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию.

II. И чтобы каждую прямую можно было неопределенно продолжить.

III. И чтобы из любого центра можно было описать окружность любым радиусом.

IV. И чтобы все прямые углы были равны.

V. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Аксиомы

I. Равные порознь третьему равны между собой.

II. И если к ним прибавим равные, то получим равные.

III. И если от равных отнимем равные, то получим равные.

IV. И если к неравным прибавим равные, то получим неравные.

V. И если удвоим равные, то получим равные.

VI. И половины равных равны между собой.

VII. И совмещающиеся равны.

VIII. И целое больше части.

IX. И две прямые не могут заключать пространства.

Иногда IV и V постулаты относят к числу аксиом. Поэтому пятый постулат иногда называют XI аксиомой. По какому принципу одни утверждения относятся к постулатам, а другие к аксиомам, неизвестно.

Никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже с древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.

Возможно, что уже сам Евклид пытался доказать постулат о параллельных. В пользу этого говорит то обстоятельство, что первые 28 предложений «Начал» не опираются на V постулат. Евклид как бы старался отодвинуть применение этого постулата до тех пор, пока использование его не станет настоятельно необходимым.

Одни математики старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату.

Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением. Так, например, в XI веке Омар Хайям ввел вместо V постулата «принцип», согласно которому две лежащие в одной плоскости сходящиеся прямые пересекаются и не могут расходиться в направлении схождения. С помощью этого принципа Хайям доказывает, что в четырехугольнике ABCD, в котором углы при основании А и В – прямые и стороны АС, ВD равны, углы С и D так же прямые, а из этого предложения о существовании прямоугольника выводится V постулат. Рассуждения Хайяма получили оригинальное развитие в XIII веке у Насирэдинна ат-Туси, работы которого в свою очередь стимулировали исследования Д. Валлиса. В 1663 году Валлис доказал постулат о параллельных, исходя из явного допущения, что для каждой фигуры существует подобная ей фигура произвольной величины. Это допущение он считал вытекающим из существа пространственных отношений.

С логической точки зрения результаты Хайяма или Валлиса лишь выявляли равносильность V постулата и некоторых других предложений геометрии. Так, Хайям, по существу, установил эквивалентность постулата и предложения о сумме углов треугольника, а Валлис показал, что не только из V постулата можно вывести учение о подобии, но и обратно – их евклидова учения о подобии следует V постулат.

Один из обнадеживающих способов подхода к доказательству пятого постулата, которым пользовались многие геометры XVIII и первой половины XIX веков, состоит в том, что пятый постулат заменяется его отрицанием или каким-либо утверждением, эквивалентным отрицанию. Опираясь на измененную таким образом систему постулатов и аксиом, доказываются всевозможные предложения, логически из нее вытекающие. Если пятый постулат действительно вытекает из остальных постулатов и аксиом, то измененная указанным образом система постулатов ми аксиом противоречива. Поэтому рано или поздно мы придем у двум взаимно исключающим выводам. Этим и будет доказан пятый постулат.

Именно таким путем пытались доказать пятый постулат Д. Саккери (1667-1733), И. Г. Ламберт (1728-1777) и А. М. Лежандр (1752-1833).

Исследования Саккери были опубликованы в 1733 году под названием «Евклид, очищенный от всяких пятен, или опыт, устанавливающий самые первые принципы универсальной геометрии».

Саккери исходил из рассмотрения четырехугольника Рисунок убран из работы и доступен только в оригинальном файле. с двумя прямыми углами при основанииРисунок убран из работы и доступен только в оригинальном файле.и с двумя равными боковыми сторонами Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.. Из симметрии фигуры относительно перпендикуляра Рисунок убран из работы и доступен только в оригинальном файле. к середине основания Рисунок убран из работы и доступен только в оригинальном файле.следует, что углы при вершинах Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. равны. Если принять пятый постулат и, следовательно, евклидову теорию параллельных, то можно установить, что углы Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. прямые и Рисунок убран из работы и доступен только в оригинальном файле. - прямоугольник. Обратно, как доказывает Саккери, если хотя бы в одном четырехугольнике указанного вида углы при верхнем основании окажутся прямыми, то будет иметь место евклидов постулат о параллельных. Желая доказать этот постулат Саккери делает три возможных предположения: либо углы Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. прямые, либо тупые, либо острые (гипотезы прямого, острого и тупого угла). Для доказательства пятого постулата необходимо опровергнуть гипотезы острого и тупого угла. Совершенно точными рассуждениями Саккери приводит к противоречию гипотезу тупого угла. Вслед за тем, приняв гипотезу острого угла, он выводит весьма далеко идущие ее следствия с тем, чтобы и здесь получить противоречие. Развивая эти следствия Саккери строит сложную геометрическую систему, не заключая о противоречии только потому, что полученные им выводы не соответствуют привычным представлениям о расположении прямых. В результате он «находит» логическое противоречие, но в результате вычислительной ошибки.

Идеи Ламберта, развитые им в сочинении «теория параллельных линий» (1766г.), близко примыкают к соображениям Саккери.

Он рассматривает четырехугольник с тремя прямыми углами. Относительно четвертого угла так же возникают три гипотезы: этот угол прямой, тупой или острый. Доказав эквивалентность пятого постулата гипотезе прямого угла и сведя к противоречию гипотезу тупого угла, Ламберт, подобно Саккери, вынужден заниматься гипотезой острого угла. Она приводит Ламберта к сложной геометрической системе, в которой ему не удалось встретить логического противоречия. Ламберт нигде в своем сочинении не утверждает, что V постулат им доказан, и приходит к твердому заключению, что и все другие попытки в этом направлении не привели к цели.

«Доказательства евклидова постулата, - пишет Ламберт, - могут быть доведены столь далеко, что остается, по-видимому, ничтожная мелочь. Но при тщательном анализе оказывается, что в этой кажущейся мелочи и заключается вся суть вопроса; обыкновенно она содержит либо доказываемое предложение, либо равносильный ему постулат».

Более того, развивая систему гипотезы острого угла, Ламберт обнаруживает аналогию этой системы со сферической геометрией и в этом усматривает возможность ее существования.

«Я склонен даже думать, что третья гипотеза справедлива на какой-нибудь мнимой сфере. Должна же быть причина, вследствие которой она на плоскости далеко не поддается опровержению, как это легко может быть сделано со второй гипотезой».

Лежандр в своем доказательстве пятого постулата рассматривает три гипотезы относительно суммы углов треугольника.

1.  Сумма углов треугольника равна двум прямым.

2.  Сумма углов треугольника больше двух прямых.

3.  Сумма углов треугольника меньше двух прямых.

Он доказал, что первая гипотеза эквивалентна пятому постулату, вторая гипотеза невозможна; и приняв третью гипотезу приходит к противоречию, неявно воспользовавшись в доказательстве пятым постулатом через один из его эквивалентов.

В результате проблема параллельных оставалась к началу XIX века неразрешенной и положение казалось безвыходным. Большой знаток вопроса венгерский математик Фаркаш Бояи в 1820 году писал своему сыну Яношу: «Молю тебя, не делай только и ты попыток одолеть теорию параллельных линий: ты затратишь на это все свое время, а предложения этого вы не докажете все вместе. Не пытайся одолеть теорию параллельных линий ни тем способом, который ты сообщаешь мне, ни каким-либо другим. Я изучил все пути до конца: я не встретил ни одной идеи, которой бы я не разрабатывал. Я прошел весь беспросветный мрак этой ночи, и всякий светоч, всякую радость жизни я в ней похоронил… Этот беспросветный мрак… никогда не прояснится на земле, и никогда несчастный род человеческий не будет владеть чем-либо совершенным даже в геометрии. Это большая и вечная рана в моей душе…». Беспросветный мрак, о котором с горечью писал старший Бойяи, рассеял Лобачевский и, несколько позднее, Я. Бояи.

Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся от евклидовой тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в России носит имя Лобачевского, который впервые опубликовал работу с ее изложением.

И одной из предпосылок геометрических открытий Н. И. Лобачевского (1792-1856) был как раз его материалистический подход к проблемам познания. Лобачевский Он был твердо уверен в объективном и не зависящем от человеческого сознания существовании материального мира и в возможности его познания. В речи «О важнейших предметах воспитания» (Казань, 1828) Лобачевский сочувственно приводит слова Ф. Бэкона: «оставьте трудиться напрасно, стараясь извлечь из одного разума всю мудрость; спрашивайте природу, она хранит все истины и на все вопросы ваши будет отвечать вам непременно и удовлетворительно». В своем сочинении «О началах геометрии», являющемся первой публикацией открытой им геометрии, Лобачевский писал: «первые понятия, с которых начинается какая-нибудь наука, должны быть ясны и приведены к самому меньшему числу. Тогда только они могут служить прочным и достаточным основанием учения. Такие понятия приобретаются чувствами; врожденным – не должно верить». Тем самым Лобачевский отвергал идею об априорном характере геометрических понятий, поддерживавшуюся И. Кантом.

Первые попытки Лобачевского доказать пятый постулат относятся к 1823 году. К 1826 году он пришел к убеждению в том, что V постулат не зависит от остальных аксиом геометрии Евклида и 11(23) февраля 1826 года сделал на заседании факультета казанского университета доклад «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», в котором были изложены начала открытой им «воображаемой геометрии», как он называл систему, позднее получившую название неевклидовой геометрии. Доклад 1826г. вошел в состав первой публикации Лобачевского по неевклидовой геометрии – статьи «О началах геометрии», напечатанной в журнале Казанского университета «Казанский вестник» в 1829-1820гг. дальнейшему развитию и приложениям открытой им геометрии были посвящены мемуары «Воображаемая геометрия», «Применение воображаемой геометрии к некоторым интегралам» и «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках» соответственно в 1835, 1836 и 1835-1838 гг. Переработанный текст «Воображаемой геометрии» появился во французском переводе в Берлине, там же в 1840г. вышли отдельной книгой на немецком языке «Геометрические исследования по теории параллельных линий» Лобачевского. Наконец, в 1855 и 1856 гг. он издал в Казани на русском и французском языках «Пангеометрию».

Высоко оценил «Геометрические исследования» Гаусс, который провел Лобачевского (1842) в члены-корреспонденты Геттингенского ученого общества, бывшего по существу Академией наук ганноверского королевства. Однако в печати в оценкой новой геометрической системы Гаусс не выступил.

Высокая оценка гауссом открытия Лобачевского была связана с тем, что Гаусс, еще с 90-х годов XVIII в. занимавшийся теорией параллельности линий, пришел к тем же выводам, что и Лобачевский. Свои взгляды по этому вопросу Гаусс не публиковал, они сохранились только в его черновых записках и в немногих письмам к друзьям. В 1818 г. в письме к австрийскому астроному Герлингу (1788-1864) он писал: «Я радуюсь, что вы имеете мужество высказаться так, как если бы Вы признавали ложность нашей теории параллельных, а вместе с тем и всей нашей геометрии. Но осы, гнездо которых Вы потревожите, полетят Вам на голову»; по-видимому, под «потревоженными осами» Гаусс имел в виду сторонников традиционных взглядов на геометрию, а также априоризма математических понятий.

Независимо от Лобачевского и гаусса к открытию неевклидовой геометрии пришел венгерский математик Янош Бояи (1802-1860), сын Ф. Бояи.

Когда Я. Бояи пришел к тем же идеям, что Лобачевский и Гаусс, отец не понял его, однако предложил напечатать краткое изложение его открытия в виде приложения к своему руководству по математике, вышедшему в 1832г. Полное название труда Я. Бояи – «Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида (что a priori никогда решено быть не может)» и его обычно коротко называют просто «Аппендикс». Открытие Я. Бояи не было признано при его жизни; Гаусс, которому Ф. Бояи послал "Аппендикс", понял его, но никак не способствовал признанию открытия Я. Бояи.

1.3 Аксиоматика Гильберта

Хотя в современном аксиоматическом изложении геометрии Евклида не всегда пользуются аксиоматикой Гильберта, приведём её, как первую полную, независимую и непротиворечивую систему аксиом.

Все двадцать аксиом системы Гильберта подразделены на пять групп.

-   Группа I содержит восемь аксиом принадлежности.

-   Группа II содержит четыре аксиомы порядка.

-   Группа III содержит пять аксиом конгруэнтности.

-   Группа IV содержит две аксиомы непрерывности.

-   Группа V содержит одну аксиому параллельности.

Переходим к формулировке аксиом по группам. Одновременно будем указывать некоторые утверждения, вытекающие из формулируемых аксиом.

. Аксиомы принадлежности

, 1. Каковы бы ни были две точки A и B, существует прямая a, которой принадлежат эти точки.

, 2. Каковы бы ни были две точки A и B, существует не более одной прямой, которой принадлежат эти точки.

, 3. Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.

Указанные три аксиомы исчерпывают список аксиом принадлежности планиметрии. Следующие пять аксиом вместе с указанными тремя завершают список аксиом принадлежности стереометрии.

, 4. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.

, 5. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.

, 6. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.

, 7. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обоим этим плоскостям.

, 8. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.

С целью использования привычной для нас геометрической лексики договоримся отождествлять между собой следующие выражения: 1) «точка А принадлежит прямой a (плоскости α)», 2) «прямая а (плоскость α) проходит через точку А» 3) «точка А лежит на прямой а (плоскости α)» 4) «точка А является точкой прямой а (плоскости α)» и тому подобные.

Теорема 1. Две различные прямые не могут иметь больше одной общей точки.

Теорема 2. Две плоскости либо совсем не имеют общих точек, либо имеют общую прямую, на которой лежат все их общие точки.

Теорема 3. Плоскость и не лежащая на ней прямая не могут иметь более одной общей точки.

Теорема 4. Через прямую и не лежащую на ней точку, или через две различные прямые с общей точкой проходит одна и только одна плоскость.

Теорема 5. Каждая плоскость содержит по крайней мере три точки.

II. Аксиомы порядка

II, 1. Если точка B прямой а лежит между точками А и С той же прямой, то А, В и С – различные точки указанной прямой, причем В лежит также и между С и А.

II, 2. Каковы бы ни были две различные точки А и С, на определяемой ими прямой существует по крайней мере она точка В такая, что С лежит между А и В.

II, 3. Среди любых трёх точек, лежащих на одной прямой существует не более одной точки, лежащей между двумя другими.

Сформулированные три аксиомы относятся к расположению объектов на прямой и потому называются линейными аксиомами порядка. Формулируемая ниже последняя аксиома порядка относится к расположению геометрических объектов на плоскости. Для того, чтобы сформулировать эту аксиому, введём понятие отрезка.

Пару различных точек А и В назовём отрезком и будем обозначать символом АВ или ВА. Точки прямой, определяемой А и В, лежащие между ними, будем называть внутренними точками, или просто точками отрезка АВ. Остальные точки указанной прямой будем называть внешними точками отрезка АВ.

II, 4 (Аксиома Паша). Если А, В и С – три точки, не лежащие на одной прямой, и а – некая прямая в плоскости, определяемой этими точками, не содержащая ни одной из указанных точек и проходящая через некоторую точку отрезка АВ, то эта прямая проходит также либо через некоторую точку отрезка АС, либо через некоторую точку отрезка ВС.

Подчеркнём, что из одних аксиом порядка II, 1 – 4 ещё не вытекает, что любой отрезок имеет внутренние точки. Однако привлекая ещё аксиомы принадлежности I, 1 – 3 можно доказать следующее утверждение:

Теорема 6. Каковы бы ни были две различные точки А и В на прямой, ими определяемой, существует по крайней мере одна точка С, лежащая между А и В.

Теорема 7. Среди любых трёх точек одной прямой всегда существует одна точка, лежащая между двумя другими.

Теорема 8. Если точки А, В и С не принадлежат одной прямой и если некоторая прямая а пересекает[1] какие-либо два из отрезков АВ, ВС и АС, то эта прямая не пересекает третий из указанных отрезков.

Теорема 9. Если В лежит на отрезке АС, и С – на отрезке ВD, то В и С лежат на отрезке АD.

Теорема 10. Если С лежит на отрезке АD, а В – на отрезке АС, то В лежит также на отрезке АD, а С – на отрезке BD.

Теорема 11. Между любыми двумя точками прямой существует бесконечно много других её точек.

Теорема 12. Пусть каждая из точек С и D лежит между точками А и В. Тогда если М лежит между С и D, то М лежит и между А и В.

Теорема 13. Если точки С и D лежат между точками А и В, то все точки отрезка СD принадлежат отрезку АВ (в этом случае мы будем говорить, что отрезок СD лежит внутри отрезка АВ).

Теорема 14. Если точка С лежит между точками А и В, то 1) никакая точка отрезка АС не может быть точкой отрезка CВ, 2) каждая отличная от С точка отрезка АВ принадлежит либо отрезку АС, либо отрезку СВ.

Указанные утверждения позволяют упорядочить множество точек любой прямой и выбрать на этой прямой направление.

Будем говорить, что две различные точки А и В прямой a лежат по разные стороны (по одну сторону) от третьей точки О той же прямой, если точка О лежит (не лежит) между А и В.

Из указанных выше утверждений вытекает следующая теорема.

Теорема 15. Произвольная точка О каждой прямой а разбивает все остальные точки этой прямой на два непустых класса так, что любые две точки прямой а, принадлежащие одному и тому же классу, лежат по одну сторону от О, а любые две точки, принадлежащие разным классам, лежат по разные стороны от О.

Таким образом, задание на любой прямой двух различных точек О и Е определяет на этой прямой луч или полупрямую ОЕ, обладающую тем свойством, что любая её точка и точка Е лежат по одну сторону от О.

Выбрав на прямой а две различные точки О и Е, мы можем теперь определить порядок следования точек на прямой по следующему правилу: 1) если А и В – любые точки луча ОЕ, то будем говорить, что А предшествует В, если А лежит между О и В, 2) будем говорить, что точка О предшествует любой точке луча ОЕ, 3) будем говорить, что любая точка, принадлежащая той же прямой и не принадлежащая лучу ОЕ, предшествует как точке О, так и любой точке луча ОЕ, 4) если А и В – любые точки, не принадлежащие лучу ОЕ, то мы будем говорить, что А предшествует В, если В лежит между А и О.

Легко проверить, что для выбранного нами порядка следования точек прямой а справедливо свойство транзитивности: если А предшествует В, а В предшествует С, то А предшествует С.

Аксиомы, приведённые выше, позволяют упорядочить и точки, принадлежащие произвольной плоскости α.

Теорема 16. Каждая прямая а, принадлежащая плоскости α, разделяет не лежащие на ней точки этой плоскости на два непустых класса так, что любые две точки А и В из разных классов определяют отрезок АВ, содержащий точку прямой а, а любые две точки А и А’ из одного класса определяют отрезок АА’, внутри которого не лежит ни одна точка прямой а.

В соответствие с утверждением этой теоремы мы можем говорить, что точки А и А’ (одного класса) лежат в плоскости α по одну сторону от прямой а, а точки А и В (разных классов) лежат в плоскости α по разные стороны от прямой а.

III. Аксиомы конгруэнтности

III, 1. Если А и В – две точки на прямой а, А’ – точка на той же прямой или на другой прямой а’, то по данную от точки А’ сторону прямой а’ найдется, и притом только одна, точка В’ такая, что отрезок А’B’ конгруэнтен отрезку АВ. Каждый отрезок АВ конгруэнтен отрезку ВА.1

III, 2. Если отрезки А’B’ и А”B” конгруэнтны одному и тому же отрезку АВ, то они конгруэнтны и между собой.

III, 3. Пусть АВ и ВС – два отрезка прямой а, не имеющие общих внутренних точек, А’B’ и BC’ – два отрезка той же прямой, или другой прямой а’, также не имеющие общих внутренних точек. Тогда если отрезок АВ конгруэнтен отрезку А’B’, а отрезок ВС конгруэнтен отрезку BC’, то отрезок АС конгруэнтен отрезку А’C’.

Сформулированные три аксиомы относятся к конгруэнтности отрезков. Для формулировки следующих аксиом нам понадобятся понятие угла и его внутренних точек.

Пара полупрямых h и k, выходящих из одной и той же точки О и не лежащих на одной прямой, называется углом и обозначается символом Рисунок убран из работы и доступен только в оригинальном файле. или Рисунок убран из работы и доступен только в оригинальном файле..

Если полупрямые задаются двумя своими точками ОА и ОВ, то мы будем обозначать угол символом Рисунок убран из работы и доступен только в оригинальном файле. или Рисунок убран из работы и доступен только в оригинальном файле.. В силу теоремы 4 любые два луча h и k, составляющие угол Рисунок убран из работы и доступен только в оригинальном файле., определяют, и притом единственную, плоскость α.

Внутренними точками Рисунок убран из работы и доступен только в оригинальном файле. будем называть те точки плоскости α, которые, во-первых, лежат по ту сторону от прямой, содержащей луч h, что и любая точка луча k, и, во-вторых, лежат по ту сторону от прямой, содержащей луч k, что и любая точка луча h.

III, 4. Пусть даны Рисунок убран из работы и доступен только в оригинальном файле. на плоскости α, прямая а’ на этой же или на какой-либо другой плоскости α’ и задана определённая сторона плоскости α’ относительно прямой а’. Пусть h’ – луч прямой а’, исходящий из некоторой точки О’. Тогда на плоскости α’ существует один и только один луч k’ такой, что конгруэнтен Рисунок убран из работы и доступен только в оригинальном файле., и при этом все внутренние точки Рисунок убран из работы и доступен только в оригинальном файле. лежат по заданную сторону от прямой а’. Каждый угол конгруэнтен самому себе.

III, 5. Пусть А, В и С – три точки, не лежащие на одной прямой, А’, B’ и С’ – другие три точки, также не лежащие на одной прямой. Тогда если отрезок АВ конгруэнтен отрезку А’B’, отрезок АС конгруэнтен отрезку А’C’ и Рисунок убран из работы и доступен только в оригинальном файле. конгруэнтен Рисунок убран из работы и доступен только в оригинальном файле., то Рисунок убран из работы и доступен только в оригинальном файле. конгруэнтен Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. конгруэнтен

Договоримся теперь о сравнении неконгруэнтных отрезков и углов.

Будем говорить, что отрезок АВ больше отрезка А’B’, если на прямой, определяемой точками А и В, найдётся лежащая между этими точками точка С такая, что отрезок АС конгруэнтен отрезку А’В’. Будем говорить, что отрезок АВ меньше отрезка А’B’, если отрезок А’B’ больше отрезка АВ.

Символически тот факт, что отрезок АВ меньше отрезка А’B’ (конгруэнтен отрезку А’B’) будем записывать так:

АВ<A’B’ (AB=A’B’).

Будем говорить, что Рисунок убран из работы и доступен только в оригинальном файле. больше Рисунок убран из работы и доступен только в оригинальном файле., если в плоскости, определяемой Рисунок убран из работы и доступен только в оригинальном файле., найдётся луч ОС, все точки которого являются внутренними точками Рисунок убран из работы и доступен только в оригинальном файле., такой, что Рисунок убран из работы и доступен только в оригинальном файле. конгруэнтен Рисунок убран из работы и доступен только в оригинальном файле.. Будем говорить, что Рисунок убран из работы и доступен только в оригинальном файле. меньше Рисунок убран из работы и доступен только в оригинальном файле., если Рисунок убран из работы и доступен только в оригинальном файле. больше Рисунок убран из работы и доступен только в оригинальном файле..

С помощью аксиом принадлежности, порядка и конгруэнтности можно доказать целый ряд теорем элементарной геометрии. Сюда относятся: 1) три широко известные теоремы о конгруэнтности (равенстве) двух треугольников, 2) теорема о конгруэнтности вертикальных углов, 3) теорема о конгруэнтности всех прямых углов, 4) теорема о единственности перпендикуляра, опущенного из точки на прямую, 5) теорема о единственности перпендикуляра, проведённого к данной точке прямой, 6) теорема о внешнем угле треугольника, 7) теорема о сравнении перпендикуляра и наклонной.

IV. Аксиомы непрерывности

С помощью аксиом принадлежности, порядка и конгруэнтности мы произвели сравнение отрезков, позволяющее заключить, каким из трёх знаков <, = или > связаны эти отрезки.

Указанных аксиом, однако, недостаточно 1) для обоснования возможности измерения отрезков, позволяющее поставить в соответствие каждому отрезку определённое вещественное число, 2) для обоснования того, что указанное соответствие является взаимно однозначным.

Для проведения такого обоснования следует присоединить к аксиомам I, II и III две аксиомы непрерывности.

IV, 1 (аксиома Архимеда). Пусть АВ и СD – произвольные отрезки. Тогда на прямой, определяемой точками А и В существует конечное число точек А1, А2, ..., Аn, расположенных так, что точка А1 лежит между А и А2, точка А2 лежит между А1 и А3, ..., точка Аn-1 лежит между Аn-2 и Аn, причём отрезки АА1, А1А2, ..., Аn-1An конгруэнтны отрезку CD и точка В лежит между А и Аn.

IV, 2 (аксиома линейной полноты). Совокупность всех точек произвольной прямой а нельзя пополнить новыми объектами (точками) так, чтобы 1) на пополненной прямой были определены соотношения «лежит между» и «конгруэнтен», определён порядок следования точек и справедливы аксиомы конгруэнтности III, 1 – 3 и аксиома Архимеда IV, 1, 2) по отношению к прежним точкам прямой определённые на пополненной прямой соотношения «лежит между» и «конгруэнтен» сохраняли старый смысл.

Присоединение к аксиомам I, 1 – 3, II и III, 1- 3 аксиомы Архимеда позволяет поставить в соответствие каждой точке произвольной прямой а определённое вещественное число х, называемое координатой этой точки, а присоединение ещё и аксиомы линейной полноты позволяет утверждать, что координаты всех точек прямой а исчерпывают множество всех вещественных чисел. Пользуясь этим, можно обосновать метод координат.

. Аксиома параллельности

Самая последняя аксиома играет в геометрии особую роль, определяя разделение геометрии на две логически непротиворечивые и взаимно исключающие друг друга системы: евклидову и неевклидову геометрии.

В геометрии Евклида эта аксиома формулируется так.

Пусть а – произвольная прямая и А – точка, лежащая вне прямой а, тогда в плоскости α, определяемой точкой А и прямой а существует не более одной прямой, проходящей через А и не пересекающей а.

Долгое время геометры пытались выяснить, не является ли аксиома параллельности следствием всех остальных аксиом. Этот вопрос был решен Николаем Ивановичем Лобачевским, который доказал независимость аксиомы V от аксиом I – IV.

По-другому результат Лобачевского можно сформулировать так: если к аксиомам IIV присоединить утверждение, отрицающее справедливость аксиомы V, то следствия всех этих положений будут составлять логически непротиворечивую систему (неевклидову геометрию Лобачевского).

Систему следствий, вытекающих из одних только аксиом I – IV обычно называют абсолютной геометрией. Абсолютная геометрия является общей частью как евклидовой, так и неевклидовой геометрий, ибо все предложения, которые могут быть доказаны только с помощью аксиом I – IV, верны как в геометрии Евклида, так и в геометрии Лобачевского.

Доказательство непротиворечивости аксиоматики Гильберта

Чтобы доказать непротиворечивость некоей теории Х, необходимо из материала другой, заведомо непротиворечивой, теории А построить такую модель, в которой выполняются все аксиомы теории Х. Если это удастся, теорию Х можно считать непротиворечивой. Следовательно, для того, чтобы доказать непротиворечивость гильбертовой системы, необходимо построить такую модель евклидовой геометрии, в которой выполнялись бы все аксиомы, предложенные Гильбертом.

Для построения такой модели, необходима вышеупомянутая заведомо непротиворечивая теория. В модели, построенной Гильбертом, такой теорией служит теория действительных чисел. Идея построения модели состояла в рассмотрении системы координат на плоскости. В такой системе каждой точке М плоскости соответствуют два числа х и у – её координаты. Чтобы понять суть построения модели забудем о плоскости и имеющейся на ней координатной системе, «точками» будем называть упорядоченные пары действительных чисел (х; у) т. е. пары (х; у) и (у; х) с различными х и у будем считать различными. Теперь попытаемся определить «прямую». Вспомним, что каждая прямая описывается в координатах линейным уравнением вида ax + by + c = 0, где хотя бы один из коэффициентов a и b отличен от нуля. Например, уравнение прямой, не параллельной оси ординат, имеет вид у = kx + l, или, что то же самое, ax + by + c = 0, где a = k, b = -1, c = l. Если же прямая параллельна оси ординат, ей соответствует уравнение x = p (т. е. уравнение ax + by + c = 0, где a = 1, b = 0, c = -p;). При этом если все коэффициенты уравнения ax + by + c = 0 умножить на одно и то же число k ≠ 0, то полученное уравнение будет описывать ту же прямую. Мы же в своей модели будем называть «прямой» любое линейное уравнение вида ax + by + c = 0, в котором хотя бы один из коэффициентов a и b отличен от нуля, причём коэффициенты рассматриваются с точностью до ненулевого множителя пропорциональности (при k ≠ 0 уравнения ax + by + c = 0 и (ak)x + (bk)y + kc = 0 считаются одной и той же прямой).

Далее, «точка» (х1; у1) лежит на «прямой», если числа х1 и у1 удовлетворяют указанному уравнению. Как видим, для определения «прямых», «точек» и расположения «точек» на «прямой» достаточно опереться на теорию действительных чисел. Легко проверить, что в указанной модели выполняются, например, такие аксиомы:

1. Через две различные «точки» проходит «прямая»

2. На «прямой» имеется не менее двух «точек»

Легко определить случай, при котором одна из трёх «точек» лежит на «прямой» «между» двумя другими. Когда A(x1; y1), B(x2; y2) и C(x3; y3) – три «точки», лежащие на одной «прямой», «точка» B считается расположенной «между» A и C при условии, что число x2 заключено между числами x1 и x3 (если x1 = x2 = x3, то y2 заключено между y1 и y3). Тогда очевидно, что

3. Из трёх «точек», лежащих на одной «прямой», одна и только одна расположена между двумя другими.

Выполняются и другие аксиомы порядка (в частности, аксиома Паша). Заметим, что мы специально не иллюстрируем содержание аксиом чертежами, поскольку при чисто аксиоматическом изложении не следует использовать привычные геометрические представления.

Будем говорить, что две «прямые» a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0 «параллельны», если коэффициенты a1, b1 и a2, b2 пропорциональны. Это можно кратко записать равенством a1b2a2b1 = 0. Нетрудно проверить, что две «параллельные» «прямые» либо не имеют ни одной общей «точки», либо совпадают (в обычной геометрии тоже часто принимают, что прямая параллельна самой себе). Более того,

4. Через любую «точку» A1(x1; y1) проходит одна и только одна «прямая», параллельная данной «прямой» Ax + By + C = 0.

Иначе говоря, в указанной модели выполняется аксиома параллельности. Можно здесь говорить и о длинах отрезков, и о величинах углов. Например, «расстоянием» между двумя «точками» A1(x1; y1) и A2(x2; y2) называется число

A1A2 =

Далее, в привычной евклидовой геометрии справедлива теорема косинусов:

cos C =

(величина угла С равна арккосинусу правой части равенства. Можно возразить, что тригонометрические функции (и, в частности, косинус) определяются геометрически и обойтись без обычной евклидовой геометрии в данном случае невозможно. Однако это неверно. В математическом анализе доказывается, что функция cos x задаётся бесконечным рядом

cos x = Рисунок убран из работы и доступен только в оригинальном файле.,

который сходится для любого действительного x. Таким образом, в рассматриваемой модели допустимо говорить и о расстояниях, и о величинах углов.

Так же легко проверить, что в ней выполняются и аксиомы конгруэнтности (в частности, первый и второй признаки равенства треугольников). В итоге все гильбертовы аксиомы (представляющие собой развитие и уточнение аксиом Евклида) в рассматриваемой модели выполняются. Это и означает, что система аксиом евклидовой геометрии условно непротиворечива. Другими словами, она непротиворечива, если непротиворечива теория действительных чисел.

1.4 Другие системы аксиом геометрии

Вернёмся, однако, к евклидовой геометрии. В настоящее время систему акси ом Гильберта часто заменяют эквивалентной ей системой. Мы приведём те группы аксиом одной такой системы, по которым она отличается от вышеизложенной системы (группы аксиом порядка и движения, заменяющей в этой системе группу аксиом конгруэнтности).

Преимущество этой системы заключается в том, что она позволяет проще и быстрее получить первоначальные геометрические факты, лучше, как многим кажется, описывает свойства основных геометрических объектов с точки зрения привычных представлений.

II. Аксиомы порядка

Будем полагать, что на прямой есть два направления, взаимно противоположных друг другу, и по отношению каждому из них каждая пара точек А и В находится в известном отношении, которое выражается словом «предшествовать». Это отношение обозначается знаком <, так что выражение «А предшествует В» можно символически записать так:

А < B.

Требуется, чтобы указанное отношение для точек на прямой удовлетворяло нижеследующим пяти аксиомам.

II, 1. Если А < В в одном направлении, то В < А в противоположном направлении.

II, 2. В одном из двух направлений А < В исключает В < А.

II, 3. В одном из двух направлений если А < В и В < С, то А < С.

II, 4. В одном из двух направлений для каждой точки В найдутся точки А и С такие, что А < B < C.

Каждое из утверждений аксиом II, 2 – 4 относится к одному из двух направлений на прямой. По аксиоме II, 1 оно верно также и для противоположного направления.

Прежде чем сформулировать последнюю аксиому, определим некоторые понятия. Пусть а – прямая и А – точка на ней. При фиксированном направлении на прямой точка А разбивает её на две части (полупрямые), для каждой точки Х одной из них Х < А, а для каждой точки Х другой полупрямой А < X. Очевидно, это разбиение прямой на части не зависит от выбранного на ней направления (аксиома II, 1).

Пусть А и В – две точки прямой а. Если для точки С прямой а выполняется условие А < C < В или В < C < А, то мы будем говорить, что точка С лежит между точками А и В. Очевидно, свойство точки лежать между двумя данными не зависит от направления на прямой. Часть прямой а, все точки которой лежат между А и В, мы будем называть отрезком АВ, а точки А и В – концами отрезка.

II, 5. Прямая а, лежащая в плоскости α, разбивает эту плоскость на две полуплоскости так, что если X и Y – две точки одной полуплоскости, то отрезок XY не пересекается с прямой а, если же X и Y принадлежат разным полуплоскостям, то отрезок XY пересекается с прямой а.

Из аксиом принадлежности (связи), которые в этой системе аксиом аналогичны аксиомам принадлежности Гильберта, и аксиом порядка выводятся следующие следствия.

Теорема 1. Среди точек А, В, С на прямой а одна и только одна лежит между двумя другими.

Теорема 2. Каждый отрезок содержит по крайней мере одну точку.

Теорема 3. Если В – точка отрезка АС, то отрезки АВ и ВС принадлежат АС, т. е. каждая точка отрезка АС и каждая точка отрезка ВС принадлежит отрезку АС.

Теорема 4. Если В – точка отрезка АС и X – точка того же отрезка, отличная от В, то она принадлежит либо отрезку АВ, либо ВС.

Теорема 5. Пусть α – плоскость, и а – лежащая на ней прямая, b – другая прямая, или полупрямая, или отрезок в той же плоскости α.

Тогда, если b не пересекает а, то все точки b лежат по одну сторону от а, т. е. в одной из полуплоскостей, определяемых прямой а.

Пусть А, В и С – три точки, не лежащие на одной прямой. Фигура, составленная из трёх отрезков АВ, ВС и АС называется треугольником, точки А, В и С – вершинами треугольника, а отрезки АВ, ВС и АС – сторонами треугольника.

Теорема 9. Пусть АВС – треугольник в плоскости α и а – прямая в этой плоскости, не проходящая ни через одну из точек А, В, С. Тогда если эта прямая пересекает сторону АВ, то она пересекает и притом только одну из двух других сторон ВС или АС.

Нельзя не заметить, что последняя приведённая теорема почти аналогична аксиоме Паша, входящей в систему Гильберта (см. страницу 9), и отличается от неё только тем, что в аксиоме не утверждается единственность второй пересекаемой стороны треугольника.

III. Аксиомы движения

В данной системе группа аксиом конгруэнтности заменена этой группой аксиом. Впрочем, третьи группы аксиом обоих систем в конечном итоге выполняют одну и ту же задачу, определяя разными способами одни и те же явления (группа аксиом конгруэнтности у Гильберта определяет отношения конгруэнтности напрямую, аксиомы движения – через свои следствия).

Итак, будем требовать, чтобы существовали такие отражения точек, прямых и плоскостей на точки, прямые и плоскости, именуемые движениями, удовлетворяющие следующим аксиомам.

III, 1. Каждое движение Н сохраняет отношение принадлежности.

То есть, если точка А принадлежит прямой а (плоскости α), то её образ при движении Н (обозначаемый НА) принадлежит образу прямой На (соответственно образу плоскости Нα).

III, 2. Каждое движение Н сохраняет отношение порядка на прямой.

Это означает, как, наверное, уже догадался читатель, что каждому из двух направлений на прямой а можно сопоставить такое направление на прямой На, что каждый раз, когда для точек X и Y прямой а имеет место X < Y, для соответствующих им точек прямой На имеет место HX < HY.

Из этих двух аксиом следует, что каждое движение переводит полупрямую в полупрямую, полуплоскость в полуплоскость.

III, 3. Движения образуют группу.

Это значит:

а) Сопоставление Н0 каждому элементу х (точке, прямой, плоскости) его самого есть движение. Это движение называется тождественным.

б) Если движение Н1 сопоставляет произвольному элементу х элемент y, а движение Н2 сопоставляет y элемент z, то сопоставление элементу х элемента z есть движение. Оно обозначается Н2Н1 и называется произведением движений.

в) Для каждого движения Н существует движение Н-1 такое, что Н-1Н=Н0. Движение Н-1 будем называть обратным.

III, 4. Если при движении Н прямая h, как целое, и её начальная точка А остаются неподвижными, то все точки полупрямой h остаются неподвижными.

III, 5. Для каждой пары точек А и В существует движение Н, которе переставляет их местами: НА=В, НВ=А

III, 6. Для каждой пары лучей h, k (полупрямых), исходящих из одной точки, существует движение Н, их переставляющее: Нh=k, Hk=h.

III, 7. Пусть α и β – любые плоскости, а и b – прямые в этих плоскостях, А и В – точки на прямых а и b. Тогда существует движение, которое переводит точку А в В, заданную полупрямую прямой а, определяемую точкой А, - в заданную полупрямую прямой b, определяемую точкой В, заданную полуплоскость плоскости α, определяемую прямой а, – в заданную полуплоскость плоскости β, определяемую прямой b.

Теорема 10. Пусть α – плоскость, и а – принадлежащая ей прямая. Тогда если движение Н переводит каждую из полуплоскостей плоскости α, определяемых прямой а, в себя и оставляет неподвижными точки прямой а, то оно является тождественным.

Действительно, тождественное движение Н0 обладает указанными в теореме свойствами Н, а следовательно, по аксиоме III, 7 совпадает с ним.

Определим теперь понятие конгруэнтности. Фигуру F1 мы будем называть конгруэнтной фигуре F2, если существует движение Н, переводящее F1 в F2: HF1=F2. Из групповых свойств движения (аксиома III, 3) вытекают следующие свойства отношения конгруэнтности:

1.  Каждая фигура F конгруэнтна сама себе.

Действительно, тождественное движение Н0 переводит F в F.

2.  Если фигура F1 конгруэнтна F2, то фигура F2 конгруэнтна F1.

В самом деле, если Н – движение, переводящее фигуру F1 в F2, то движение Н-1 переводит фигуру F2 в фигуру F1.

3.  Если фигура F1 конгруэнтна F2, а фигура F2 конгруэнтна фигуре F3, то фигура F1 конгруэнтна F3.

Действительно, если Н' – движение, переводящее фигуру F1 в F2, а Н'' – движение, переводящее фигуру F2 в F3, то движение Н''Н' переводит F1 в F3.

Впервые подобную систему предложил спустя десять после появления гильбертовой аксиоматики Фридрих Шур.

Спустя ещё десять лет немецкий математик Герман Вейль (Weyl; 9.11.1885, Эльмсхорн, Шлезвиг-Гольштейн, – 8.12.1955, Цюрих) создал векторную аксиоматику геометрии. У Вейля первоначальными являются понятия «точка» и «вектор», а прямая и отрезок определяются с их помощью. Имеются аксиомы сложения векторов (означающие, что векторы образуют коммутативную группу), аксиомы умножения вектора на действительное число, аксиомы откладывания векторов (в частности, аксиома треугольника: Рисунок убран из работы и доступен только в оригинальном файле.), аксиомы скалярного произведения векторов и аксиома размерности (для планиметрии в ней утверждается: если даны три ненулевых вектора Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле., то какой-нибудь из них выражается в виде комбинации двух других: Рисунок убран из работы и доступен только в оригинальном файле.). При заданных точке А и ненулевом векторе Рисунок убран из работы и доступен только в оригинальном файле. прямая (А, Рисунок убран из работы и доступен только в оригинальном файле.) определяется как множество всех точек М, для которых векторРисунок убран из работы и доступен только в оригинальном файле. пропорционален Рисунок убран из работы и доступен только в оригинальном файле., то есть найдётся такое действительное число t, что Рисунок убран из работы и доступен только в оригинальном файле.. Далее определяются отрезки, углы, многоугольники, окружность и другие фигуры: например, расстояние между А и В – как квадратный корень из скалярного квадрата вектора Рисунок убран из работы и доступен только в оригинальном файле., то есть Рисунок убран из работы и доступен только в оригинальном файле.. Теорема Пифагора легко доказывается с помощью скалярного произведения, а аксиома параллельности – с помощью векторного определения прямой и аксиомы разномерности.

В заключение отметим, что гильбертова аксиоматика полностью уточнила не вполне совершенную систему аксиом, созданную Евклидом более двух тысяч лет тому назад. Аксиоматика Фридриха Шура и аксиоматика Германа Вейля связали геометрию с понятиями группы преобразований и векторного пространства, которые играют важнейшую роль во многих разделах современной математики, физики, экономики, химии, биологии и других областей знания.

Глава II. Неевклидовы геометрии в системе Вейля

2.1 Элементы сферической геометрии

В этом пункте рассмотрены элементы так называемой сферической геометрии - геометрии сферы евклидова пространства. Кратчайшими (геодезическими) или прямыми линиями на сфере являются большие окружности, т. е. такие окружности, плоскости которых проходят через центр данной сферы.

Так как любые два больших круга пересекаются, то в сферической геометрии не осуществляется ни постулат Евклида, ни аксиома параллельности Лобачевского. В этой геометрии не выполняется также ряд других фактов абсолютной геометрии.

Например, прямые в сферической геометрии замкнуты и на них невозможно установить понятие точки, лежащей «между» для трех точек, инцидентных прямой, так как каждую из этих точек на окружности можно считать точкой, лежащей между двумя другими. Две точки на большом круге определяют два отрезка и прямые имеют конечную длину. Таким образом, аксиомы порядка в сферической геометрии должны описывать свойства циклического расположени

Здесь опубликована для ознакомления часть дипломной работы "Развитие понятия "Пространство" и неевклидова геометрия". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 482

Другие дипломные работы по специальности "Математика":

Интеграл Лебега-Стилтьеса

Смотреть работу >>

Расширение кольца с помощью полутела

Смотреть работу >>

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков

Смотреть работу >>

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков

Смотреть работу >>

Кольцо целых чисел Гаусса

Смотреть работу >>