Дипломная работа на тему "Миф сегодня"




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Миф сегодня":


Департамент образования города Москвы

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

города Москвы

"МОСКОВСКИЙ ГОРОДСКОЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ"

Математический факультет

Кафедра информатики и прикладной математики

Дипломная работа

По теме: "Развитие умений программирования c использованием пакета Maple при обучении информатике на профильном уровне"

По специальности № 050202.65 – "Информатика"< /p>

Студента 5 курса очной формы обучения

Троицкого Павла Сергеевича

Научный руководитель:

Заказать дипломную - rosdiplomnaya.com

Уникальный банк готовых защищённых на хорошо и отлично дипломных проектов предлагает вам приобрести любые проекты по нужной вам теме. Высококлассное выполнение дипломных проектов на заказ в Челябинске и в других городах России.

доктор педагогических наук,

профессор кафедры ИПМ

Корнилов Виктор Семенович

МОСКВА, 2010

СОДЕРЖАНИЕ

урок информатика программирование maple

Введение

Глава 1. Информационные технологии в школьном образовании

1.1 Классификация информационных технологий в школе

1.2 Сравнительный анализ инструментальных средств AutoCad, MatLab, Maple, Mathematica

1.3 Использование инструментального средства Maple

1.4 Педагогические и психологические аспекты обучения

Глава 2. Обучение программированию школьников на уроках информатики

2.1 Подходы к обучению школьников основам программирования на уроках информатики

2.2 Языки программирования в школе и алгоритмическая культура школьников

2.3 Понятие программной разработки библиотеки процедур в среде Maple

2.4 Программная разработка библиотеки процедур в среде Maple – как фактор развития умений программирования

Заключение

Библиография

ВВЕДЕНИЕ

В настоящее время главное направление российского образования – обеспечить качество образования. Человечество в своей деятельности постоянно создает и использует модели окружающего мира. Наглядные модели часто используются в процессе обучения. Применение компьютера в качестве нового динамичного, развивающего средства обучения – главная отличительная особенность компьютерного планирования. Использование компьютера, и его программного обеспечения обучающего характера позволяет разнообразить и углубить учебный процесс, что благотворно сказывается на эффективности обучения. Взаимосвязанное изучение информатики, физики и математики позволяет познакомить школьников с элементами физических процессов и применить компьютер в качестве рабочего инструмента исследования. Такой подход в изучении способствует развитию творческой активности учащихся, осуществить сочетание индивидуального подхода с различными формами коллективной учебной деятельности. Более рационально это можно продемонстрировать при изучении различных компьютерных пакетов. В последнее время в образовании стали применяться разнообразные информационные технологии, в том числе компьютерные математические пакеты AutoCad, MatLab, Maple, Mathematica и другие. Применение подобных инструментальных средств на уроках информатики позволяет решать сложные задачи, делать большие математические преобразования, не допуская при этом ошибок. При использовании средств, которые не делают ошибок, ученик уверен, что ошибки не будет и чувствует себя более уверенным. К тому же сокращается время решения задачи. Maple позволяет создать свою библиотеку процедур, при их разработке у ученика развивается умение программирования. В связи с этим выбранная тема актуальна. Целью дипломной работы является выявление факторов развития умения программирования у учащихся средней школы с использованием пакета Maple при обучении информатике на профильном уровне.

Объектом исследования является процесс обучения информатике в основной школе. Предметом исследования является использование пакета Maple в средней школе при обучении информатики. Гипотезой исследования является использование пакета Maple при обучении информатики на профильном уровне позволит развивать умения программирования.

Задачи исследования:

1. Изучение учебно-методической литературы по компьютерному математическому пакету Мар1е 9;

2. Выявить специфику и современные формы преподавания Maple в курсе математики;

3. Провести классификацию информационных технологий в школе;

4. Провести сравнительный анализ инструментальных средств;

5. Изучить подходы к обучению школьников основам

программирования на уроках информатики;

6. Выявить факторы развития умения программирования учащихся, при создании библиотеки процедур;

7. Разработка методики по решению математических задач с использованием компьютерного математического пакета Мар1e.

Теоретическая значимость проведенного исследования заключается в выявлении факторов, влияющих на развитие умений программирования в процессе обучения школьников. Практическая значимость полученных результатов заключается в том, что:

1) описаны подходы к обучению школьников основам программирования на уроках информатики

2) описана роль компьютерных математических пакетов в развитии умений программирования.

ГЛАВА 1. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ШКОЛЬНОМ ОБРАЗОВАНИИ

1.1 Классификация информационных технологий в школе

В конце XX века человечество вступило в стадию развития, которая получила название постиндустриального или информационного. Возможности информационных технологий для человека становятся безграничными, способствуют эффективному решению профессиональных, экономических, а также многих других проблем. Грамотно, профессионально распорядиться сегодняшними техническими и информационными возможностями способны те, кто обладает необходимыми знаниями, позволяющими сориентироваться в новом информационном пространстве. В нашу жизнь стремительно ворвались информационные образовательные технологии. Наибольшую актуальность вопрос о роли современных информационных технологий получил в связи с внедрением в практику учебно-воспитательного процесса компьютеров, объединенных как в локальные сети, так и имеющих выход в глобальную сеть.

Применение информационных технологий в процессе обучения в начальной школе дает возможность активизировать познавательную и мыслительную деятельность учащихся. Информационные технологии дают возможность не только изменить формы и методы учебной работы, но и существенным образом трансформировать и обогатить образовательные парадигмы. Изменению подвергаются даже такие фундаментальные навыки, прививаемые начальной школой, как умение читать и писать. Новая грамотность предполагает овладение умением ориентироваться в информационных потоках, в среде мультимедиа, создавать гипермедиа объекты. Современный человек еще в школе должен научиться читать и писать применительно к мировому информационному пространству.

В некоторых средних общеобразовательных школах уже сегодня создаются свои сайты, это становится для школы важным и престижным делом. Однако, это, к сожалению, во многом зависит от финансовых возможностей образовательного учреждения Образовательными стандартами и программами это пока не предусматривается. Однако, в новый век тысячелетие российское образование вошло более свободно, проявляя инициативу и пытающееся самостоятельно формировать свою образовательную политику, искать новые формы организации учебного процесса, оказания дополнительных образовательных услуг и привлечения внебюджетных средств финансирования. Образовательные учреждения, энергично внедряющие новые информационные технологии, демонстрируют желание обеспечить современный уровень преподавания и высокое качество обучения, привлекают внимание родителей.

Термин "информация" (от латинского information – разъяснение, представление) давно и широко используется в науке и обыденной жизни. "Информация - основное понятие кибернетики". "Информация – есть информация, а не материя и не энергия". "Информация – сообщение, уменьшающее неопределенность в той области, к которой оно относится". Таким образом, говорить об информации можно только в том случае, когда ее наличие дает такие знания о каком-то объекте, которых до ее появления у пользователя не было. Из вышеприведенных определений мы видим, что на самом деле информационная технология – это не только технология, предполагающая использование в образовательном процессе компьютера, по сути дела, любой процесс, связанный с переработкой информации, может называться информационной технологией, однако, в данном случае, мы под информационной технологией понимаем совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).

Сегодня говорят об изменении содержания образования, о необходимости овладения учащимися информационной культурой – одним из слагаемых общей культуры, понимаемой как высшее проявление образованности, включая личностные качества человека и его профессиональную компетентность. Развитие информационных образовательных технологий позволит работать над одним проектом, вести совместные исследования и быстро обмениваться результатами, людям, находящимся далеко друг от друга. Исследования в области использования информационных образовательных технологий в профессиональное образование, ведутся достаточно давно. За это время в учебных заведениях США, Франции, Японии, России и ряда других стран было разработано множество компьютерных систем учебного назначения.

Однако, сфера применения таких систем гораздо шире. Это крупные промышленные предприятия, военные и гражданские организации, ведущие самостоятельную подготовку и переподготовку кадров. Кроме того, становится уже стандартом снабжать новые сложные машины и технологии компьютерными обучающими системами, ускоряющими процесс их освоения и внедрения. За рубежом разработку компьютерного продукта учебного назначения (методических и программно-информационных средств) считают необходимым делом в силу его высокой наукоемкости и необходимости совместной работы высококвалифицированных специалистов: психологов, преподавателей-предметников, компьютерных дизайнеров, программистов. Многие крупные зарубежные фирмы финансируют проекты создания компьютерных учебных систем в образовательных учреждениях и ведут собственные разработки в данной области. Организация информационных процессов в рамках информационных образовательных технологий предполагает выделение таких базовых процессов, как передача, обработка, организация хранения и накопления данных, формализация и автоматизация знаний.

Совершенствование методов решения функциональных задач и способов организации информационных процессов приводит к совершенно новым информационным технологиям, среди которых применительно к обучению выделяют следующие:

-компьютерные обучающие программы, включающие в себя электронные учебники, тренажеры, тьюторы, лабораторные практикумы, тестовые системы;

-обучающие системы на базе мультимедиа-технологий, построенные с использованием персональных компьютеров, видеотехники, накопителей на оптических дисках;

-интеллектуальные и обучающие экспертные системы, используемые в различных предметных областях;

-распределенные базы данных по отраслям знаний;

-средства телекоммуникации, включающие в себя электронную почту, телеконференции, локальные и региональные сети связи, сети обмена данными и т. д.;

-электронные библиотеки, распределенные и централизованные издательские системы.

Основные направления использования информационно-компьютерных средств в образовании охватывают следующие наиболее существенные области. Компьютерная техника и информатика как объекты изучения. Это направление не относится непосредственно к проблемам повышения эффективности образования. В то же время изначально появление компьютеров в сфере образования было связано именно с обучением основам вычислительной техники, вначале в системе профессионального образования, а затем и общего.

Компьютер как средство повышения эффективности педагогической деятельности. Именно в этом своем качестве компьютер и информатика рассматриваются как такой компонент образовательной системы, который не только способен внести коренные преобразования в само понимание категории "средство" применительно к процессу образования, но и существенно повлиять на все остальные компоненты той или иной локальной образовательной системы: цели, содержание, методы и организационные формы обучения, воспитания и развития, обучающихся в учебных заведениях любого уровня и профиля. Компьютер как средство повышения эффективности научно-исследовательской деятельности в образовании. Современные научные исследования, тем более исследования междисциплинарные, комплексные, уже не могут быть успешными без всестороннего информационного обеспечения. Такое обеспечение предполагает поиск источников наиболее актуальной информации, соответствующей современному уровню содержания образования, отбор и избирательную оценку этой информации, ее хранение, обеспечивающее должный уровень классификации информации и свободу доступа к ней со стороны потенциальных потребителей, наконец оперативное представление необходимой информации пользователю по его запросам.

Компьютер и информатика как компонент системы образовательно-педагогического управления. Это направление информатизации связано с процессом принятия управленческих решений на всех уровнях образовательной деятельности — от повседневной работы по управлению учебным заведением до управления всей отраслью на федеральном и региональном уровнях. Для принятия оптимальных управленческих решений необходима самая разнообразная информация как фонового характера о тенденциях развития внешней социально-экономической и социокультурной среды, так и собственно образовательного характера. Компьютер — сложное техническое устройство. Его образовательно-педагогические возможности во многом предопределяются техническими факторами, теми реальными достижениями в научно-технической сфере, которые придают компьютеру определенные свойства и позволяют ему выполнять с должным эффектом заданные функции, в том числе и функции, ориентированные на запросы системы образования.

За последние годы компьютеры и основанные на них информационные технологии существенно изменились. Достаточно динамичные и существенные преобразования в элементной базе компьютеров привели не только к более широкому их использованию в образовательном процессе, но и к повышению надежности, точности и быстродействия их работы, расширению их функций от собственно вычислительных ко все более сложным, логическим, эвристическим, а в определенной мере творческим. Не использовать эти технические, информационно-коммуникативные возможности в образовательных целях было бы недопустимым просчетом. И не только в плане создания систем телекоммуникационного образовательно-педагогического обобщения и дистанционного обучения, но и в плане высших, пока еще прогностических, но уже достаточно ощутимых функций и задач образования — культурообразования, обеспечения образовательной поддержки процессу духовной конвергенции и интеграции социумов, ментальной совместимости людей и человеческих сообществ.

Известны многочисленные и вполне убедительные примеры, подтверждающие эффективность использования компьютеров на всех стадиях педагогического процесса:

-на этапе предъявления учебной информации обучающимся;

-на этапе усвоения учебного материала в процессе интерактивного взаимодействия с компьютером;

-на этапе повторения и закрепления усвоенных знаний (навыков, умений);

-на этапе промежуточного и итогового контроля и самоконтроля достигнутых результатов обучения;

-на этапе коррекции и самого процесса обучения, и его результатов путем совершенствования дозировки учебного материала, его классификации, систематизации.

Все эти возможности собственно дидактического и методического характера действительно неоспоримы. Необходимо принять во внимание, что использование рационально составленных компьютерных обучающих программ с обязательным учетом не только специфики собственно содержательной информации, но и специфики психолого-педагогических закономерностей усвоения этой информации данным конкретным контингентом учащихся, позволяет индивидуализировать и дифференцировать процесс обучения, стимулировать познавательную активность и самостоятельность обучающихся.

Информационные образовательные технологии, на мой взгляд, действительно являются эффективными, способствуют реализации известных дидактических принципов организации учебного процесса, наполняют деятельность преподавателя принципиально новым содержанием, позволяя им сосредоточиваться на своих главных — обучающей, воспитательной и развивающей — функциях. Отличаясь высокой степенью интерактивности, информационные образовательные технологии способствуют созданию эффективной учебно-познавательной среды, т. е. среды, используемой для решения различных дидактических задач. Главной особенностью данной среды является то, что она пригодна как для коллективной, так и для индивидуальной форм обучения и самообучения. Помимо этого, данная среда, комбинирующая функции компьютерного обучения с использованием мультимедиа и собственно коммуникаций, характеризуется определенными свойствами:

-возможностью обучать учащихся навыкам грамотного говорения, правописания, а также оформления результатов работы с последующей публикацией;

-наличием условий для развития творческого мышления;

-условиями для превращения обучения посредством телекоммуникационной сети в социальный коллективный процесс;

-концентрацией внимания всех участников взаимодействия посредством сети на самой информации а не на внешних личных атрибутах автора ;

-условиями для создания "виртуального класса", расширения возможностей группового и проектного обучения.

В сфере образования применяются базовые информационные технологии: технологии работы в текстовых редакторах; графические; технологии числовых расчетов, технологии хранения, поиска и сортировки данных, сетевые информационные технологии, технологии мультимедиа.

В процессе обучения детей с помощью информационных технологий, они учатся работать с текстом, создавать графические объекты и базы данных, использовать электронные таблицы. Ребенок узнает новые способы сбора информации и учится пользоваться ими, расширяется его кругозор. При использовании информационных образовательных технологий на занятиях повышается мотивация учения и стимулируется познавательный интерес учащихся, возрастает эффективность самостоятельной работы. Компьютер вместе с информационными технологиями открывает принципиально новые возможности в области образования, в учебной деятельности и творчестве учащегося. Возникает такая ситуация, когда информационные технологии становятся и основными инструментами дальнейшей профессиональной деятельности человека. При использовании информационных технологий необходимо стремиться к реализации всех потенциалов личности — познавательного, морально-нравственного, творческого, коммуникативного и эстетического. Чтобы эти потенциалы были реализованы на достаточно высоком уровне, необходима педагогическая компетентность в области владения информационными образовательными технологиями. Развитие этой компетентности надо начинать во время обучения будущих педагогов в вузах.

Изменение в ходе научно-технического прогресса основ современного производства, использование новых информационных технологий приведут к увеличению доли интеллектуального труда, творческой функции рабочего в труде, к его профессиональной мобильности и, естественно, вызывают преобразование системы знаний, умений и навыков, которые должны получить учащиеся в школе.

На мой взгляд, сегодня имеется необходимость более интенсивного внедрения информационных образовательных технологий в процесс обучения и в начальной школе. Развитие способностей ученика в начальной школе зависит от множества факторов, в том числе и от того, насколько наглядным и удобным для его восприятия является учебный материал. Учебный процесс в начальной школе, практически никак не обеспечен наглядными электронными пособиями, соответствующими современному уровню развития новых информационных технологий. Следовательно, возникает необходимость в разработке и внедрении на практике таких пособий, которые соответствовали бы духу времени. Мультимедийные и гипермедийные технологии предоставляют широкий набор средств и методов для выполнения поставленной задачи. Правительством Российской Федерации в рамках внедрения Федеральной целевой программы "Развитие единой образовательной информационной среды четко поставлены задачи создания и использования в учебном процессе современных электронных материалов, а также разработка средств информационно-технологической поддержки и развития учебного процесса, создание и практическое внедрение электронных учебных материалов для начальной школы. Однако в младшем звене, как показывает опыт, информационные технологии используются крайне редко.

Мы в данной публикации не ставим перед собой задачи выявления причин, по которым тормозится внедрение Федеральной программы. Однако, факт остается фактом. Студенты, выполняющие курсовые и выпускные исследования, изучающие использование информационных технологий в учебном процессе, испытывают затруднения, не имея возможности воспользоваться опытом практикующих учителей в полном объеме, иначе говоря, он крайне незначительный. Как правило, педагоги, работающие по традиционной системе, редко обращаются к использованию информационных образовательных технологий в процессе обучения, не отрицая, тем не менее, их несомненных достоинств. Не всегда готовы учителя менять сложившиеся стереотипы преподавания, в ряде случаев педагоги не могут подобрать материал для учащихся, который будет соответствовать их возрастным особенностям и т. д.

На мой взгляд, применение информационных образовательных технологий в процессе обучения в начальной школе, возможно на любом уроке. Например, уроки математики. Ведь уроки математики формируют и развивают у младших школьников пространственное мышление, активизируют внимание, память, которые, наверняка развивались бы более интенсивно, если бы на занятиях по математике применялись информационные образовательные технологии. Допустим, учащиеся у доски записывают решение примеров или задач, которые были заданы на дом. С остальными детьми в это время проводится разминка — решение аналогичных примеров, которые демонстрируются при помощи проектора на специальном экране Учащиеся производят вычисления устно и записывают результат на заранее подготовленные карточки, которые затем показывают по просьбе учителя.

Учащиеся, которые были вызваны к доске перед разминкой, объясняют свои действия в процессе решения. Повторяется алгоритм решения. На экране появляются задания из домашней работы. Ребята с места предлагают разные варианты трактовки этих выражений. Педагог акцентирует внимание на том, что каждое выражение и каждое равенство можно расшифровать разными способами. При изучении нового материала его описание также предлагается на экране с комментариями и пояснениями учителя. Нами были сделаны попытки применения информационных технологий, указанные выше на уроке математики в 4-ом классе общеобразовательной школы. Было отмечено, что электронная версия заданий дает возможность учащимся самостоятельно проверять свои ответы, также использование мультимедиа-технологий (оживающие картинки) формируют пространственное мышление и активизируют у учащихся интерес к предмету. На уроке не было равнодушных учащихся, все принимали активное участие в работе. На сегодняшний день, как показывает опыт, применение информационных образовательных технологий ограничивается рамками компьютерных классов, уровень оснащенности и количественный состав персональных компьютеров в которых оставляет желать лучшего. Также не нужно забывать о том, что использовать информационные технологии предстоит учащимся младшего школьного возраста, поэтому надо предусматривать их возрастные и индивидуальные особенности.

Таким образом, можно сказать, что появление понятия "информационная образовательная технология" связано с появлением и широким внедрением компьютеров в образовании. Информационные технологии подразумевают: программированное обучение, интеллектуальное обучение, экспертные системы, гипертекст и мультимедиа, микромиры, имитационное обучение, демонстрации. Эти частные методики применяются в зависимости от учебных целей и учебных ситуаций, когда в одних случаях необходимо глубже понять потребности учащегося, в других — проанализировать знания в предметной области, в третьих — учет психологических принципов обучения. Для того, чтобы не спутать использование в процессе обучения информационных образовательных технологий с автоматизацией тех или иных сторон процесса обучения, с обычным переносом информации с бумажных носителей на магнитные, говорить же о новой информационной технологии можно только в том случае, если:

-она удовлетворяет основным принципам педагогической технологии (предварительное проектирование, воспроизводимость, последовательность, целеобразование, целостность);

-решает задачи, которые ранее не были решены по тем или иным причинам;

-средством подготовки и передачи информации обучаемому является компьютер.

Таким образом, можно сделать вывод, что грамотное применение информационных технологий в учебном процессе начальной школы будет способствовать развитию у учеников теоретического мышления, содействовать подлинной интеграции процесса образования в нашей стране и наиболее развитых западных странах, где подобные системы применяются уже давно.

Информационные образовательные технологии позволяют наполнить образовательный процесс использованием новейших средств мультимедиа, включая гипертекстовые и гипермедиа-ссылки, графики, картинки, анимацию, фрагменты видеофильмов и звуковое сопровождение. Поэтому можно предположить, что использование информационных технологий в процессе обучения в начальной школе будет способствовать активизации мышления, восприятия и познавательной активности учащихся.

Информационные технологии следует классифицировать прежде всего по области применения и по степени использования в них компьютеров. Различают такие области применения информационных технологий, как наука, образование, культура, экономика, производство, военное дело и т. п. По степени использования в информационных технологиях компьютеров различают компьютерные и бескомпьютерные технологии.

В области образования информационные технологии применяются для решения двух основных задач: обучения и управления. Соответственно различают компьютерные и бескомпьютерные технологии обучения, компьютерные и бескомпьютерные технологии управления образованием.

В обучении информационные технологии могут быть использованы, во-первых, для предъявления учебной информации обучающимся, во-вторых, для контроля успешности ее усвоения. С этой точки зрения информационные; технологии, используемые в обучении, делятся на две группы: технологии предъявления учебной информации и технологии контроля знаний.

К числу бескомпьютерных информационных технологий предъявления учебной информации относятся бумажные, оптотехнические, электроннотехнические технологии. Они отличаются друг от друга средствами предъявления учебной информации и соответственно делятся на бумажные, оптические и электронные. К бумажным средствам обучения относятся учебники, учебные и учебно-методические пособия; к оптическим - эпипроекторы, диапроекторы, графопроекторы, кинопроекторы, лазерные указки; к электронным телевизоры и проигрыватели лазерных дисков.

К числу компьютерных информационных технологий предъявления учебной информации относятся:

- технологии, использующие компьютерные обучающие программы;

- мультимедия технологии;

- технологии дистанционного обучения.

В системе образования на сегодня накоплено множество различных компьютерных программ учебного назначения, созданных в учебных заведениях и центрах России. Немалое их число отличается оригинальностью, высоким научным и методическим уровнем.

Интеллектуальные обучающие системы – это качественно новая технология, особенностями которой являются моделирование процесса обучения, использование динамически развивающейся базы знаний; автоматический подбор рациональной стратегии обучения для каждого обучаемого, автоматизированный учет новой информации, поступающей в базу данных.

Технологии мультимедиа (от англ. multimedia - многокомпонентная среда), которая позволяет использовать текст, графику, видео и мультипликацию в интерактивном режиме и том самым расширяет рамки применения компьютера в учебном процессе.

Виртуальная реальность (от англ. virtual reality - возможная реальность) - это новая технология неконтактного информационного взаимодействия, создающая с помощью мультимедийной среды иллюзию присутствия в реальном времени в стереоскопически представленном "экранном мире". В таких системах непрерывно поддерживается иллюзия места нахождения пользователя среди объектов виртуального мира. Вместо обычного дисплея используются очки телемониторы, в которых воспроизводятся непрерывно изменяющиеся события виртуального мира. Управление осуществляется с помощью реализованного в виде "информационной перчатки" специального устройства, определяющего направление перемещения пользователя относительно объектов виртуального мира. Кроме этого в распоряжении пользователя есть устройство создания и передачи звуковых сигналов.

Автоматизированная обучающая система на основе гипертекстовой технологии позволяет повысить усвояемость не только благодаря наглядности представляемой информации. Использование динамического, т. е. изменяющегося, гипертекста дает возможность провести диагностику обучаемого, а затем автоматически выбрать один из оптимальных уровней изучения одной и той же темы. Гипертекстовые обучающие системы дают информацию таким образом, что и сам обучающийся, следуя графическим или текстовым ссылкам, может применять различные схемы работы с материалом. Все это позволяет реализовать дифференцированный подход к обучению. Специфика технологий Интернет – WWW (от англ. World Wide Web - всемирная паутина) заключается в том, что они предоставляют пользователям громадные возможности выбора источников информации: базовая "информация на серверах сети; оперативная информация, пересылаемая по электронной почте; разнообразные базы данных ведущих библиотек, научных и учебных центров, музеев; информация о гибких дисках, компакт-дисках, видео - и аудиокассетах, книгах и журналах, распространяемых через Интернет-магазины, и др.

1.2 Сравнительный анализ инструментальных средств AutoCad, MatLab, Maple 9, Математика

Цель практической работы сравнить математические языки на высоком уровне. В основном целью программы является более детальное рассмотрение программы. Данный анализ составляет большой интерес для эконометрики, для финансового сектора в целом, биологии, химии, физики и нескольких других видов деятельности где численный анализ данных имеет большое значение.

Анализ состоит из таблицы, в которой перечислены функциональные возможности программ. Она разделена на функциональные разделы математических, графических, функциональных возможностей и в среде программирования, раздел импорт/экспорт данных, возможности использования в различных операционных систем, сравнение скорости и информации в целом. Для упрощения анализа всех данных мы использовали простую систему оценок.

Оценка 1 ставилась для тех программ, в которых присутствуют автоматические функции, оценка 0.9 ставится тем приложениям, которые надо устанавливать отдельно. Программы в которых недоступны автоматические функции получают оценку 0 баллов. Сумма в каждом столбце является общим баллом.

В результате все оценки были оценены следующим образом:

Математические функции 38 %;

Графические функции 10 %;

Программирование обеспечение 9 %;

Импорт/экспорт данных 5 %;

Операционные системы 2 %;

Сравнение скорости 36 %.

Общие символы используемые в различных схемах

+ - Функция встроена в программу

m - Функция поддерживается дополнительным модулем, которую можно скачать бесплатна.

$ - Функция поддерживается дополнительным модулем, которую можно скачать за отдельную плату.

Перечисленные функции все основаны на коммерческих продуктах (кроме Scilab), у которых есть гарантийное обслуживание и поддержка. Конечно есть огромное количество приложений бесплатного программного обеспечения, доступные модули, но без гарантии обслуживания или поддержки. Это - очень важный пункт для нескольких типов деятельности (то есть для использования в банке).

Сравнение математических функциональных возможностей

Фактически есть много различных математических и статистических программ на рынке, которые покрывают огромное количество функций.

Следующая таблица должна дать краткий обзор о функциональных возможностях для того, чтобы анализировать данные числовыми способами и должны обозначить, какие функции поддерживаются, какими программами, или эти функции уже осуществлены в основной программе или нуждаетесь вы в дополнительном модуле.

Алгебра и особенно линейная алгебра предлагают основные функциональные возможности для любого вида ориентируемой работы матрицы. То есть виды оптимизации, широко используемые в финансовом секторе, также очень полезны в сравнении скорости.

Следующее сравнение скорости было выполнено на Pentium-III с частотой процессора 550 МГц и RAM на 384 MB, запущеной под Windows ХР. Поскольку можно было ожидать, что современные компьютеры могли решить данные проблемы в пределах короткого времени, максимальная продолжительность для каждой функции была ограничена 10 минутами.

Сравнение скорости проверяет 18 функций, которые очень часто используются в математических моделях. Это необходимо, чтобы интерпретировать результаты выбора времени в содержании с целыми моделями как тогда, маленькие различия в timings единственных функций могли бы результаты в выборе времени различий минут до нескольких часов. Однако не возможно использовать полные модели для этих оценочных испытаний как работа для того, чтобы заставлять модель работать в каждом математическом пакете, и также продолжительность была бы очень высока.

--------------------------------------------------
Функции (версия) | Maple | Mathematica | Matlab |
---------------------------------------------------------
(8.0) | (4.2) | (6.5) |
---------------------------------------------------------
Чтение данных от картотеки данных ASCII | 6.079 | 3.435 | 2.767 |
---------------------------------------------------------
Чтение данных от базы данных по интерфейсу ODBC | - | 3.145 | 11.777 |
---------------------------------------------------------
Извлечение описательной статистической величины | * | 52.505 | 8.192 |
---------------------------------------------------------
Тест петли 5000 x 5000 | 230.822 | 298.088 | 0.901 |
---------------------------------------------------------
3800x3800 случайная матрица^1000 | * | 9.594 | 25.186 |
---------------------------------------------------------
Сортировка 3000000 случайных ценностей | 41.820 | 8.552 | 3.274 |
---------------------------------------------------------
FFT более чем 1048576 (= 2^20) случайные ценности | 196.382 | 2.453 | 1.692 |
---------------------------------------------------------
Тройная интеграция | 42.601 | 97.000 | 51.775 |
---------------------------------------------------------
Детерминант 1000x1000 случайная матрица | 3.324 | 15.192 | 2.874 |
---------------------------------------------------------
Инверсия 1000x1000 случайная матрица | 12.086 | 79.986 | 7.862 |
---------------------------------------------------------
Собственные значения 600x600 случайная матрица | 34.439 | 28.431 | 16.834 |
---------------------------------------------------------
Разложение Cholesky 1000x1000 случайная матрица | 163.114 | 4.636 | 1.262 |
---------------------------------------------------------
1000x1000 crossproduct матрица | 8.341 | 26.308 | 5.898 |
---------------------------------------------------------
Вычисление 1000000 Чисел Фибоначчи | * | 1.953 | 4.947 |
---------------------------------------------------------
Основное составляющее разложение на множители по 500x500 матрица | - | 165.108 | 25.337 |
---------------------------------------------------------
Гамма функция на 1500x1500 случайная матрица | 2.504 | * | 29.041 |
---------------------------------------------------------
Гауссовская ошибочная функция на 1500x1500 случайная матрица | 3.211 | * | 15.773 |
---------------------------------------------------------
Линейный регресс по 1000x1000 случайная матрица | 15.750 | 26.928 | 4.867 |
---------------------------------------------------------
Полная работа | 47.90% | 18.120% | 31.32% |
--------------------------------------------------------- --------------------------------------------------

* - Максимальная продолжительность 10 минут была превышена.

Полная работа была вычислена следующим образом:

Лучший результат быстродействия функции оценивается как 100 %; для того, чтобы вычислить результаты для каждой функции я возьму самое лучшее быстродействие и разделю это на выбор времени проверенной программы (формула будет смотреть МИНУТА (A1; A2; …)/A2 ), и это отображается в процентах. Чтобы сделать заключительную „Полную работу", я вычислю сумму процентов и разделю на количество программ, который снова отображается в процентах.

Функции, которые не поддерживаются программой, не будут оценены. Также реализация каждой функции для каждой математической программы была оптимизирована, насколько это было возможно.

Общая информация о продукте.

Некоторое количество информации как оценка, поддержка, телеконференции, книги, и т. д. имеют существенное значение для пользователей математического или статистического программного обеспечения. Вследствие того, что этот тип информации не может быть характеризован объективно, можно только упомянуть их без суждения для заключительного резюме испытательного сообщения.

--------------------------------------------------
Функции (версия) | Maple | Mathematica | Matlab |
---------------------------------------------------------
(8.0) | (4.2) | (6.5) |
---------------------------------------------------------
Операция / Программирующий обработку |
---------------------------------------------------------
Пользовательский интерфейс | 3 | 2 | 2 |
---------------------------------------------------------
Графика | 3 | 2 | 3 |
---------------------------------------------------------
Язык программирования (подобный) |

2

(Pascal)

|

3

(Lisp, APL)

| 2 (Basic, Fortran) |
---------------------------------------------------------
Онлайн помощь / Электрон. руководство | 2 | 1 | 2 |
---------------------------------------------------------
Доп. книги | 1 | 1 | 3 |
---------------------------------------------------------
Списки частых вопросов | 2 | 2 | 2 |
---------------------------------------------------------
Телеконференции / списки адресатов | 2 | 1 | 1 |
---------------------------------------------------------
Программа архивирует производителем программного обеспечения | 3 | 1 | 2 |
---------------------------------------------------------
Программа архивирует внешними учреждениями | 1 | 1 | 1 |
--------------------------------------------------------- --------------------------------------------------

Информация в этой таблице - оценивается оценками от 1 до 6 (1 - лучше всего, 6 - худший) и представляет мое собственное субъективное мнение. Оценка 6 обычно означают, что что-то не поддерживается, то есть эта функция поддерживается действительно ужасно. Оценка 1 дается той функции, которая поддерживается самым лучшим образом.

Разная информация: резюме должно установить результаты сравнения скорости, функциональные возможности программной окружающей среды, услуг импорта/экспорта данных и пригодности к различным платформам относительно результатов сравнения математических и графических функциональных возможностей. Отношение между этими четырьмя тестами 38:10:9:5:2:36.

--------------------------------------------------
Функции (версия) | Maple | Mathematica | Matlab |
---------------------------------------------------------
(8.0) | (4.2) | (6.5) |
---------------------------------------------------------
Сравнение математических функциональных возможностей (38 %) | 45.89% | 75.87% | 69.15% |
---------------------------------------------------------
Сравнение графических функциональных возможностей (10 %) | 48.21% | 68.63% | 87.18% |
---------------------------------------------------------
Функциональные возможности программной окружающей среды (9 %) | 41.67% | 62.78% | 68.33% |
---------------------------------------------------------
Данные, обращающиеся (с 5 %) | 38.14% | 54.40% | 57.48% |
---------------------------------------------------------
Доступные платформы (2 %) | 100.00% | 100.00% | 100.00% |
---------------------------------------------------------
Сравнение скорости (36 %) | 18.12% | 31.32% | 65.89% |
---------------------------------------------------------
Полный результат | 36.44% | 57.34% | 69.74% |
--------------------------------------------------------- --------------------------------------------------

Резюме: полные результаты некоторых проверенных программ являются не лучшими из-за определенной надбавки этого испытательного сообщения.

В пакете Maple 9 присутствует оптимальное количество вычислительных программ и программ для построения графиков, а также очень удобный интерфейс пакета. Эта программа очень широко используется в разных фирмах, предприятиях и даже корпорациях. По ней выпущено очень много литературы, она довольна проста в использовании. На сайте производителя можно не только скачать ознакомительную версию Maple 9, но еще и совершенно бесплатно скачать учебники по этому пакету. Также, если имеется старая версия Maple 9, то ее можно обновить до самой последней версии имея серийный номер от старой версии Maple 9. Единственный минус в том, что лицензионная версия "Maple 12 Professional Edition" сегодня стоит 74000 рублей, а "Maple 12 Student Edition" стоит 13000 рублей, но стоимость для общеобразовательных учреждений может быть снижена. Для проведения факультатива может использоваться демо-версия.

1.3 Использование инструментального средства Maple

Maple представляет собой комплексную компьютерную систему с расширенными возможностями в области математики. Она включает в себя программные средства для интерактивной алгебры, математического анализа, дискретной математики, графики, численных расчетов, и многих других областей математики. Она также является уникальной программной средой, ускоряющей разработку математических программ благодаря своей большой библиотеке встроенных функций и операций. Читаем далее, очень большое описание.

Интерфейс Maple

Рабочие листы системы Maple могут быть использованы либо как интерактивные средства для решения задач, либо как система для составления технической документации.

Исполнительные группы и электронные таблицы облегчают взаимодействие пользователя с вычислительной машиной Maple, выполняя роль тех первичных средств, с помощью которых в систему Maple передаются запросы на выполнение конкретных задач и вывод результатов. Оба этих типа первичных средств допускают возможность ввода команд Maple.

Система Maple позволяет вводить электронные таблицы, содержащие как числа, так и символы. Они совмещают в себе математические возможности системы Maple с уже знакомым форматом из строк и столбцов традиционных электронных таблиц.

Электронные таблицы системы Maple можно использовать для создания таблиц формул.

Для облегчения документирования и организации результатов вычислений имеются опции разбиения на параграфы, разделы, добавления гиперссылок.

Рабочие листы можно организовать иерархически, в виде разделов и подразделов. Разделы и подразделы можно как расширять, так и сворачивать. Ниже даны примеры подразделов для данного раздела. Гиперссылка является навигационным средством. Одним щелчком мыши по ней вы можете перейти к другой точке в пределах рабочего листа, к другому рабочему листу, к странице помощи, к рабочему листу на Web-сервере или к любой Web-странице.

Система Maple подобно другим текстовым редакторам также поддерживает опцию закладок.

Вычисления в Maple

Систему Maple можно использовать и на самом элементарном уровне ее возможностей, – как очень мощный калькулятор.

Главным достоинством системы Maple является ее способность выполнять арифметические действия. При работе с дробями и корнями они не приводятся в процессе вычисления к десятичному виду, что позволяет избежать ошибок при округлении. При необходимости работы с десятичными эквивалентами в системе Maple имеется команда, аппроксимирующая значение выражения в формате чисел с плавающей запятой. Система Maple вычисляет конечные и бесконечные суммы и произведения, выполняет вычислительные операции с комплексными числами, легко приводит комплексное число к числу в полярных координатах, числовые значения элементарных функций, а также многих специальных функций и констант.

Система Maple предлагает различные способы представления и преобразования выражений, например, такие операции, как упрощение и разложение на множители алгебраических выражений и приведение их к различному виду. Систему Maple можно использовать для решения уравнений и систем алгебраических уравнений.

Maple имеет также множество мощных инструментальных средств для вычисления выражений с одной и несколькими переменными. Систему Maple можно использовать для решения задач дифференциального и интегрального исчисления, вычисления пределов, разложений в ряды, суммирования рядов, умножения, интегральных преобразований (таких как преобразование Лапласа, Z-преобразование, преобразование Меллина или Фурье), непрерывных или кусочно-непрерывных функций.

Система Maple поддерживает сотни специальных функций и чисел, встречающихся во многих областях математики, науки и техники. Вот некоторые из них:

-функция ошибок;

-Эйлерова константа;

-Экспоненциальный интеграл ;

-Эллиптическая интегральная функция ;

-Гамма-функция ;

-Зета-функция ;

-Ступенчатая функция Хевисайда ;

-Дельта-функция Дирака ;

-Бесселева и модифицированная бесселева функции ;

Maple может вычислять пределы функций, как конечные, так и стремящиеся к бесконечности, а также распознает неопределенные пределы.

В системе Maple можно решать множество обычных дифференциальных уравнений (ODE), а также дифференциальные уравнения в частных производных (PDE), в том числе задачи с начальными условиями (IVP), и задачи с граничными условиями (BVP).

Одним из наиболее часто используемых в системе Maple пакетов программ является пакет линейной алгебры, содержащий мощный набор команд для работы с векторами и матрицами. Maple может находить собственные значения и собственные векторы, вычислять криволинейные координаты, находить матричные нормы и вычислять множество различных типов разложения матриц.

Для технических применений в Maple включены справочники физических констант и единицы физических величин с автоматическим пересчетом формул.

Графика в Maple

Maple поддерживает как двумерную, так и трехмерную графику. Можно графически представить явные, неявные и параметрические функции, а также наборы данных.

Графические средства Maple позволяют строить двухмерные графики сразу нескольких функций, создавать конформные графики функций с комплексными числами и строить графики функций в логарифмической, двойной логарифмической, параметрической, фазовой, полярной и контурной форме. Можно графически представлять неравенства, неявно заданные функции, решения дифференциальных уравнений и корневые годографы. Также имеются все возможности для выбора шрифтов для названий, надписей и другой текстовой информации на графиках.

Maple может строить поверхности и кривые в трехмерном представлении, включая поверхности, заданные явной и параметрической функциями, а также решениями дифференциальных уравнений. Имеется возможность изменения качества вывода графика на экран путем изменения таких параметров, как шрифты, яркость и цвет.

Maple поддерживает двух - и трехмерные анимации. Эту особенность системы можно использовать для отображения процессов, протекающих в режиме реального времени.

Специализированные приложения

В Maple включены пакеты подпрограмм для решения задач линейной и тензорной алгебры, Евклидовой и аналитической геометрии, теории чисел, теории вероятностей и математической статистики, комбинаторики, теории групп, интегральных преобразований, численной аппроксимации и линейной оптимизации (симплекс метод) а также задач финансовой математики и многих, многих других задач.

Финансовые вычисления в Maple

Для финансовых расчетов предназначен программный пакет finance. C его помощью можно вычислять текущую и накопленную сумму ежегодной ренты, совокупную ежегодную ренту, сумму пожизненной ренты, совокупную пожизненную ренту, и процентный доход на неименные облигации. Более того, этот пакет также поможет в расчете дохода, получаемого до срока погашения облигации. Вы можете строить таблицу амортизации, определять реальную сумму ставки для сложных процентов и вычислять текущее и будущее фиксированное количество для конкретной ставки сложных процентов.

Программирование

Система Maple использует исключительно процедурный язык 4-го поколения (4GL). Этот язык специально предназначен для быстрой разработки математических подпрограмм и пользовательских приложений.

Синтаксис этого языка аналогичен синтаксису языков Си, FORTRAN, BASIC и Pascal.

Maple может генерировать код, совместимый с такими языками программирования, как FORTRAN и Cи, и с языком набора текста LaTeX. Одним из преимуществ этого свойства является способность обеспечивать доступ к специализированным числовым решающим программам, максимально ускоряющим решение сложных задач. Например, с помощью системы Maple можно разработать определенную математическую модель, и затем с помощью той же системы Maple сгенерировать соответствующий модели Си-код.

Справочная система

Информацию о командах и основных принципах работы системы Maple вы можете получить различными способами. Вот лишь самые основные из них:

-Контекстно-зависимая помощь

-Браузер помощи – очень удобный инструмент, позволяющий по темам и ключевым словам найти нужную информацию.

-Тематический поиск

-Полнотекстовой поиск

-История – для возвращения к странице справке, просматривавшейся уже в текущем сеансе.

Интернет-совместимость

Maple является первым универсальным математическим пакетом, который предлагает полную поддержку стандарта MathML 2.0, который управляет как внешним видом, так и смыслом математики в Интернет. Эта эксклюзивная функция делает текущую версию MathML основным средством Интернет математики, а также устанавливает новый уровень совместимости многопользовательской среды. TCP/IP протокол обеспечивает динамический доступ к информации из других Интернет-сайтов, например к данным для финансового анализа в реальном времени и данным о погоде.

Свободные ресурсы

Обширный набор мощных инструментальных приложений (Maple PowerTools™) и п акетов для таких областей, как анализ методом конечных элементов (FEM), нелинейная оптимизация и нелинейной оптимизации, университетское математическое образование.

Выполнение вычислений

-Интуитивно ясный редактор уравнений, позволяющий быстро решать сложные задачи

-Расширенные возможности управления размерностью и единицами измерения

-Вычисление допустимых пределов для технических задач

-Неограниченная степень точности численных вычислений

-Высокоэффективные численные решатели, основанные на общепринятых алгоритмах

-Обновленный интерфейс графического калькулятора, удобный для быстрого выполнения вычислений

-Более 200 встроенных шаблонов для решения основных математических задач

-Более 3500 математических функций

Возможности управления математическим содержанием

-Интерактивное представление результатов в виде двухмерных и трёхмерных изображений и анимация

-Возможность управления параметрами для проверки гипотез

-Автоматический вывод выражений и составление моделей

-Интеграция символьных и численных операций

-Интерактивные помощники, ускоряющие процесс исследования дифференциальных уравнений, оптимизации и т. д.

-Интерактивный словарь содержит более 5000 терминов

Создание технических документов

-Вы можете создавать технические документы профессионального вида, содержащие текст, интерактивные математические вычисления, графики, рисунки и звук

-Вы также можете добавлять кнопки, бегунки и другие компоненты в ваши документы

-При просмотре презентаций можно скрывать командное меню

-Вы можете воспользоваться расширенными возможностями текстового редактора, включая инструменты верстки и проверку орфографии

-Вы можете публиковать документы в Интернет и развёртывать интерактивные вычисления на сайте, используя сервер MapleNe.

Разработка пользовательских приложений

-Язык, специально оптимизированный для разработки математических приложений, позволяет сократить процесс разработки на несколько дней

-Вы можете настроить пользовательский интерфейс с помощью элементов Maplets или документов Maple со встроенными графическими компонентами

-Высокопроизводительные вычислений с плавающей запятой, максимально использующие аппаратные возможности, и компиляция пользовательских функций

-Отличное взаимодействие с MapleNet, другими приложениями и веб-сайтами

-Автоматическая генерация кода на языках C, Fortran, Java, MATLAB, и Visual Basic

1.4 Педагогические и психологические аспекты обучения

В соответствии с проектом Государственного образовательного стандарта по информатике, общими целями и задачами факультативов является формирование основ научного мировоззрения школьников, развитие мышления и их творческих способностей, а также подготовка к жизни и деятельности в информационном обществе.

Для успешного решения этих задач при обучении необходимо, чтобы они соответствовали возрастным и индивидуальным особенностям развития школьников, только в случае, когда учащийся понимает и принимает цели обучения, являясь активным участником процесса обучения, можно добиться успеха в достижении целей обучения. Следовательно, необходимо рассмотреть возрастные и индивидуальные особенности детей старшего школьного возраста.

Старший школьный возраст, или, как называют ранняя юность, охватывает период развития человека от 15 до 17 лет. В этот период завершается подготовка к самостоятельной жизни, формирование ценностей, мировоззрения, выбор профессиональной деятельности и утверждение гражданской значимости личности. В результате и под воздействием этих социальных личностных факторов перестраивается вся система отношений учащихся с окружающими их людьми и изменяется их отношение к себе. Из-за этой социальной позиции изменяется их отношение к школе, общественно полезной деятельности и учебе, устанавливается определенная взаимосвязь между интересами будущей профессии, учебными интересами и мотивами поведения.

Учебная деятельность старших школьников значительно отличается по характеру и содержанию от учебной деятельности подростков. Дело не только в том, что углубляется содержание обучения. Основное отличие в том, что учебная деятельность старшеклассников предъявляет гораздо более высокие требования к их умственной активности и самостоятельности. Для того чтобы глубоко усваивать программный материал, необходим достаточно высокий уровень развития обобщающего понятийного мышления. Трудности, которые испытывает в процессе обучения школьник, прежде всего, связаны с неумением учиться в этих новых условиях, а не с нежеланием учиться.

Что касается отношения старших школьников к учению, то и здесь наблюдается определенные изменения. Ученики взрослеют, обогащается их опыт, они сознают, что стоят на пороге самостоятельной жизни. Растет их сознательное отношение к учебе. Учение приобретает непосредственный жизненный смысл, так как старшеклассники отчетливо осознают, что необходимым условием полноценного участия в будущей трудовой жизни общества является наличный фонд знаний, умений и навыков, полученное в школе умение самостоятельно приобретать знания.

Характеризуя интересы старшего школьника, прежде всего надо сказать, что в этом возрасте юноши и девушки уже определяют свой специфический устойчивый интерес к той или иной науке, отрасли знания, области деятельности. Такой интерес в старшем школьном возрасте приводит к формированию познавательно-профессиональной направленности личности, определяет выбор профессии.

Все это представляет оптимистические возможности для развития способностей старшеклассников.

Развитие познавательных интересов, рост созидательного отношения к ученику стимулирует дальнейшее развитие произвольности познавательных процессов, умение управлять ими, сознательно регулировать их. В период старшего школьного возраста учащиеся полностью овладевают своими познавательными процессами (восприятием, памятью, воображением, а также вниманием), подчиняя их организацию определенным задачам жизни и деятельности.

Под влияние специфической для школьника организации учебной деятельности существенно изменяется мыслительная деятельность, характер их умственной работы. Большое значение имеют уроки типа лекций, самостоятельное выполнение лабораторных работ, все чаще и чаще учащимся приходится самостоятельно разбираться в изучаемом материале.

Мыслительная деятельность старших школьников характеризуется по сравнению со школьниками среднего звена более высоким уровнем обобщения и абстрагирования, нарастающей тенденцией к причинному объяснению явлений, умений аргументировать суждения, доказать истинность или ложность отдельных положений, делать глубокими выводы и обобщения, связывать изучаемое в систему. Развивается критичность мышления. Все это предпосылки формирования теоретического мышления, способности к познанию общих законов окружающего мира, законов природы и общественного развития.

Для юности характерна устремленность в будущее. В этот период уже создан необходимый жизненный план – решено кем быть (профессиональное самоопределение) и каким быть (личностное или моральное самоопределение). Планы сводятся к намерению учиться, заниматься в будущем интересной работой, иметь друзей и много путешествовать. Старшеклассник уже не просто представляет себе свое будущее в общих чертах, как младший школьник, а осознает способы достижения поставленной жизненной цели.

Самоопределение, как профессиональное, так и личное, становится центром новообразования юности. Это новая внутренняя позиция, включающая ощущение себя как члена общества, принятия своего места в нем.

Существенной особенностью учащихся является обостренность их сознания и чувства, в связи с жизненным самоопределением и выбором профессии, поэтому необходимо оказывать учащимся действенную помощь в формировании их жизненных планов, проводить содержательную профориентацию.

Юношеский возраст можно считать благоприятным для формирования профессионально ориентированных знаний, умений и навыков. Ни в одном другом возрасте они не развиваются с такой легкостью и быстротой и так надолго не закрепляются в памяти, как в студенческие годы.

Таковы основные возрастные и индивидуальные особенности учащихся. Задача состоит в том, чтобы более эффективно использовать эти особенности в обучении и развитии учащихся. И эта задача с успехом может быть решена за счет факультатива. Методы, которые учащиеся усвоят на факультативе, обязательно будет использоваться позднее при решении самых разнообразных жизненных и профессиональных задач.

ГЛАВА 2. ОБУЧЕНИЕ ПРОГРАММИРОВАНИЮ ШКОЛЬНИКОВ НА УРОКАХ ИНФОРМАТИКИ

2.1 Подходы к обучению школьников основам программирования на уроках информатики

Курс информатики в системе школьного образования с каждым днём становится всё важнее за счёт повсеместной компьютеризации и необходимости компьютерной грамотности учащихся, так как в дальнейшем это будет компьютерная грамотность общества. Подходов к преподаванию информационных технологий в школе существует несколько и они различны.

Знания компьютера способствуют развитию и реализации творческого потенциала обучаемого, обеспечивают качественно новый уровень его интеллектуальной и эмоционально-нравственной культуры, создают внутреннюю потребность в саморазвитии и самообразовании, способствуют адаптации личности в быстро изменяющихся социально-экономических и информационно-технологических условиях.

За годы становления и совершенствования школьные курсы информатики существенно изменялись. С учетом того, какую роль эта дисциплина играла в обучении, в развитии методических систем можно выделить как минимум шесть достаточно четко определяемых этапов.

Первый этап начался с конца 50-х гг. XX века и продолжался до 1985 г., его можно назвать подготовительным. На этом этапе имело место экспериментальное обучение школьников основам программирования и элементам кибернетики, которое навсегда связано с именами известных ученых А. П. Ершова и С. И. Шварцбурда, В. С. Леднева и А. А. Кузнецова, внесшим вклад в создание основ общеобразовательной подготовки учащихся средней школы. В процессе длительной теоретической и практической работы ученые обосновали общеобразовательную и мировоззренческую значимость изучения информационного единства мира и основ алгоритмизации для школьников. Вопрос необходимости включения информатики в содержание общего среднего образования был поднят именно тогда.

Включение в содержание обучения информатике вопросов, связанных с информацией и информационными процессами (управлением, хранением, передачей, преобразованием, представлением, кодированием информации), моделью и системой, алгоритмами и логическими преобразователями информации создали предпосылки для формирования фундаментальных компонентов общеобразовательного школьного курса информатики.

В то время были сформулированы актуальные и поныне основные общеобразовательные умения в области информатики, которые необходимы каждому человеку и, следовательно, должны быть заложены на этапе обучения в школе. Вот они.

Умение планировать структуру действий для достижения заданной цели при помощи фиксированного набора средств.

Умение организовывать поиск информации, необходимой для решения поставленной задачи.

Умение строить информационные модели для описания объектов и систем.

Умение взаимодействовать с компьютерной техникой при решении задач из различных областей деятельности человека.

Второй этап длился с 1985 г. до конца 80-х гг. ХХ века. Характеризовался он реализацией в школах практически буквально трактуемого тезиса А. П. Ершова "Программирование — вторая грамотность".

Андрей Петрович Ершов (1931–1988) – советский учёный, один из пионеров теоретического и системного программирования, создатель Сибирской школы информатики, академик АН СССР. Его работы оказали огромное влияние на формирование и развитие вычислительной техники не только в СССР, но и во всём мире. А. П. Ершов – один из пионеров российской корпусной лингвистики; по его инициативе начал создаваться Машинный фонд русского языка при Институте русского языка АН СССР. Окончил МГУ им. М. В. Ломоносова в 1954 году.

До начала 50-х гг. не существовало специальности "программист". Ершову повезло: он оказался одним из первых программистов, имевших специальное образование. После окончания аспирантуры механико-математического факультета в 1957 году возглавил отдел теоретического программирования Вычислительного центра АН СССР).

В 1985 - 1986 учебном году для обучения старшеклассников был введен обязательный учебный предмет "Основы информатики и вычислительной техники" (ОИВТ). Для этого в сжатые сроки под руководством А. П. Ершова были подготовлены программа, пробное учебное пособие для учащихся, методические рекомендации для учителей, проведена интенсивная курсовая подготовка педагогов, в основном учителей математики и физики.

На практике преподавание школьной информатики резко отличалась от представлений научного сообщества об этом учебном предмете. В основном это произошло из-за недостаточной научно-методической подготовки учителей к преподаванию основ информатики, плохой обеспеченности школ вычислительной техникой и возможностью взаимодействовать с этой техникой только с помощью языка программирования.

По мере оснащения школ компьютерами и накопления опыта их систематического использования учащимися на уроках формировались различные подходы к преподаванию основ информатики. Вслед за первым учебником А. П. Ершова коллективами авторов под руководством А. Г. Гейна, В. А. Каймина и А. Г. Кушниренко были выпущенные три альтернативных учебника ОИВТ, в которых основной акцент также делался на обучении основам алгоритмизации и программирования. Не смотря на то, что учёные были уверены в большем потенциале информационных технологий и информатики как предмета на тот момент, серьёзных шагов вперёд информатика не сделала.

Третий этап, относящийся к первой половине 90-х гг., связан с понятием "компьютерная грамотность школьника". В этом случае содержание обучения информатике компоновалось с учетом нацеленности на формирование у школьников представления о во

Здесь опубликована для ознакомления часть дипломной работы "Миф сегодня". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 591

Другие дипломные работы по специальности "Культура и искусство":

Плетеная мебель "Детская кроватка"

Смотреть работу >>

Эволюция exercice классического танца

Смотреть работу >>

Проблема сущности культуры

Смотреть работу >>

Основные направления голландской живописи XVII века

Смотреть работу >>

Развитие корпоративной культуры социальных учреждений

Смотреть работу >>