Дипломная работа на тему "Особенности астрономии ХХ века"

ГлавнаяМатематика → Особенности астрономии ХХ века




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Особенности астрономии ХХ века":


1. Изменения способа познания в астрономии ХХ века

В ХХ в. в астрономии произошли поистине радикальные изменения. Прежде всего, значительно расширился и обогатился теоретический фундамент астрономических наук. Начиная с 20-30-х годов, в качестве теоретической основы астрономического познания стали выступать (наряду с классической механикой) релятивистская и квантовая механика, что существенно раздвинуло "теоретический горизонт" астрономических исследований. Общая теория относительности создала возможность модельного теоретического описания явлений космологического масштаба и по сути впервые поставила космологию - эту чрезвычайно важную отрасль астрономии - на тверд ую теоретическую почву. А создание квантовой механики послужило чрезвычайно мощным импульсом развития как астрофизики, так и космогонического аспекта астрономии (в частности, выяснения источников энергии и механизмов эволюции звезд, звездных систем и др.); обеспечило переориентацию задач астрономии с изучения в основном механических движений космических тел (под влиянием гравитационного поля) на изучение их физических и химических характеристик. Выдвижение на первый план астрофизических проблем сопровождалось также интенсивным развитием таких отраслей астрономической науки, как звездная и внегалактическая астрономия.

Наряду с этим существенно совершенствовались и эмпирические методы астрономического познания. Астрономия стала всеволновой, т.е. астрономические наблюдения проводятся на всех диапазонах длин волн излучений (радио,- инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма - диапазоны). Появилась также возможность непосредственного исследования с помощью космических аппаратов и наблюдений космонавтов околоземного космического пространства, Луны и планет Солнечной системы. Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (и, как правило, неожиданных и во многом необъяснимых) явлений.

Среди этих открытий особенное значение имеют нестационарные процессы во Вселенной:

- обнаружение в конце 40-х годов существования "звездных ассоциаций", представляющих собой группы распадающихся после своего рождения звезд;

- обнаружение в 50-х годах явлений распада скоплений и групп галактик;

- открытие в 60-е годы квазаров (Квазары - самые мощные из известных сейчас источников энергии. При сравнительно небольших размерах (не более 1 светового месяца) средний квазар излучает вдвое больше энергии, чем вся наша Галактика, имеющая в поперечнике размер в 100 тысяч световых лет и состоящая из 200 млрд. звезд (!). Для квазаров характерны и признаки явной нестабильности: переменность блеска и выбросы вещества с огромными скоростями)., радиогалактик, взрывной активности ядер галактик с колоссальным энерговыделением (~ 1 0 n эрг, где n = 6 0);

- нестационарных явлений в недрах звезд;

- нестационарных явлений в Солнечной системе (быстрый распад короткопериодических комет, планетарная эруптивная деятельность и др.).

Кроме того, к выдающимся астрономическим открытиям следует отнести обнаружение:

- "реликтового" излучения, которое является важнейшим аргументом в пользу теории "горячей" Вселенной;

- "рентгеновских звезд";

- пульсаров;

- космических мазеров на линиях некоторых молекул (воды, ОН и др.);

- вероятное открытие "черных дыр"; и др.

11.2. Новая астрономическая революция

Попытки объяснить эти и другие новейшие открытия столкнулись с рядом принципиальных трудностей, преодоление которых связано с необходимостью совершенствования теоретико-методологического инструментария современной астрономии. Все это привело к значительному возрастанию количества разрабатываемых астрофизических и космологических моделей, концепций, опирающихся на разные принципы и не связанных пока единой фундаментальной теорией.

На этом фоне происходит интенсивная дифференциация и интеграция знаний о Вселенной. Выделяются не только новые отрасли теоретической и наблюдательной астрономии, но в связи с успехами космической техники возникают прикладные отрасли астрономии. В то же время возрастает роль общетеоретических интегративных принципов, понятий, установок, которые формируются под влиянием математики, физики, других естественных и даже гуманитарных наук. Изменяется место астрономии в системе научного познания: она сближается не только с естественными и математическими, но и с гуманитарными науками, философией.

По сути, астрономия во второй половине ХХ века астрономия вступила в период научной революции, которая изменила способ астрономического познания - на смену классическому способу познания пришел "неклассический" способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания и астрономической картины мира.

Рассмотрим сначала основные элементы современной астрономической картины мира, а затем и методологические установки неклассической астрономии.

1.3. Солнечная система

11.3.1. Планеты и их спутники

Земля - спутник Солнца в мировом пространстве, вечно кружащийся около этого источника тепла и света, делающего возможным жизнь на Земле. Кроме Солнца и Луны самыми яркими из постоянно наблюдаемых нами небесных объектов являются соседние с нами планеты. Они принадлежат к числу тех девяти миров (включая и Землю), которые обращаются вокруг Солнца (а его радиус - 700 тыс. км., т. е. в 100 раз превышает радиус Земли) на расстояниях, достигающих нескольких миллиардов километров. Вся группа планет вместе с Солнцем называется Солнечной системой. Планеты, хотя и кажутся похожими на звезды, в действительности гораздо меньше последних и темнее. Планеты видны только потому, что они отражают солнечный свет, и, поскольку они гораздо ближе к Земле, этот свет кажется очень ярким. Но если бы мы перенесли к ближайшей из звезд наши самые мощные телескопы, то не смогли бы с их помощью даже различить эти ничтожные спутники Солнца.

Кроме планет в солнечную "семью" входят спутники планет (в том числе и наш спутник - Луна), астероиды, кометы, метеорные тела, солнечный ветер. Расположены планеты в следующем порядке: Меркурий, Венера, Земля (один спутник - Луна), Марс (два спутника - Фобос и Деймос), Юпитер (15 спутников), Сатурн (16 спутников), Уран (5 спутников), Нептун (2 спутника) и Плутон (один спутник). Мы к Солнцу в сорок раз ближе, чем Плутон, и в два с половиной раза дальше, чем Меркурий. Возможно, что за Плутоном есть еще одна или несколько планет, но поиски их среди великого множества звезд слабее 15-й величины слишком кропотливы и не оправдывают затраченного на них времени. Возможно, они будут открыты "на кончике пера", как это уже было с Ураном, Нептуном и Плутоном.

Планеты должны быть и около многих других звезд, однако прямые наблюдательные данные о них отсутствуют, и есть только некоторые косвенные указания. Другими словами, современная астрономия исходит из идеи множественности планетных систем во Вселенной. Хотя это - гипотетическое предположение и строгих его доказательств пока не существует.

С 1962 г. планеты и их спутники успешно исследуются космическими аппаратами. Изучены атмосферы и поверхность Венеры и Марса, сфотографированы поверхности Меркурия, облачный покров Венеры, Юпитера, Сатурна, вся поверхность Луны, получены изображения спутников Марса, Юпитера, Сатурна, колец Сатурна и Юпитера. Спускаемые космические аппараты исследовали физические и химические свойства пород, слагающих поверхность Марса, Венеры, Луны (образцы лунных пород были доставлены на Землю и тщательно изучены).

По физическим характеристикам планеты делятся на 2 группы:

1. планеты земного типа: Меркурий, Венера, Земля, Марс;

2. планеты-гиганты: Юпитер, Сатурн, Уран, Нептун.

О Плутоне известно мало, но, по-видимому, он ближе по своему строению к планетам земной группы.

11.3.2. Строение планет

Строение планет слоистое. Выделяют несколько сферических оболочек, различающихся по химическому составу, фазовому состоянию, плотности и др. характеристикам.

Все планеты земной группы имеют твердые оболочки, в которых сосредоточена почти вся их масса. Три из них (Венера, Земля и Марс) обладают газовыми атмосферами. Меркурий практически лишен атмосферы. Только Земля имеет жидкую оболочку из воды - гидросферу, а также биосферу (результат прошлой и современной деятельности живых организмов). Аналогом земной гидросферы на Марсе является криосфера - лед в полярных шапках и в грунте (вечная мерзлота). Одна из загадок Солнечной системы - дефицит воды на Венере.

Характеристики твердых оболочек планет относительно хорошо известны лишь у Земли. Модели внутреннего строения других планет земной группы стоятся главным образом на основании данных о свойствах веществе земных недр. Как и у Земли, в твердых оболочках планет выделяют:

1. кору - самую внешнюю тонкую (10-100 км) твердую оболочку;

2. мантию - твердую и толстую (1000-3000 км) оболочку;

3. ядро - наиболее плотная часть планетных недр.

У Земли ядро, состоящее, скорее всего, из железа, подразделяется на внешнее (жидкое) и внутреннее (твердое); температура в центре Земли оценивается в 4000-5000 К. Жидкое ядро, вероятно, есть также у Меркурия и Венеры, у Марса его, по-видимому, нет.

Наиболее распространенные элементы в твердом "теле" Земли -

Fe ( 3 4 ,6 %), О (2 9 , 5 %) , Si ( 1 5 , 2 %) и Mg ( 1 2 , 7 %) .

Таким образом, планеты земной группы резко отличаются по элементному составу от Солнца и совершенно не соответствуют средней космической распространенности элементов - очень мало водорода, инертных газов, включая гелий.

Планеты-гиганты обладают иным химическим составом. Юпитер и Сатурн содержат водород и гелий в той же пропорции, что и Солнце. Вероятно, другие элементы также содержатся в пропорциях, соответствующих солнечному составу. В недрах Урана и Нептуна тяжелых элементов, по-видимому, больше.

Недра Юпитера находятся в жидком состоянии, за исключение небольшого каменного ядра. Температура в центре Юпитера ~ 30 000 K . Химический и изотопный состав Юпитера отражает, по-видимому, состав межзвездной среды, какой она была 5 млрд. лет тому назад. Вместе с тем, Юпитер никогда не был настолько горяч, чтобы в нем могли протекать термоядерные реакции. Сатурн по внутреннему строению похож на Юпитер. Строение недр Урана и Нептуна иное: доля каменистых материалов в них существенно больше.

Основными источниками энергии в недрах планет являются радиоактивный распад элементов и гравитационная дифференциация (постепенное перераспределение вещества по глубине в соответствии с плотностью - тяжелые фрагменты тонут, легкие всплывают). Подобное перераспределение на Земле еще далеко не завершилось. Такие процессы влияют на земную кору, вызывая перемещения отдельных ее участков, деформацию, горообразование - тектонические и вулканические процессы. Вулканические процессы связаны с тем, что в верхней мантии существуют небольшие области, где температура достаточна для плавления ее вещества. Расплавленное вещество (магма), выдавливающееся вверх, прорывается через кору и происходит вулканическое извержение. Судя по характеру поверхности среди планет земной группы тектонически наиболее активна Земля, за ней следуют Венера и Марс.

Поверхность планет и их спутников формируют кроме эндогенных (тектонических, вулканических) процессов и экзогенные - изменение поверхности в результате падения метеорных тел (кратеры), эрозия под действием ветра, осадков, воды, ледников, химическое взаимодействие поверхности с атмосферой и гидросферой и др. Эндогенные и экзогенные процессы определяют формы рельефа поверхности планет.

11.3.3. Происхождение планет

Предполагается, что планеты возникли одновременно (или почти одновременно) 4,6 млрд. лет назад из газово-пылевой туманности, имевшей форму диска, в центре которого формировалось (или, возможно, уже было расположено) молодое Солнце. Образование звезд и планетных систем - это, по-видимому, все-таки единый процесс, происходящий в результате конденсации облака межзвездного газа в силу его гравитационной неустойчивости. Таким образом, протопланетная туманность образовалась, по-видимому, вместе с Солнцем из межзвездного вещества, плотность которого превысила критические пределы. По некоторым данным ( присутствие специфических изотопов в метеоритах), такое уплотнение произошло в результате относительно близкого взрыва сверхновой звезды. Взрыв сверхновой мог ускорить и стимулировать процесс конденсации, а также обеспечить содержание в составе газовой туманности тяжелых элементов.

Допланетное облако должно было быть маломассивным. Если бы оно было > 0,15 массы Солнца оно аккумулировалось бы не в систему планет, а в звездообразный спутник Солнца.

Протопланетное облако было неустойчивым, оно становилось все более плоским, конденсировалось в уплотненный диск, в нем возникали неустойчивости, которые приводили к образованию ряда колец, а газовые кольца превращались в газовые сгустки - протопланеты. Протопланеты сжимались, твердые пылинки сближались, сталкивались, образовывали тела все больших и больших размеров, и в относительно короткий срок (1 0 n лет, где по разным оценкам n = 5 ч 8) сформировались 9 больших планет. Астероиды, кометы, метеориты являются, вероятно, остатками материала, из которого сформировались планеты.

Астероиды сохранились до нашего времени благодаря тому, что подавляющее большинство их движется в широком промежутке между орбитами Марса и Юпитера. Аналогичные каменистые тела, некогда существовавшие во всей зоне планет земной группы, давно присоединились к этим планетам либо разрушились при взаимных столкновениях, либо были выброшены на пределы этой зоны благодаря гравитационному воздействию планет.

Происхождение систем регулярных спутников (т.е. движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора) авторы космогонических гипотез обычно объясняют повторением в малом масштабе того же процесса, который они предлагают для объяснения образования планет Солнечной системы. Такие спутники есть у Юпитера, Сатурна, Урана. Происхождение иррегулярных спутников (т.е. таких, которые обладают обратным движением) эти теории объясняют захватом.

Что касается Луны, то наиболее вероятным является ее образование на околоземной орбите (возможно из нескольких крупных спутников, которые в конечном счете объединились в одной тело Луну, что обеспечило ее быстрое нагревание), хотя в литературе продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли.

11.3.4. Химический состав вещества во Вселенной

Очень важным для понимания структуры и эволюции Вселенной является вопрос о химическом составе вещества во Вселенной.

Как известно, всякое вещество состоит из атомов. В естественном виде на Земле встречается около 90 разных видов атомов; кроме того, несколько новых видов атомов было получено искусственно. Вещество, образованное атомами только одного какого-нибудь вида, называется элементом. Атомы большинства элементов способны объединяться друг с другом или с атомами других элементов, образуя молекулы; конкретные законы такого объединения являются предметом изучения химии. Всякое вещество во всех его формах - от самого твердого (алмаза) до любого газа (воздуха, например), от органических соединений тела человека до отдаленнейших галактик и звезд - представляет собой различные комбинации все тех же основных элементов.

Простейший элемент - водород. Его атом состоит всего из двух частиц - электрона и протона. Следующий простейший элемент - гелий, каждый атом которого содержит шесть частиц: два протона и два нейтрона, расположенные в центре, образуют ядро, а два электрона, связанные с ядром электрическим притяжением, вращаются вокруг него по орбитам. Основные различия между атомами обусловлены разным количеством протонов в их ядрах. Сейчас известны все атомы, ядра которых содержат от 1 до 92 протонов, но если одни из них, например железо, широко распространены на Земле, то другие, например технеций, встречаются крайне редко. Самым сложным из существующих в природе элементов является уран; ядро его атома включает 92 протона и около 140 нейтронов, а вокруг него обращаются 92 электрона. Элементы, имеющие в ядре более 92 протонов и полученные искусственным путем (например, нептуний и плутоний), неустойчивы (радиоактивны) и довольно быстро распадаются. Поэтому они не были найдены на Земле в естественном виде.

При спектроскопическом исследовании астрономических объектов во всей доступной нам Вселенной обнаруживаются одни и те же элементы. Однако относительная распространенность элементов на Земле различна для разных частей Вселенной. Так, около 90% всех атомов во Вселенной - атомы водорода: остальные - главным образом атомы гелия. Более тяжелые атомы, которые обычны для нашей планеты Земля, составляют во Вселенной лишь ничтожно малую часть. Из этого следует, что образование Земли осуществлялось в особенных условиях, не характерных для среднестатистического распространения элементов во Вселенной. Ясно, что вначале во Вселенной не было сложных атомов и действовал какой-то механизм синтеза, формирующий сложные элементы из более легких и простых, таких, как водород. Когда и как действовала "фабрика", изготавливавшая химические элементы, - одна из центральных проблем современного естествознания, лежащая на "стыке" астрономии, химии и физики.

11.4. Звезды

11.4.1.Звезда - газовый шар

Звезды - далекие солнца. Звезды - это огромные раскаленные солнца, но столь удаленные от нас по сравнению с планетами Солнечной системы, что, хотя они сияют в миллионы раз ярче, их свет кажется нам относительно тусклым.

В ночном небе невооруженным газом можно видеть около 6000 звезд. С уменьшением блеска звезд число их растет, и даже простой их счет становится все более затруднительным. В астрономические каталоги "поштучно" сосчитаны и занесены все звезды ярче 11-й звездной величины. Их около миллиона. А всего доступно нашему наблюдению около двух миллиардов звезд. Общее количество звезд во Вселенной оценивается в 10n , где n = 2 2 .

Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые большие звезды (сверхгиганты) превосходят размер Солнца в десятки и сотни раз. Звезды-карлики имеют размеры Земли и меньше. Предельная масса звезд равна примерно 60 солнечным массам.

Весьма различны и расстояния до звезд. Свет звезд некоторых далеких звездных систем доходит до нас за сотни миллионов световых лет. Самой близкой к нам звездой можно считать звезду первой величины a Центавра, не видимую с территории России. Она отстоит от нас на расстоянии 4 световых лет. (Световой год равен 9, 46 · 1 0 n км, где n = 12, или около 10.000 млрд. км. Парсек (пк) - единица для выражения межзвездных расстояний равная пути, который бы прошел свет (с=300 000 км/ сек) за 3, 26 года. 1 парсек = 3,083 · 1 0 n км, где n = 1 3 . Во внегалактической астрономии употребляются еще такие единицы как килопарсек (Кпк) (равный 1000 пк) и мегапарсек (Мпк) (равный 1 000 000 пк)).. Курьерский поезд, идя без остановок со скоростью 100 км/ час, добрался бы до нее через 40 миллионов лет!

В звездах сосредоточена основная масса (98-99%) видимого вещества в известной нам части Вселенной. Звезды - мощные источники энергии. В частности, жизнь на Земле обязана своим существованием энергии излучения Солнца. Вещество звезд находится в ином состоянии, чем вещество в привычных для нас земных условиях. Вещество звезд представляет собой плазму. И потому, строго говоря, звезда - это не просто газовый шар, а плазменный шар. Плазма - это четвертое (наряду с твердым, жидким, газообразным) состояние вещества, представляющее собой ионизированный газ, в котором положительные (ионы) и отрицательные заряды (электроны) в среднем нейтрализуют друг друга. На поздних стадиях развития звезды звездное вещество переходит в состояние вырожденного газа (в котором квантово-механическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах - давлении, теплоемкости и р.), а иногда и нейтронного вещества (нейтронные звезды - пульсары, барстеры - источники рентгеновского излучения и др.; вещество в них состоит в основном из нейтронов)

Звезды в космическом пространстве не распределены равномерно. Они образуют звездные системы:

o      кратные звезды (двойные, тройные и т.д.);

o      звездные скопления (от нескольких десятков звезд до миллионов);

o      галактики - грандиозные звездные системы (наша Галактика, например, содержит около 150-200 млрд. звезд).

В нашей Галактике звездная плотность также весьма неравномерна. Выше всего она в области галактического ядра. Здесь она в 20 тыс. раз выше, чем средняя звездная плотность в окрестностях Солнца.

Большинство звезд находится в стационарном состоянии, т.е. изменений их физических характеристик не наблюдается. Это отвечает состоянию равновесия. Однако наблюдения показывают, что существуют и такие звезды, свойства которых меняются видимым образом. Их называют переменными звездами и нестационарными звездами. С теоретической точки зрения переменность и нестационарность - проявления неустойчивости состояния равновесия звезды. Переменные звезды некоторых типов изменяют свое состояние регулярным или нерегулярным образом. Следует отметить также и такой вид звезд, в которых непрерывно или время от времени происходят вспышки, в частности новые звезды. При вспышках (взрывах) т.н. сверхновых звезд вещество звезд в некоторых случаях может быть полностью рассеяно в пространстве.

Высокая светимость звезд, поддерживаемая в течение длительного времени, свидетельствует о выделении в них огромных количеств энергии. Современная физика указывает на два возможных источника энергии - гравитационное сжатие, приводящее к выделению гравитационной энергии, и термоядерные реакции, в результате которых из ядер легких элементов синтезируются ядра более тяжелых элементов и выделяется большое количество энергии.

Энергии гравитационного сжатия, как показывают расчеты, было бы достаточно для поддержания светимости Солнца в течение всего лишь 30 млн. лет, в то время как из геологических и др. данных следует, что светимость Солнца оставалась примерно постоянной в течение миллиардов лет. Гравитационное сжатие может служить источником энергии лишь для очень молодых звезд (типа t Тельца). С другой стороны, термоядерные реакции протекают с достаточной скоростью лишь при температурах в тысячи раз превышающих температуру поверхности звезд. Так, для Солнца температура, при которой термоядерные реакции могут выделять необходимое количество энергии, составляет по различным расчетам от 12 до 15 млн. К. Таким образом, наше Солнце является медленно горящей водородной бомбой.

Предполагается, что у многих (но вряд ли у большинства) звезд есть собственные планетные системы, аналогичные нашей Солнечной системе.

11.4.2. Эволюция звезд: звезды от их "рождения" до "смерти"

11.4.2.1. Процесс звездообразования

Эволюция звезд - это изменение физических характеристик, внутреннего строения и химического состава звезд со временем. Современная теория эволюции звезд способна объяснить общий ход развития звезд и находится в удовлетворительном согласии с данными наблюдений.

Ход эволюции звезды зависит от ее массы и от исходного химического состава. Химический состав звезды зависит от времени, когда она образовалась и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав которого определялся космологическими условиями (почти 70% водорода, 30% гелия и ничтожная примесь дейтерия и лития). В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием в таблице Менделеева), которые были выброшены в межзвездное пространство в результате истечение вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего 3-4% тяжелых элементов.

"Рождение" звезды - это образование гидростатически равновесного объекта, излучение которого поддерживается за счет собственных источников энергии. А "смерть" звезды - это необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофическому сжатию.

Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время. Звезды образуются в результате гравитационной конденсации вещества межзвездной среды. К молодым звездам относятся звезды, которые еще находятся в стадии первоначального гравитационного сжатия. Температура в центре таких звезд недостаточна для протекания ядерных реакций, и свечение происходит только за счет превращения гравитационной энергии в теплоту. Гравитационное сжатие - первый этап эволюции звезд.

Он приводит к разогреву центральной зоны звезды до температуры "включения" термоядерной реакции ( ~ 1 0 - 1 5 млн. К) превращения водорода в гелий ( ядра водорода, т.е. протоны, образуют ядра гелия: каждые четыре протона, объединяясь, образуют атом гелия). Такое превращение сопровождается большим выделением энергии.

11.4.2.2.Звезда как саморегулирующаяся система

У большинства звезд источниками энергии являются водородные термоядерные реакции в центральной зоне. Водород - главная составная часть космического вещества и важнейший вид ядерного горючего в звездах. Запасы его в звездах очень велики, так что в звездах ядерные реакции могут протекать в течение миллиардов лет. При этом, пока в центральной зоне весь водород не выгорел, свойства звезды изменяются мало.

В недрах звезд при температурах более 10 млн. К и огромных плотностях газ обладает давлением в миллиарды атмосфер. В этих условиях звезда может находиться в стационарном состоянии лишь благодаря тому, что в каждом ее слое внутреннее давление газа уравновешивается действием сил тяготения. Такое состояние называется гидростатическим равновесием. Следовательно, стационарная звезда представляет собой плазменный шар, находящийся в состоянии гидростатического равновесия. Если внутри звезды температура по какой-либо причине повысится, звезда должна раздуться, т.к. возрастает давление в ее недрах.

Стационарное состояние звезды характеризуется еще и тепловым равновесием. Тепловое равновесие означает, что процессы выделения энергии в недрах звезд, процессы теплоотвода энергии из недр к поверхности и процессы излучения энергии с поверхности должны быть сбалансированы. Если теплоотвод превысит тепловыделение, то звезда начнет сжиматься и разогреваться. Это приведет к ускорению ядерных реакций, и тепловой баланс будет вновь восстановлен. Звезда представляет собой тонко сбалансированный организм, она оказывается саморегулирующейся системой.

После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое близ поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка - расширяться. Звезда принимает гетерогенную структуру. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой и звезда переходит в стадию красного гиганта. С этого момента жизнь звезды начинает клониться к закату.

Полагают, что звезда типа нашего Солнца может увеличиться настолько, что заполнит орбиту Меркурия. Правда, наше Солнце станет красным гигантом примерно через 8 млрд. лет. Так что особых оснований для беспокойства у жителей Земли нет. Ведь сама Земля образовалась всего лишь 5 млрд. лет назад.

11.4.2.3. От красного гиганта до белого и черного карликов

Для красного гиганта характерна низкая внешняя, но очень высокая внутренняя температура. С повышение внутренней температуры в термоядерные реакции включаются все более тяжелые ядра. На этом этапе (при температуре свыше 150 млн. К) в ходе ядерных реакций осуществляется синтез химических элементов. В результате роста давления, пульсаций и др. процессов красный гигант непрерывно теряет вещество, выбрасываемое в межзвездное пространство. Когда полностью истощаются внутренние термоядерные источники энергии, дальнейшая судьба звезды зависит от ее массы.

При массе < 1 , 4 массы Солнца звезда переходит в стационарное состояние с очень большой плотностью. Такие звезды называются белыми карликами. В них электроны образуют вырожденный газ (вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую), давление которого уравновешивает силы тяготения. Тепловые запасы звезды постепенно истощаются и звезда медленно охлаждается, охлаждение сопровождается выбросами оболочки звезды. Молодые белые карлики, окруженные остатками оболочки, наблюдаются как планетарные туманности. Белый карлик как бы вызревает внутри красного гиганта и появляется на свет, когда красный гигант сбрасывает свои поверхностные слои, образовывая планетарную туманность.

Когда же энергия звезды иссякнет, звезда начинает изменять свой цвет от белого к желтому, затем к красному: наконец, она перестанет излучать и начнет непрерывное путешествие в необозримом космическом пространстве в виде маленького темного безжизненного объекта. Так белый карлик медленно превращается в "черный карлик" - мертвую холодную звезду, размер которой обычно меньше размеров Земли, а масса сравнима с солнечной. Плотность такой звезды - в миллиарды раз выше плотности воды. Так заканчивают свое существование большинство звезд.

11.4.2.4 Сверхновые звезды

При массе > 1,4 массы Солнца стационарное состояние звезды без внутренних источников энергии становится невозможным, т.к. давление не может уравновесить силу тяготения. Теоретически конечным результатом эволюции таких звезд должен быть гравитационный коллапс - неограниченное падение вещества к центру. В случае, когда отталкивание частиц и другие причины все же останавливают коллапс, происходит мощный взрыв - вспышка сверхновой с выбросом значительной части вещества звезды в окружающее пространство с образованием газовых туманностей.

Вспышки сверхновых были зафиксированы в 1054 г., 1572 г., 1604 г. Китайские летописцы следующим образом отметили это событие 4 июля 1054 г.: "В первый год периода Чи-хо, в пятую Луну, в день Чи -Чу появилась звезда-гостья к юго-востоку от звезды Тиен -Куан и исчезла более чем через год". А в другой летописи было записано: "Она была видна днем, как Венера, лучи света исходили из нее во все стороны, и цвет ее был красновато-белый. Так была видна она 23 дня". Подобные скупые записи были сделаны арабскими и японскими очевидцами. И уже в наше время было выяснено, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения. Как мы уже отмечали (см.: 6.2), вспышка сверхновой в 1572 г. в созвездии Кассиопеи была отмечена в Европе, изучалась и широкий интерес не ней общественности сыграл важную роль в расширении астрономических исследований и последующем утверждении гелиоцентризма. В 1885 г. появление сверхновой звезды было отмечено в туманности Андромеды. Ее блеск превышал блеск всей Галактики и оказался в 4 млрд. раз более интенсивным, чем блеск Солнца.

Систематические исследования позволили уже к 1980 г. открыть свыше 500 вспышек сверхновых! Со времени изобретения телескопа ни одна вспышка сверхновой звезды не наблюдалась в нашей звездной системе - Галактике. Астрономы наблюдают пока их только в других неимоверно далеких звездных системах, столь далеких, что даже в мощнейший телескоп звезду, подобную нашему Солнцу, в них нельзя было бы увидеть.

Взрыв сверхновой - гигантский по силе взрыв старой звезды, вызванный внезапным коллапсом ее ядра, который сопровождается кратковременным испусканием огромного количества нейтрино. Обладающие только слабым взаимодействием, эти нейтрино тем не менее разметали наружные слои звезды в космическом пространстве и образовали клочья облаков расширяющегося газа. При вспышке сверхновой звезды выделяется чудовищная энергия( порядка 1 0 n эрг, где n = 5 0 ч 5 2 ) .Вспышки сверхновых имеют фундаментальное значение для обмена веществом между звездами и межзвездной средой, для образования химических элементов (под воздействием мощных потоков нейтронов), а также для рождения первичных космических лучей.

Астрофизики подсчитали, что с периодом в 10 млн. лет сверхновые звезды вспыхивают в нашей Галактике, в непосредственной близости от Солнца. Дозы космического излучения при этом могут превышать нормальные для Земли в 7 тысяч раз! Это чревато серьезнейшими мутациями живых организмов на нашей планете. Так объясняют, в частности, внезапную гибель динозавров.

11.4.2.5. Нейтронные звезды

Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела - нейтронной звезды или черной дыры.

Открытые в 1967 г. новые объекты - пульсары отождествляются с теоретически предсказанными нейтронными звездами. Плотность нейтронной звезды очень высока, выше плотности атомных ядер - 1 0 n г/ куб. см, где n = 1 5. Температура такой звезды около 1 млрд. градусов. Но нейтронные звезды очень быстро остывают, светимость их слабеет. Зато они интенсивно излучают радиоволны в узком конусе по направлению магнитной оси. Для звезд, в которых магнитная ось не совпадает с осью вращения, радиоизлучение фиксируется в виде повторяющихся импульсов. Поэтому-то нейтронные звезды называют пульсарами. В настоящее время открыты сотни нейтронных звезд. Экстремальные физические условия в нейтронных звездах делают их уникальными естественными лабораториями, представляющими обширный материал для исследования физики ядерных взаимодействий, элементарных частиц и теории гравитации.

11.4.3. Черные дыры

Но если конечная масса белого карлика превышает 2-3 массы Солнца, то гравитационный коллапс непосредственно ведет к образованию черной дыры.

Черная дыра - область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость (параболическая скорость) для находящихся в этой области тел должна была бы превышать скорость света, т.е. из черной дыры ничто не может вылететь - ни излучение, ни частицы, ибо в природе ничто не может двигаться со скоростью, большей скорости света. Границу области, за которую не выходит свет, называют горизонтом черной дыры. Для того, чтобы поле тяготения смогло "запереть" излучение, создающая это поле масса звезды должна сжаться до объема с радиусом, меньшим т.н. гравитационного радиуса r = 2 G M / c І , где G - гравитационная постоянная, c - скорость света, M - масса звезды. Гравитационный радиус чрезвычайно мал даже для больших масс (например, для Солнца, имеющего массу 2 · 1 0 n г( n = 3 3 ) , r ~ 3 км).

Свойства черной дыры необычны. Например, особый интерес вызывает возможность гравитационного захвата черной дырой тел, прилетающих из бесконечности. В ньютоновской механике всякое тело, приближающееся из бесконечности к тяготеющей массе, описывает около нее параболу или гиперболу и (если не испытывает соударения с тяготеющей массой) снова улетает в бесконечность. Гравитационный захват здесь невозможен. Иначе обстоит дело в поле тяготения черной дыры. В достаточной близости от черной дыры траектория резко отличается от ньютоновской. Так, если скорость тела вдали от черной дыры много меньше световой и траектория его движения подходит близко к окружности с R = 2 r , то тело совершит много оборотов вокруг черной дыры, прежде чем снова улетит в космос. Если же тело подойдет вплотную к указанной окружности, то его орбита будет неограниченно навиваться на окружность. Тело окажется гравитационно захваченным черной дырой и никогда снова не улетит в космос. Если же тело подлетит еще ближе к черной дыре, то после нескольких оборотов иди даже не успев сделать ни одного оборота, оно упадет в черную дыру.

Когда фотоны либо частицы уходят за гравитационный радиус, они просто исчезают. Только во внешней области непосредственно у гравитационного радиуса они могут быть видимыми, причем создается впечатление, что они как бы скрываются за занавесом и больше не появляются. Звезде с массой, равной массе Солнца, требуется лишь несколько секунд для того, чтобы превратиться из обычной звезды в черную дыру, а если масса равна массе миллиарда звезд, то такой процесс займет несколько дней.

В черной дыре пространство и время взаимосвязаны необычным образом. Для наблюдателя внутри черной дыры направление возрастания времени является направлением уменьшения радиуса. Оказавшись внутри черной дыры наблюдатель не имеет больше сил вернуться обратно к поверхности, так же как он не может повернуть назад стрелки часов, отсчитывающих время его жизни. Он не может даже приостановиться в том месте, где оказался. Причина здесь простая: ничто не может остановить ход времени.

Черные дыры своим сильным гравитационным полем могут вызывать бурные процессы при падении в них газа. Газ при падении в поле тяготения черной дыры образует закручивающийся вокруг последней быстро вращающийся уплощенный диск. Например, в системе двойной звезды, одна из которых нормальная звезда, а вторая - черная дыра: черная дыра как бы "высасывает соки" из своего напарника. При этом колоссальная кинетическая энергия частиц, разгоняемых тяготением сверхплотного тела, частично переходит в рентгеновское излучение, и по этому излучению черная дыра может быть обнаружена. Вероятно, одна черная дыра уже обнаружена таким способом в рентгеновском источнике Лебедь Х-1.В целом же, по-видимому, на долю черных дыр и нейтронных звезд в нашей Галактике приходится около 100 млн. звезд.

Итак, черна дыра так сильно искривляет пространство, что она как бы отсекает себя от Вселенной. Она может буквально исчезнуть из Вселенной. Возникает вопрос, куда она может исчезнуть? Математический анализ показывает, что имеется разные решения. Но особенно интересно одной из них. В соответствии с ним, черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной вселенной. Таким образом, воображаемый космический путешественник мог бы использовать черную дыры для передвижения в пространстве и времени нашей Вселенной и даже проникновения в другую вселенную.

11.5. Острова Вселенной: галактики

11.5.1. Общее представление о галактиках и их изучении

Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, так и названные туманностями, видимые неизменно в одних и тех же местах в разных созвездиях. С помощью сильных телескопов Вильям Гершель и его сын Джон открыли множество таких туманных пятен, а к концу прошлого века у некоторых из них была обнаружена спиральная форма. Но что представляют собой эти туманности - долго оставалось загадкой. И только в 20-е годы ХХ века с помощью крупнейших в той время телескопов удалось разложить туманности на звезды. Стало ясно, что туманности - это не облака пыли, святящиеся отраженным светом, и не облака разреженного газа, а чрезвычайно далекие звездные системы, в которых звезд несравненно больше, чем в близких к нам шаровых скоплениях. Таким образом, галактики - это гигантские звездные системы (до ~ 1 0 n , где n = 1 3 , звезд). Такого же порядка (n = 13) являются и массы галактик по отношению к массе Солнца.

Некоторые галактики можно разглядеть в хороший бинокль. Галактику Андромеды, большую по размерам и находящуюся достаточно близко к нам (всего в 1,5 млн. световых лет), в состоянии даже увидеть человек с хорошим зрением: это размытое пятно в созвездии Андромеды. В современные телескопы удается отыскать сотни миллионов других галактик. Строение их весьма различно, но одна форма наиболее характерна и примечательна - уплощенный диск с выпуклостью в центре, откуда исходят спиральные рукава (нечто вроде огненного колеса, используемого в фейерверках). Галактика Андромеды, как и наша собственная, принадлежит к спиральному типу галактик. Солнечная система расположена в одном из спиральных рукавов Галактики на расстоянии примерно двух третей ее радиуса от центра.

Следует всегда помнить, что, наблюдая Вселенную, мы видим галактики не такими, какие они есть теперь, а такими, какими они были в далеком прошлом. Ведь свет от них приходит к нам через пространство в миллионы и миллионы километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает нас через 1,5 млн. лет. В большие телескопы можно наблюдать еще намного более далекие галактики, и мы видим их такими, какими они были миллиарды лет назад! В настоящее время наблюдается 1 0 n (где n = 1 4) галактик. А расстояния до самых дальних из них - свыше 10 млрд. световых лет.

Велики не только размеры галактик и расстояния до них, велико и количество галактик, которые наблюдаются астрономами. Так, самой большой 6-метровый телескоп позволяет сфотографировать миллиарды галактик (!). В хорошо исследованной области пространства, на расстояниях 1500 Мпк, находится сейчас несколько миллиардов галактик. Таким образом, наблюдаемая нами область Вселенной - это прежде всего мир галактик.

Одна из центральных проблем внегалактической астрономии - это определение расстояний до галактик и размеров самих галактик. До ближайших галактик, которые можно разрешить на звезды, расстояния определяются по их светимости.

Определение расстояний до галактик и их положения на небе позволило сделать еще одно важное открытие. Оказалось, что большинство галактик входит в группировки, которые насчитывают от нескольких галактик (группа галактик) до сотен и тысяч галактик (скопление галактик) и даже облака скоплений (сверхскопления). Одиночные галактики тоже наблюдаются, но они относительно редки (не более 10%). Другими словами, если галактики - это "острова Вселенной", то они, как правило, объединены в архипелаги. Размеры галактик тоже различны. Есть галактики-карлики в несколько десятков световых лет, и галактики-великаны с поперечником до 18 млн. световых лет.

Средние расстояния между галактиками в группах и скопления (несколько сотен кпк) примерно в 10-20 раз больше, чем размеры крупнейших галактик. Расстояния между скоплениями галактик составляют десятки Мпк (мегапарсек). Таким образом, галактики заполняют пространство с большей относительной плотностью, чем звезды во внутригалактическом пространстве (расстояния между звездами в среднем в 20 млн. раз больше их диаметра).

Наиболее исследована Местная группа галактик, в которой самыми яркими являются наша Галактика и туманность Андромеды. Вокруг них, в свою очередь, располагаются еще целые семейства галактик. Так, в семейство нашей Галактики входят 14 карликовых эллиптических галактики, несколько внегалактических шаровых скоплений и ряд т.н. неправильных галактик, среди которых крупнейшие - Магеллановы Облака (Большое и Малое).Недавно открыта новая галактика, кторая находится от нас на расстоянии всего 55 тыс. световых лет. Ее назвали Сникерс (усмешка, ухмылка). Несколько меньшее семейство у туманности Андромеды (одна спиральная, две эллиптические и несколько карликовых).

Ближайшие соседние группы галактик располагаются в 2-5 Мпк от Местной группы и по составу похожи на нее. В пределах 10-20 Мпк около нашей Галактики обнаружено несколько десятков групп галактик. Ближайшее крупное скопление галактик находится в созвездии Девы на расстоянии около 20 Мпк. В это скопление входит около 200 галактик средней и высокой светимости. Скопление в Деве представляет собой, по-видимому, центральное сгущение еще более крупной системы галактик - Сверхскопления галактик. (Уже давно было замечено, что яркие галактики расположены по небу не беспорядочно, а поясом, который можно назвать Млечным Путем галактик). Общее число галактик нашего сверхскопления, исключая карликовые, около 20 000, диаметр его около 60 Мпк. Ближайшие соседи нашего Сверхскопления - сверхскопления во Льве (на расстоянии 140 Мпк) и в Геркулесе (190 Мпк). В настоящее время выявлено свыше полусотни сверхскоплений галактик.

Чрезвычайно многообразны и формы галактик. Типология форм галактик была разработана еще Э. Хабблом. В основном она сохранилась и до настоящего времени, хотя, конечно, за прошедшие десятилетия были обнаружены и новые типы галактик. Он выделял три основных типа галактик:

- эллиптические, имеющие круглую или эллиптическую форму ( E ) ; это наиболее простые галактики, они не содержат горячих звезд, сверхгигантов, пыли и газовых туманностей; в центре их никакого ядра нет;

- спиральные, которые Хаббл разбил на два семейства - обычные ( S ) и пересеченные ( S B ) . У первых - ветви выходят непосредственно из ядра; у вторых ядро пересечено широкой, яркой полосой, называемой перемычкой или баром; спиральные ветви отходят от концов бара;

- неправильные галактики ( I r ) , клочковатого строения и неправильной формы; яркость и светимость их невелики; изобилуют горячими сверхгигантами, газовыми туманностями и пылью (примет, Магеллановы Облака, Большое и Малое); к неправильным галактикам относятся также взаимодействующие галактики; большинство неправильных галактик - карлики.

Форма и структура галактик связаны с их основными физическими характеристиками: размером, массой, светимостью. И по этим характеристикам мир галактик оказался поразительно разнообразным.

В центрах галактики обычно сосредоточено огромное количество вещества (до 10% всей ее массы). Здесь происходят выбросы большого количества вещества, что и приводит к интенсивному движению туч водорода от центра галактики. В отдельных галактиках ядро может представлять собой черную дыру (или белую) дыру.

По нашим человеческим меркам галактики невообразимо огромны. Однако в космологических масштабах они ничтожно малы. Галактики разбросаны по Вселенной более или менее беспорядочно, если не считать того, что они обычно собраны в небольшие группы. Подобные группы галактик - "атомы" космологии. Космология рассматривает поведение Вселенной лишь в масштабах такого или более высокого порядков. Процессы, происходящие в отдельных галактиках - хотя они могут быть очень важными,- редко становятся существенными для космологии.

11.5.2. Наша Галактика - звездный дом человечества

Особый интерес вызывает, конечно же, вопрос о том, что собой представляет наш звездный дом - наша Галактика. (Мы пишем слово "Галактика" с прописной буквы, когда речь идет о той галактической системе, к которой принадлежит наше Солнце. Когда же идет о других галактических системах или об общем понятии такой системы употребляем слово "галактика" (со строчной буквы). То же относится и к термину "вселенная". Мы пишем "Вселенная" с прописной буквы там, где речь идет о наблюдаемой Вселенной, в которой мы реально живем; там же, где мы говорим о модельных вселенных, мы пишем "вселенная" (со строчной буквы)). Те отдельные звезды, которые нам удается различить на ночном небе,- просто ближайшие к нам члены нашей Галактики. Большая же часть Галактики видна лишь как размытая световая полоса, пересекающая небо,- это так называемый Млечный Путь. И потому в отличие от других галактик, нашу Галактику может легко наблюдать на небе каждый: на ночном небе светящаяся полоса Млечного Пути и представляет собой огромное количество удаленных звезд нашей Галактики, диск которой мы видим как бы "с ребра". Средний телескоп позволяет различить в Млечном Пути мириады отдельных звезд. Для изучения структуры Галактики мы находимся в очень невыгодном положении. Мы живем в ней и видим ее изнутри. Это очень затрудняет установление того, что мы могли бы выявить, бросив на нее лишь мимолетный взгляд откуда-нибудь издали.

Наша Галактика - это гигантская звездная система, состоящая приблизительно из 200 млрд. звезд. Среди них - и наше Солнце. Кроме звезд Галактика содержит много пыли, газа; она пронизана магнитными полями, заполнена космическими лучами. По форме она представляет собой достаточно правильны диск с шарообразным утолщением (балдж) в центре. (Это напоминает линзу или чечевицу). Диаметр Галактики составляет около 100 000 световых лет (~ 30 кпк), а толщина ее раз в 10-15 меньше. Масса нашей Галактики составляет 2 · 1 0 n масс Солнца, где n = 1 1 .Около 1 / 1 0 0 этой массы составляет межзвездный водород, преимущественно нейтральный. Возраст галактики около 15 млрд. лет.

Звездный состав Галактики очень разнообразный. Звезды отличаются друг от друга физическими, химическими характеристиками, характером орбит, возрастом и др. Есть старые звезды, молодые (около 100 тыс. лет), а есть и звезды, рождающиеся в настоящее время. Подавляющее большинство звезд имеет "средний" возраст в несколько миллиардов лет. К ним относится и наше Солнце - рядовая звезда нашей Галактики, которое расположено ближе к ее краю, примерно в 25 000 световых лет от ядра Галактики.

Солнечная система обращается вокруг центра Галактики со скоростью около 220 км/ сек. Центр нашей Галактики лежит в направлении на созвездие Стрельца (хотя расположен гораздо дальше). Солнце совершает один оборот вокруг центра Галактики за 250 млн. лет. Этот период может быть назван "галактическим годом". Вся история человечества по сравнению с этим периодом - только краткий миг! Но и вся наша Галактика вращается вокруг центра Местной системы галактик (примерно на 2/ 3 пути между нашей Галактикой и туманностью Андромеды, на расстоянии 0,46 Мпк от Галактики)

Особый интерес для астрономов представляет ядро Галактики. В ядре Галактики нет горячих сверхгигантов и возбуждаемых ими к свечению диффузных газовых туманностей. Нет там и пыли, но есть в нем нейтральный водород, который по не вполне ясной причине растекается оттуда в плоскости Галактики со скоростью 50 км/ сек. Основное излучение ядра создается оранжевыми звездами-гигантами (но не сверхгигантами). Ядро Галактики должно было бы казаться очень ярким, если бы его не затмевало поглощение света в массах космической пыли. Но пыль меньше поглощает инфракрасные лучи и совсем почти не поглощает радиоволны. В центре ядра находится небольшое сгущение звезд с малым, но чрезвычайно компактным и сильным радиоисточником (Стрелец А). Было высказано предположение, что он является черной дырой (с массой примерно в миллион солнечных масс).

11.5.3. Межзвездная среда

Хотя в мощные телескопы нам удается увидеть только галактики, в темных пространствах, разделяющих их, несомненно присутствует вещество. Вопрос в том, сколько его и в каком состоянии оно находится. Кроме вещества Вселенная насыщена излучениями и быстрыми частицами различных типов. Сюда входят электромагнитное и гравитационное излучения, потоки нейтрино и космические лучи (состоящие из множества разнообразных субатомных частиц).

Межзвездное пространство заполнено газом и пылью. Основной компонент межзвездного газа - водород. На втором месте - гелий. Значительно меньше в ней углерода, азота, кислорода и других химических элементов. Тяжелые элементы попадают в Космос как остатки взрывов сверхновых звезд. Таким образом, межзвездная среда - это вещество и поля, заполняющие межзвездное пространство внутри галактик.

Межзвездная среда тесно связана со звездами. Из межзвездного газа образуются звезды, которые на поздних стадиях эволюции вновь отдают часть своего вещества межзвездной среде. Обмениваясь со звездами веществом, межзвездная среда обогащается создаваемыми в недрах звезд тяжелыми элементами. Звезды поставляют в межзвездную среду электромагнитное излучение и космические лучи.

Примерно 85% всех тяжелых элементов возникло на заре образования нашей Галактики, т.е. примерно 9-10 млрд. лет тому назад. В это время происходит интенсивный процесс звездообразования. Много возникало и сверхновых звезд. Однако 11-13% тяжелых элементов имеют возраст 5 млрд. лет.

В межзвездной среде астрофизики наблюдают и различные органические соединения: углеводород, спирты, альдегид, эфиры, аминокислоты и другие соединения, в которых молекулы содержат до 18 атомов углерода, а самые тяжелые имеют массу до 123 единиц масс водорода. В настоящее время в межзвездной среде открыто 35 органических молекул. Встречаются чаще всего они в местах наибольшей концентрации газопылевого вещества.

Органические молекулы из межзвездной среды могли способствовать возникновению простейших форм жизни на Земле.

11.5.4. Понятие Метагалактики

Совокупность галактик всех типов, квазаров, межгалактической среды образует Метагалактику - доступную наблюдениям часть Вселенной.

Одно из важнейших свойств Метагалактик - ее постоянное расширение, "разлет" скоплений Галактик. Об этом свойстве Метагалактик свидетельствует "красное смещение" в спектрах галактик и открытие реликтового излучения (фоновое, независимое от направления, внегалактическое тепловое излучение, соответствующее температуре ~ 3 K).

Из явления расширения Метагалактики вытекает важное следствие: то, что в прошлом расстояния между галактиками были меньше. А если учесть, что и сами галактики в прошлом были протяженными и разреженными газовыми облаками, то очевидно, что миллиарды лет назад границы этих облаком смыкались и образовывали некоторое единое однородное газовое облако, находившееся в постоянном расширении.

Важным свойством Метагалактики является закономерность распределения в ней вещества. Материя в масштабах Метагалактики распределена равномерно. (Основная масса вещества сосредоточена в звездах.). В современном состоянии Метагалактика - однородна и изотропна. Это значит, что свойства материи и пространства одинаковы во всех частях Метагалактики (однородность) и по всем направлениям (изотропия). Была ли она такой в прошлом - маловероятно. В самом начале расширения Метагалактики анизотропия и неоднородность материи и пространства вполне могли существовать. Поиски следов анизотропии и неоднородности прошлых состояний Метагалактики - одна из важнейших проблем современной внегалактической астрономии.

Исчерпывает ли Метагалактика собой всю возможную материю и пространство? Многие ученые так и считают. Они утверждают единственность всей нашей расширяющейся Метагалактики - Вселенной. Но такие утверждения невольно напоминают космологию Аристотеля, многократно повторявшиеся заявления о единственности Земли со светилами вокруг нее, единственности Солнечной системы, единственности нашей Галактики и т.д. И потому мысль о множественности "метагалактик", множественности вселенных, каждая из которых имеет свой собственный набор фундаментальных физических свойств материи, пространства и времени, свои тип нестационарности, организации и др.

Реально существует множество Вселенных (Метагалактик), образовавшихся в результате "Большого Взрыва", связанных между собой некими материальными "каналами", о которых мы пока можем только догадываться (понятие о топосах и др.), и для познания которых, скорее всего понадобится некая "новая физика" (если она вообще возможна).

11.6. Вселенная в целом

11.6.1. Особенности современной космологии

Вселенная как целое является предметом особой астрономической науки - космологии, имеющей древнюю историю, ее истоки уходят еще к античности.

Только в ХIХ в. и особенно в ХХ веке, когда был достигнут существенный прогресс в понимании природы и эволюции Вселенной как целого ситуация изменилась кардинально. Проблемы космологии современной наукой решаются с помощью исключительно научных понятий, представлений, теорий, а также приборов и инструментов, позволяющих понять, какова структура Вселенной и как она сформировалась.

Современная космология - это сложная, комплексная и быстро развивающаяся система естественнонаучных (астрономия, физика, химия, и др.) и философских знаний о Вселенной в целом, основанная как на наблюдательных данных, так и на теоретических выводах, относящихся к охваченной астрономическими наблюдениями части Вселенной. Теоретико-методологический фундамент современной космологии составляют основные физические теории (теория тяготения, квантовая теория, теория электромагнитного поля и др.), а также философские принципы и представления. Эмпирические данные представлены главным образом внегалактической астрономией. Эти данные свидетельствуют о том, что мы живем в эволюционирующей и расширяющейся Вселенной.

Имеет ли смысл рассматривать Вселенную в целом как единый целостный динамический объект? Современная космология в основном исходит из предположения, что на этот вопрос следует ответить положительно. Иначе говоря, она исходит из предположения, что глобальное движение космоса подчиняется тем же самым законам, которые управляют поведением его отдельных составных частей.

Какие силы регулирует космическое движение? Только электромагнитная и гравитационная силы являются в достаточной степени дальнодействующими, чтобы влиять на таких громадных расстояниях. Для крупных объектов - даже в рамках Солнечной системы - гравитация далеко опережает электромагнетизм по силе своего воздействия.

11.6.1.1. Понятие релятивистской космологии

Поскольку именно тяготение определяет взаимодействие масс на больших расстояниях, а значит динамику космической материи в масштабах Вселенной, то теоретическим ядром космологии выступает теория тяготения. Теоретическим ядром современной космологии выступает релятивистская теория тяготения, поэтому современную космологию называют релятивистской космологией.

Ньютоновская физика рассматривала пространство и время как "арену", на которой разыгрываются физические процессы; она не связывает воедино пространство и время. Согласно общей теории относительности (см. 9.2), распределение и движение материи изменяют геометрические свойства пространства-времени и, с другой стороны, сами зависят от них; гравитационное поле проявляется как искривление пространства-времени (чем значительнее кривизна пространства-времени, тем сильнее гравитационное поле).Уравнения гравитационного поля в ОТО представляют собой систему десяти уравнений. В отличие от теория тяготения Ньютона, в которой есть один потенциал гравитационного поля, который зависит от единственной величины - плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса.

Первую релятивистскую космологическую модель попытался построить А. Эйнштейн. В соответствии с предложенной Эйнштейном моделью Вселенная должна была быть пространственно конечной и иметь форму четырехмерного цилиндра.

Вселенная Эйнштейна конечна, но тем не менее повсюду одинакова; она имеет конечные размеры, но не имеет границ! Такая картина Вселенной явно возможна только в общей теории относительности с ее искривленным пространством. В модели Эйнштейна трехмерное пространство также обладает топологией сферы, только, разумеется, не в двух, а в трех измерениях. Поэтому у вселенной Эйнштейна пространственный объем конечен, и галактики распределены в нем равномерно в соответствии с космологическим принципом, но границы или края у этого пространства нет. Оно не распространено бесконечно во все стороны, а замыкается само на себя и, подобно поверхности сферы, допускает "кругосветные" путешествия. Это означает, что обитатель такой вселенной мог бы послать световой сигнал в любом направлении и потом обнаружить, что сигнал, обойдя всю вселенную, вернулся к нему с противоположной стороны.

Мысль Эйнштейна о замкнутой, конечной, но неограниченной вселенной выглядела, безусловно, новой и странной. Людям часто довольно трудно представить себе подобное, и они задают вопрос: что же находится "снаружи" конечной вселенной? Этот вопрос столь же бессмыслен для трехмерных существ, как и вопрос, что находится "вне" поверхности сферы, для плоских существ, вынужденных постоянно жить на сферической поверхности. Для вселенной Эйнштейна нет понятия "снаружи", потому что, если бы существовали "снаружи" и "внутри", между ними должна была бы проходить граница. В модели Эйнштейна такой границы нет. Каждая точка эквивалентна любой другой, и ни одна из них не ближе ни к "центру", ни к "краю". Просто ни центра, ни края не существует.

11.6.1.2.Нестационарная релятивистская космология

С критикой предложенной Эйнштейном космологической модели выступил наш отечественный выдающийся математик и физик-теоретик Александр Александрович Фридман (1888-1925). Именно А.А. Фридман, скромно опубликовавший свою работу в 1922 г., впервые сделал из ОТО космологические выводы, имеющиеся поистине революционное значение: он заложил основы нестационарной релятивистской космологии.

Фридман показал, что теоретическая модель Эйнштейна является лишь частным решением гравитационных уравнений для однородных и изотропных моделей. А в общем случае решения зависят от времени. Кроме того, Фридман показал, что решения такой теоретической модели не могут быть однозначными и не могут дать ответа на вопрос о форме Вселенной, ее конечности или бесконечности. Исходя из противоположного постулата (о возможном изменении радиуса кривизны мирового пространства во времени), Фридман нашел нестационарные решения "мировых уравнений" Эйнштейна.

Встретив сначала решения Фридмана с большим недоверием, Эйнштейн затем убедился в его правоте и согласился с критикой молодого физика. Нестационарные решения уравнений Эйнштейна, основанные на постулатах однородности изотропии, называются фридмановскими космологическими моделями.

А. А. Фридман показал, что решения "мировых уравнений" ОТО для Вселенной позволяют построить три возможные модели Вселенной. В двух из них радиус кривизны пространства монотонно растет и Вселенная расширяется (в одной модели - из точки; в другой - начиная с некоторого конечного объема). Третья модель рисовала картину пульсирующей Вселенной с периодически изменяющимся радиусом кривизны. Выбор моделей зависит от средней плотности вещества во Вселенной.

Но определение средней плотности вещества во Вселенной пока не надежно. Во Вселенной могут присутствовать не обнаруженные еще виды материи, дающие свой вклад в среднюю плотность. И тогда на "вооружение" придется брать "закрытую" модель Вселенной, в которой предполагается, что расширение в будущем сменится сжатием.

11.6.1.3. Космологический постулат

Представление о нестационарности Вселенной удивительным образом сочетается в современной космологии с представлением об однородности Вселенной. Достаточно неожиданно то, что Вселенная оказывается однородной в самых различных смыслах.

Во-первых, Вселенная однородна в том смысле, что структурные детали далеких звезд и галактик, физические законы, которым они подчиняются, и, естественно, определенные величины (такие, как заряд электрона), по-видимому, с большой степенью точности одинаковы повсюду, т. е. те же, что и в нашей области Вселенной, включая, конечно, и Землю. Типичная галактика, находящаяся в сотне миллионов световых лет от нас, выглядит в основном так же, как наша. Спектры атомов, а следовательно, законы химии и атомной физики там идентичны известным на Земле. Этот обстоятельство позволяет уверенно распространять открытые в земной лаборатории законы физики на более широкие области Вселенной.

Во-вторых, говоря о космической однородности Вселенной, имеют в виду однородность распределения вещества. Как видно из предыдущего, вещество Вселенной разбросано в виде сгустков. Оно собрано в звезды, которые в свою очередь группируются в скопления, и так вплоть до масштабов галактик. Сами галактики также расположены группами. Некоторые космологи утверждают, что такое объединение продолжается до бесконечности и имеет характер иерархии, в которой каждое последующее образование отделено от ему подобных все большими промежутками пустого прос

Здесь опубликована для ознакомления часть дипломной работы "Особенности астрономии ХХ века". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 509

Другие дипломные работы по специальности "Математика":

Интеграл Лебега-Стилтьеса

Смотреть работу >>

Расширение кольца с помощью полутела

Смотреть работу >>

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков

Смотреть работу >>

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков

Смотреть работу >>

Кольцо целых чисел Гаусса

Смотреть работу >>