Дипломная работа на тему "Обратимые матрицы над кольцом целых чисел"

ГлавнаяМатематика → Обратимые матрицы над кольцом целых чисел




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Обратимые матрицы над кольцом целых чисел":


Министерство образования и науки Российской Федерации

Курсовая работа

По дисциплине: Высшая математика

(Основы линейного программирования)

На тему: КРАТНЫЕ ИНТЕГРАЛЫ

Выполнил: ______________

Преподаватель:___________

Дата ___________________

Оценка _________________

Подпись ________________

ВОРОНЕЖ 2008

Содержание

1 Кра тные интегралы

1.1 Двойной интеграл

1.2 Тройной интеграл

1.3 Кра тные интегралы в криволинейных координатах

1.4 Геометрические и физические приложения кратных интегралов

Заказать написание дипломной - rosdiplomnaya.com

Новый банк готовых защищённых студентами дипломных работ предлагает вам написать любые работы по требуемой вам теме. Высококлассное выполнение дипломных работ под заказ в Казани и в других городах России.

2 Криволинейные и поверхнос тные интегралы

2.1 Криволинейные интегралы

2.2 Поверхнос тные интегралы

2.3 Геометрические и физические приложения

Список используемой литературы

1 Кра тные интегралы

1.1  Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией L. Разобьем эту область какими-нибудь линиями на п частей Рисунок убран из работы и доступен только в оригинальном файле., а соответствующие наибольшие расстояния между точками в каждой из этих частей обозначим d1, d2, ..., dn. Выберем в каждой части Рисунок убран из работы и доступен только в оригинальном файле. точку Рi.

Пусть в области D задана функция z = f(x, y). Обозначим через f(P1), f(P2),…, f(Pn) значения этой функции в выбранных точках и составим сумму произведений вида f(Pi)ΔSi:

Рисунок убран из работы и доступен только в оригинальном файле., (1)

называемую интегральной суммой для функции f(x, y) в области D.

Если существует один и тот же предел интегральных сумм (1) при Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле., не зависящий ни от способа разбиения области D на части, ни от выбора точек Pi в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается

Рисунок убран из работы и доступен только в оригинальном файле.. (2)

Вычисление двойного интеграла по области D, ограниченной линиями Рисунок убран из работы и доступен только в оригинальном файле. x = a, x = b ( a < b ), где φ1(х) и φ2(х) непрерывны на [a, b] (рис. 1) сводится к последовательному вычислению двух определенных интегралов, или так называемого двукратного интеграла:

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 1

Рисунок убран из работы и доступен только в оригинальном файле.= Рисунок убран из работы и доступен только в оригинальном файле. (3)

1.2  Тройной интеграл

Понятие тройного интеграла вводится по аналогии с двойным интегралом.

Пусть в пространстве задана некоторая область V, ограниченная замкнутой поверхностью S. Зададим в этой замкнутой области непрерывную функцию f(x, y, z). Затем разобьем область V на произвольные части Δvi, считая объем каждой части равным Δvi, и составим интегральную сумму вида

Рисунок убран из работы и доступен только в оригинальном файле., (4)

Предел при Рисунок убран из работы и доступен только в оригинальном файле. интегральных сумм (11), не зависящий от способа разбиения области V и выбора точек Pi в каждой подобласти этой области, называется тройным интегралом от функции f(x, y, z) по области V:

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле. . (5)

Тройной интеграл от функции f(x, y,z) по области V равен трехкратному интегралу по той же области:

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.. (6)

1.3 Кра тные интегралы в криволинейных координатах

Введем на плоскости криволинейные координаты, называемые полярными. Выберем точку О (полюс) и выходящий из нее луч (полярную ось).

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 2 Рис. 3

Координатами точки М (рис. 2) будут длина отрезка МО – полярный радиус ρ и угол φ между МО и полярной осью: М(ρ,φ). Отметим, что для всех точек плоскости, кроме полюса, ρ > 0, а полярный угол φ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

Связь между полярными и декартовыми координатами точки М можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось Ох – с полярной осью (рис. 3). Тогда x=ρcosφ, у=ρsinφ . Отсюда Рисунок убран из работы и доступен только в оригинальном файле., tgРисунок убран из работы и доступен только в оригинальном файле..

Зададим в области D, ограниченной кривыми ρ=Φ1 (φ) и ρ=Φ2 (φ), где φ1 < φ < φ2 , непрерывную функцию z = f(φ, ρ) (рис. 4).

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 4

Тогда

Рисунок убран из работы и доступен только в оригинальном файле. (7)

В трехмерном пространстве вводятся цилиндрические и сферические координаты.

Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.5).

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

Рис.5 Рис.6

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

x = ρ cosφ, y = ρ sinφ, z = z. (8)

В сферических координатах положение точки в пространстве определяется линейной координатой r – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ – углом между положительной полуосью оси Оz и отрезком OP (рис.6). При этом

Рисунок убран из работы и доступен только в оригинальном файле.

Зададим формулы перехода от сферических координат к декартовым:

x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ. (9)

Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так:

Рисунок убран из работы и доступен только в оригинальном файле., (10)

где F1 и F2 – функции, полученные при подстановке в функцию f вместо x, y, z их выражений через цилиндрические (8) или сферические (9) координаты.

1.4 Геометрические и физические приложения кратных интегралов

1) Площадь плоской области S:Рисунок убран из работы и доступен только в оригинальном файле. (11)

Пример 1.

Найти площадь фигуры D, ограниченной линиями Рисунок убран из работы и доступен только в оригинальном файле.

у = 2, у = 5.

Решение.

Рисунок убран из работы и доступен только в оригинальном файле.

Эту площадь удобно вычислять, считая у внешней переменной. Тогда границы области задаются уравнениями Рисунок убран из работы и доступен только в оригинальном файле. и

Рисунок убран из работы и доступен только в оригинальном файле.

где Рисунок убран из работы и доступен только в оригинальном файле. вычисляется с помощью интегрирования по частям:

Рисунок убран из работы и доступен только в оригинальном файле.

Следовательно,

Рисунок убран из работы и доступен только в оригинальном файле.

2) Объем цилиндроида, то есть тела, ограниченного частью поверхности S: z = f(x, y) , ограниченной контуром L, проекцией D этой поверхности на плоскость Оху и отрезками, параллельными оси Оz и соединяющими каждую точку контура L с соответствующей точкой плоскости Оху:

Рисунок убран из работы и доступен только в оригинальном файле.(12)

3) Площадь части криволинейной поверхности S, заданной уравнением z = f(x, y), ограниченной контуром L:

Рисунок убран из работы и доступен только в оригинальном файле. (13)

где D – проекция S на плоскость Оху.

4) Момент инерции относительно начала координат О материальной плоской фигуры D:

Рисунок убран из работы и доступен только в оригинальном файле. (14)

Пример 2.

Найти момент инерции однородной круглой пластинки

(x – a)2 + (y – b)2 < 4b2 относительно начала координат.

Решение.

В силу однородности пластинки положим ее плотность γ(х, у) = 1.

Рисунок убран из работы и доступен только в оригинальном файле.

Центр круга расположен в точке C(a, b), а его радиус равен 2b.

Уравнения границ пластинки имеют вид

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Вычислим каждый из полученных интегралов отдельно.

Для вычисления интеграла I1 сделаем замену: Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. при x = a – 2b Рисунок убран из работы и доступен только в оригинальном файле. при x = a + 2b Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Для вычисления интеграла I2 преобразуем подынтегральную функцию по формуле разности кубов:

Рисунок убран из работы и доступен только в оригинальном файле.

Тогда

Рисунок убран из работы и доступен только в оригинальном файле.

Следовательно, Рисунок убран из работы и доступен только в оригинальном файле.

Моменты инерции фигуры D относительно осей Ох и Оу:

Рисунок убран из работы и доступен только в оригинальном файле. (15)

5) Масса плоской фигуры D переменной поверхностной плотности γ = γ (х, у):

Рисунок убран из работы и доступен только в оригинальном файле. (16)

Пример 3.

Найти массу пластинки D плотности γ = ух3, если Рисунок убран из работы и доступен только в оригинальном файле.

Решение.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Координаты центра масс плоской фигуры переменной поверхностной плотности γ = γ (х, у):

Рисунок убран из работы и доступен только в оригинальном файле. (17)

Пример 4.

Найти центр тяжести однородной пластины D, ограниченной кривыми у2 = ах и Рисунок убран из работы и доступен только в оригинальном файле.

Решение.

Так как пластина однородна, т. е. ее плотность постоянна, то можно принять ее за единицу.

Рисунок убран из работы и доступен только в оригинальном файле.

Тогда Рисунок убран из работы и доступен только в оригинальном файле.

Найдем массу пластины, а для этого определим абсциссу точки пересечения ограничивающих ее линий:

Рисунок убран из работы и доступен только в оригинальном файле.

Соответственно

Рисунок убран из работы и доступен только в оригинальном файле.

6) Объем тела V:

Рисунок убран из работы и доступен только в оригинальном файле. (18)

Пример 5.

Найти объем тела V, ограниченного поверхностями Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Решение.

Найдем проекцию тела на плоскость Оху (при этом заметим, что плоскость Рисунок убран из работы и доступен только в оригинальном файле. проектируется на эту плоскость в виде прямой х = 0):

Рисунок убран из работы и доступен только в оригинальном файле.

Определим абсциссу точки пересечения кривых у = х2 и х + у = 2:

Рисунок убран из работы и доступен только в оригинальном файле. посторонний корень. Тогда, используя формулу (18), получаем:

Рисунок убран из работы и доступен только в оригинальном файле.

7) Масса тела V плотности γ = γ (x, y, z):

Рисунок убран из работы и доступен только в оригинальном файле.(19)

8) Моменты инерции тела V относительно координатных осей и начала координат:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. (20)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. (21)

где γ (х, y, z) – плотность вещества.

Статические моменты тела относительно координатных плоскостей Oyz, Oxz, Oxy:

Рисунок убран из работы и доступен только в оригинальном файле. (22)

9) Координаты центра масс тела:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

II. Криволинейные и поверхнос тные интегралы

2.1Криволинейные интегралы

Рассмотрим на плоскости или в пространстве кривую L и функцию f, определенную в каждой точке этой кривой. Разобьем кривую на части Δsi длиной Δsi и выберем на каждой из частей точку Mi. Назовем d длину наибольшего отрезка кривой: Рисунок убран из работы и доступен только в оригинальном файле..

Криволинейным интегралом первого рода от функции f по кривой L называется предел интегральной суммы Рисунок убран из работы и доступен только в оригинальном файле., не зависящий ни от способа разбиения кривой на отрезки, ни от выбора точек Mi:

Рисунок убран из работы и доступен только в оригинальном файле. (24)

Если кривую L можно задать параметрически:

x = φ(t), y = ψ(t), z = χ(t), t0 ≤ t ≤ T,

то способ вычисления криволинейного интеграла первого рода задается формулой

Рисунок убран из работы и доступен только в оригинальном файле.(25)

В частности, если кривая L задана на плоскости явным образом:

у=φ(х), где х1 ≤ х ≤ х2, формула (40) преобразуется к виду:

Рисунок убран из работы и доступен только в оригинальном файле.. (26)

Теперь умножим значение функции в точке Mi не на длину i-го отрезка, а на проекцию этого отрезка, скажем, на ось Ох, то есть на разность xi – xi-1 = Δxi.

Если существует конечный предел при Рисунок убран из работы и доступен только в оригинальном файле. интегральной суммы Рисунок убран из работы и доступен только в оригинальном файле., не зависящий от способа разбиения кривой на отрезки и выбора точек Mi, то он называется криволинейным интегралом второго рода от функции f(M) по кривой L и обозначается

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.. (27)

Подобным образом можно определить и криволинейные интегралы 2-го рода вида

Рисунок убран из работы и доступен только в оригинальном файле.

Если вдоль кривой L определены функции P(M)=P(x, y, z), Q(M) = Q(x, y, z), R(M) = R(x, y, z), которые можно считать компонентами некоторого вектора Рисунок убран из работы и доступен только в оригинальном файле., и существуют интегралы

Рисунок убран из работы и доступен только в оригинальном файле.,

тогда их сумму называют криволинейным интегралом второго рода (общего вида) и полагают

Рисунок убран из работы и доступен только в оригинальном файле..

Если кривая L задана параметрическими уравнениями

x = φ(t), y = ψ(t), z = χ(t), α ≤ t ≤ β ,

где φ, ψ, χ – непрерывно дифференцируемые функции, то

Рисунок убран из работы и доступен только в оригинальном файле.. (28)

Связь между двойным интегралом и криволинейным интегралом 2-го рода задается формулой Грина:

Рисунок убран из работы и доступен только в оригинальном файле. (29)

где L – замкнутый контур, а D – область, ограниченная этим контуром.

Необходимыми и достаточными условиями независимости криволинейного интеграла

Рисунок убран из работы и доступен только в оригинальном файле.

от пути интегрирования являются:

Рисунок убран из работы и доступен только в оригинальном файле.. (30)

При выполнении условий (30) выражение Pdx + Qdy +Rdz является полным дифференциалом некоторой функции и. Это позволяет свести вычисление криволинейного интеграла к определению разности значений и в конечной и начальной точках контура интегрирования, так как

Рисунок убран из работы и доступен только в оригинальном файле.

При этом функцию и можно найти по формуле

Рисунок убран из работы и доступен только в оригинальном файле. (31)

где (x0, y0, z0) – точка из области D, a C – произвольная постоянная.

2.2Поверхнос тные интегралы

Рассмотрим некоторую поверхность S, ограниченную контуром L, и разобьем ее на части S1, S2,…, Sп (при этом площадь каждой части тоже обозначим Sп). Пусть в каждой точке этой поверхности задано значение функции f(x, y, z). Выберем в каждой части Si точку

Mi (xi, yi, zi) и составим интегральную сумму

Рисунок убран из работы и доступен только в оригинальном файле.

Если существует конечный предел при Рисунок убран из работы и доступен только в оригинальном файле. этой интегральной суммы, не зависящий от способа разбиения поверхности на части и выбора точек Mi, то он называется поверхностным интегралом первого рода от функции f(M) = f(x, y, z) по поверхности S и обозначается

Рисунок убран из работы и доступен только в оригинальном файле.. (32)

Если поверхность S задается явным образом, то есть уравнением вида z = φ(x, y), вычисление поверхностного интеграла 1-го рода сводится к вычислению двойного интеграла:

Рисунок убран из работы и доступен только в оригинальном файле. (33)

где Ω – проекция поверхности S на плоскость Оху.

Разобьем поверхность S на части S1, S2,…, Sп, выберем в каждой части Si точку Mi(xi, yi, zi), и умножим f(Mi) на площадь Di проекции части Si на плоскость Оху. Если существует конечный предел суммы

Рисунок убран из работы и доступен только в оригинальном файле.,

не зависящий от способа разбиения поверхности и выбора точек на ней, то он называется поверхностным интегралом второго рода от функции f(M) по выбранной стороне поверхности S и обозначается

Рисунок убран из работы и доступен только в оригинальном файле.(34)

Подобным образом можно проектировать части поверхности на координатные плоскости Оxz и Оyz. Получим два других поверхностных интеграла 2-го рода:

Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле..

Рассмотрев сумму таких интегралов по одной и той же поверхности соответственно от функций P(x, y, z), Q(x, y, z), R(x, y, z), получим поверхностный интеграл второго рода общего вида:

Рисунок убран из работы и доступен только в оригинальном файле.(35)

Если D, D΄ и D΄΄ - проекции поверхности S на координатные плоскости Оху, Oxz и Oyz, то

Рисунок убран из работы и доступен только в оригинальном файле. (36)

Связь между тройным интегралом по трехмерной области V и поверхностным интегралом 2-го рода по замкнутой поверхности S, ограничивающей тело V, задается формулой Гаусса-Остроградского:

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле. (37)

где запись «S+» означает, что интеграл, стоящий справа, вычисляется по внешней стороне поверхности S.

Формула Стокса устанавливает связь между поверхностным интегралом 1-го рода по поверхности σ и криволинейным интегралом 2-го рода по ограничивающему ее контуру λ с учетом ориентации поверхности:

Рисунок убран из работы и доступен только в оригинальном файле. (38)

2.3 Геометрические и физические приложения

1) Длина кривой.

Если подынтегральная функция f(x, y, z) ≡ 1, то из определения криволинейного интеграла 1-го рода получаем, что в этом случае он равен длине кривой, по которой ведется интегрирование:

Рисунок убран из работы и доступен только в оригинальном файле. (39)

2) Масса кривой.

Считая, что подынтегральная функция γ (x, y, z) определяет плотность каждой точки кривой, найдем массу кривой по формуле

Рисунок убран из работы и доступен только в оригинальном файле.(40)

Пример 6.

Найти массу кривой с линейной плотностью Рисунок убран из работы и доступен только в оригинальном файле. заданной в полярных координатах уравнением ρ = 4φ, где Рисунок убран из работы и доступен только в оригинальном файле.

Решение.

Используем формулу (40) с учетом того, что кривая задана в полярных координатах:

Рисунок убран из работы и доступен только в оригинальном файле.

3) Моменты кривой l:

Рисунок убран из работы и доступен только в оригинальном файле. - (41)

-  статические моменты плоской кривой l относительно осей Ох и Оу;

Рисунок убран из работы и доступен только в оригинальном файле.- (42)

-  момент инерции пространственной кривой относительно начала координат;

Рисунок убран из работы и доступен только в оригинальном файле. - (43)

-  моменты инерции кривой относительно координатных осей.

4) Координаты центра масс кривой вычисляются по формулам

Рисунок убран из работы и доступен только в оригинальном файле.. (44)

5) Работа силы Рисунок убран из работы и доступен только в оригинальном файле., действующей на точку, движущуюся по кривой (АВ):

Рисунок убран из работы и доступен только в оригинальном файле., (45)

Пример 7.

Вычислить работу векторного поля Рисунок убран из работы и доступен только в оригинальном файле. вдоль отрезка прямой от точки А(-2;-3;1) до точки В(1;4;2).

Решение.

Найдем канонические и параметрические уравнения прямой АВ:

Рисунок убран из работы и доступен только в оригинальном файле.

6)  Площадь криволинейной поверхности, уравнение которой

z = f(x, y), можно найти в виде:

Рисунок убран из работы и доступен только в оригинальном файле. (46)

(Ω – проекция S на плоскость Оху).

7) Масса поверхности

Рисунок убран из работы и доступен только в оригинальном файле. (47)

Пример 8.

Найти массу поверхности Рисунок убран из работы и доступен только в оригинальном файле.с поверхностной плотностью γ = 2z2 + 3.

Решение.

Рисунок убран из работы и доступен только в оригинальном файле.

На рассматриваемой поверхности Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле. Тогда

Рисунок убран из работы и доступен только в оригинальном файле.

Проекцией D этой поверхности на координатную плоскость Оху является полукольцо с границами в виде дуг концентрических окружностей радиусов 3 и 4.

Рисунок убран из работы и доступен только в оригинальном файле.

Применяя формулу (47) и переходя к полярным координатам, получим:

Рисунок убран из работы и доступен только в оригинальном файле.

8) Моменты поверхности:

Рисунок убран из работы и доступен только в оригинальном файле. (48) статические моменты поверхности относительно координатных плоскостей Oxy, Oxz, Oyz;

Рисунок убран из работы и доступен только в оригинальном файле. (49)

-  моменты инерции поверхности относительно координатных осей;

Рисунок убран из работы и доступен только в оригинальном файле. - (50)

-  моменты инерции поверхности относительно координатных плоскостей;

Рисунок убран из работы и доступен только в оригинальном файле. - (51)

-  момент инерции поверхности относительно начала координат

9)  Координаты центра масс поверхности:

Рисунок убран из работы и доступен только в оригинальном файле.. (52)

Список используемой литературы

1.  Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. М.: Наука, 1999.

2.  Кудрявцев Л. Д. Краткий курс математического анализа. М.: Наука, 2000.

3.  Ильин В. А., Позняк Э. Г. Математический анализ. М.: Наука, 1999.

4.  Смирнов В. И. Курс высшей математики.- Т.2. М.: Наука, 2005.

5.  Бугров Я. С., Никольский С. М. Дифференциальные уравнения. Кра тные интегралы. Ряды. Функции комплексного переменного. М.: Наука, 2001.

6.  Пискунов Н. С. Дифференциальное и интегральное исчисление. – Т.2. М.: Наука, 2001.

7.  Сборник задач по математике для втузов. Специальные разделы математического анализа (под редекцией А. В.Ефимова и Б. П.Демидовича). – Т.2. М.: Наука, 2004.

8.  Мышкис А. Д. Лекции по высшей математике. М.: Наука, 2003.

9.  Титаренко В. И., Выск Н. Д. Кратные, криволинейные и поверхнос тные интегралы. Теория поля. М.: МАТИ, 2006.


Здесь опубликована для ознакомления часть дипломной работы "Обратимые матрицы над кольцом целых чисел". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 431

Другие дипломные работы по специальности "Математика":

Интеграл Лебега-Стилтьеса

Смотреть работу >>

Расширение кольца с помощью полутела

Смотреть работу >>

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков

Смотреть работу >>

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков

Смотреть работу >>

Кольцо целых чисел Гаусса

Смотреть работу >>