Дипломная работа на тему "Высокочастотный приемный тракт"

ГлавнаяКоммуникации и связь → Высокочастотный приемный тракт




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Высокочастотный приемный тракт":


Министерство образования Республики Беларусь

Белорусский Государственный Университет

Информатики и Радиоэлектроники

Кафедра: радиотехнических систем

Факультет: радиотехники и электроники

К защите допускаю

Заведующий кафедрой РТС

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к дипломному проекту

На тему: Однокритериальный измеритель частотной избирательности радиоприёмника

Дипломник:

Руководитель:

Консультанты:

Дипломны й проект опубликован на сайте www.rosdiplomnaya.com

Специальный банк готовых защищённых студентами дипломных работ предлагает вам скачать любые работы по требуемой вам теме. Оригинальное выполнение дипломных работ под заказ в Самаре и в других городах РФ.

по охране труда и экологии

по экономике

Рецензент:

г. МИНСК 2004

Введение

Электромагнитные излучения воспринимаются практически всеми объектами, однако интерес могут представлять только те воздействия, которые ведут к каким-либо последствиям. Влияние помех на РТС происходит в основном через РПрУ. От уровня такого влияния зависит качество работы радиотехнической системы. РПрУ предназначено для улавливания энергии электромагнитных волн, выделения полезного радиосигнала и преобразования его в сообщение. Такое назначение обеспечивается работой трех устройств: антенны, радиоприемника и оконечного устройства.

РТС РПрУ обладает свойствами, влияющими на тактико-технические характеристики системы. Так, избирательность РПрУ отражается на ЭМС, помехоустойчивости и помехозащищенности РТС, а следовательно, на дальности действия, точности измерения координат, пропускной способности и т. д.

Большое значение имеют также такие характеристики, как чувствительность, диапазон рабочих частот, надежность, адаптивность и другие показатели РПрУ. Особое место среди характеристик РПрУ занимает динамический диапазон.

С другой стороны, РПрУ как часть РТС, следуя системному подходу, должно не только влиять на характеристики РТС, но и удовлетворять определенным требованиям. Поэтому при изучении вопросов ЭМС следует иметь в виду не только возможности анализа, но и синтеза РПрУ с заданными характеристиками.

Важнейшей характеристикой РПрУ с точки зрения теории ЭМС является его избирательность. Под избирательностью понимаем способность РПрУ выделять (осуществлять селекцию) полезный сигнал из сложных электромагнитных полей, созданных в точке расположения РПрУ. Для обеспечения избирательности используют отличия полезного сигнала от помех в основном по следующим параметрам: несущей частоте, направлению прихода волны, поляризации, времени прихода сигналов и т. д. Наиболее глубоко в настоящее время изучена частотная избирательность радиоприемников.

Кривая избирательности, отображающая зависимость снятого по мощности нормированного коэффициента передачи от частоты k(f), достаточно полно характеризует частотную избирательность в линейном режиме. Однако при изучении ЭМС предполагается, что на входе приёмника динамический диапазон сигналов может превзойти динамический диапазон приёмника. Возможны нелинейные преобразования входных сигналов с образованием помех, проникающих на выход приёмника при условии, что частоты входных сигналов не совпадают ни с основным, ни с побочными каналами.

Выявление таких помех возможно только при подаче на вход приёмника двух и более испытательных сигналов. Так, возникла необходимость в оценке двухсигнальной и многосигнальной избирательности.

Из характеристик избирательности цепей и устройств рассмотрим характеристику, представляющую собой нормированную зависимость коэффициента передачи k(x) цепи (устройства) по мощности от значения параметра х при номинальных данных на выходе.

Существование порогового эффекта и его схемная реализация, выполненная в большинстве РПрУ, позволяет допускать, что принимаются только сигналы на уровне порога или выше его. Это утверждение является составной частью модели ЭМО и РПрУ. Всё, что ниже порога, механически не отбрасывается, а участвует в создании некоторого конечного уровня помех Рисунок убран из работы и доступен только в оригинальном файле., непосредственно влияющего на выбор порога Рисунок убран из работы и доступен только в оригинальном файле..

В радиоприёмнике различают линейную и нелинейную части. К линейной части относят все цепи до входа детектора. При этом линейность тракта оценивается по его реакции на полезный сигнал, если амплитуда последнего не слишком велика. Детектор и последующие цепи, меняют свои параметры в зависимости от уровня напряжения сигнала. Поэтому их относят к нелинейной части приёмника.

Однако так называемая линейная часть приемника при очень больших уровнях полезного или мешающего сигналов может работать в нелинейном режиме, при котором параметры цепей изменяются в зависимости от интенсивности сигнала. Возникает ряд нежелательных эффектов, ухудшающих работу РПрУ. В частности, одним из них является интермодуляция, или взаимная модуляция.

Под интермодуляцией в радиоприемнике следует понимать возникновение помех на выходе радиоприемника при действии на его входе двух и более сигналов, частоты которых не совпадают с частотами основного и побочных каналов приема радиоприемника [4].

Интермодуляция в более узком смысле сводится к образованию в результате нелинейных преобразований новых частотных составляющих, отсутствующих в спектре исходных колебаний. При этом вновь образованные колебания могут оказывать мешающее действие, если их частоты совпадают с основным или побочными каналами приема. Если считать непреднамеренные помехи сосредоточенными по спектру, то на выходе нелинейного элемента образуются колебания с частотами

Рисунок убран из работы и доступен только в оригинальном файле.,

где Рисунок убран из работы и доступен только в оригинальном файле. — целые положительные и отрицательные числа.

Число

Рисунок убран из работы и доступен только в оригинальном файле.

называют порядком интермодуляции. Отметим, что число взаимодействующих сигналов, особенно число каналов, через которые проникает помеха, настолько велики, что детальное теоретическое изучение всего многообразия частотных комбинаций затруднительно. Поэтому на первый план выходят методы экспериментальных оценок влияния интермодуляции.

При теоретическом изучении интермодуляции накладывают ряд ограничений, которые сводятся к следующему. Амплитуды составляющих с ростом порядка интермодуляции быстро падают. В связи с этим интермодуляции могут быть третьего или четвертого порядка (редко седьмого). На сложность процессов особенно значительно влияние числа взаимодействующих сигналов, поэтому и в теории и в эксперименте ограничиваются двумя сигналами с частотами Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.. При этом можно решить большинство вопросов, определяющих закономерности образования продуктов интермодуляции и наметить достаточно эффективные меры по борьбе с помехами такого типа, полагая, что они должны способствовать уменьшению уровня помех от интермодуляции, возникающей за счет трех и более сигналов.

С такими оговорками для частот помех интермодуляции можно записать следующие равенства:

Рисунок убран из работы и доступен только в оригинальном файле. (2.1)

Продукты интермодуляции возникают в основном в активных элементах усилителя высокой частоты и преобразователя частоты. В усилителе высокой частоты при наличии хорошей избирательности по высокой частоте наиболее благоприятные условия создаются для частот вида

Рисунок убран из работы и доступен только в оригинальном файле.

и, в частности, для частот

Рисунок убран из работы и доступен только в оригинальном файле.

и

Рисунок убран из работы и доступен только в оригинальном файле.

поскольку в этом случае частоты Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. могут иметь значения, близкие к частоте Рисунок убран из работы и доступен только в оригинальном файле. полезного сигнала.

Все другие комбинации частоты также эффективны, если они после преобразователя частоты непосредственно проникают в тракт основной селекции по частоте, т. е. в тракт усиления промежуточной частоты.

Особое место занимает вид интермодуляции, при которой образуются помехи за счет взаимодействия сосредоточенного по частоте мешающего сигнала и шума. Если считать, что шум имеет сплошной спектр, то при наличии сосредоточенной помехи всегда можно найти такие участки спектра, которые с этой помехой образуют продукты интермодуляции, совпадающие с основным или побочными каналами приемника. В конечном итоге увеличивается уровень шума и снижается чувствительность приемника.

Блокированием в радиоприемнике [3] называется изменение уровня сигнала или отношения сигнал/шум на выходе радиоприемника при действии радиопомехи, частота которой не совпадает с частотами основного и побочного каналов приема. Основная причина такого изменения—уменьшение усиления линейной части радиоприемника под действием мешающего сигнала. Это уменьшение происходит в усилителе высокой частоты или преобразователе. Поэтому ухудшается чувствительность приемника в целом. Блокирование возникает в результате помехи, которая не может сама пройти через приемник (как и при интермодуляции). Поэтому образование таких помех возможно для сигналов с большой интенсивностью, вероятность появления которых может быть невысокой.

Третьим (после интермодуляции и блокирования) распространенным видом помех, связанных с нелинейными явлениями, стали перекрестные искажения. Перекрестными искажениями в радиоприемнике [4] называются изменения структуры спектра сигнала на выходе радиоприёмника при действии сигнала и модулированной радиопомехи, частота которой не совпадает с частотами основного и побочного каналов приема радиоприёмника.

Перекрестные искажения являются результатом действия сильной помехи на коэффициент усиления усилителя высокой частоты или преобразователя частоты в соответствии с модуляцией этой сильной помехи. Меняется и полезный сигнал: происходит «перенос» модуляции с помехи на полезный сигнал. Глубина модуляции может быть достаточно большой, что затрудняет прием полезного сигнала. Перекрестные искажения появляются также при фазовой и частотной модуляциях. Поэтому различают амплитудную и угловую перекрестные модуляции. Амплитуды мешающих сигналов ограничены сверху уровнем Рисунок убран из работы и доступен только в оригинальном файле., при котором отрицательные последствия нелинейных явлений еще допустимы. Соответственно можно говорить о допустимой мощности Рисунок убран из работы и доступен только в оригинальном файле., ограничивающей мощность непреднамеренных помех сверху.

Минимальные уровни сигналов на входе приемника определяются пороговым эффектом и соответственно равны Рисунок убран из работы и доступен только в оригинальном файле. или Рисунок убран из работы и доступен только в оригинальном файле.. Таким образом, нелинейные явления ограничивают диапазон сигналов сверху, а шумы приемника — снизу. Отношение верхнего значения напряжения Рисунок убран из работы и доступен только в оригинальном файле. к пороговому уровню Рисунок убран из работы и доступен только в оригинальном файле. называют динамическим диапазоном радиоприемника.

Динамический диапазон радиоприёмника характеризует, таким образом, линейность его входа от антенны до усилителя промежуточной частоты. Однако понятие «динамический диапазон» имеет и другой смысл. Поэтому различают динамические диапазоны по основному и соседнему каналам.

Динамический диапазон по основному каналу измеряется на выходе УПЧ, характеризует ту часть приёмника, которую принято называть линейной, и зависит от нелинейности последних каскадов УПЧ. В отдельных случаях он может определяться на выходе видеоусилителя или усилителя низкой частоты. Возможно существенное расширение динамического диапазона приемника по основному каналу за счет применения автоматической регулировки усиления или логарифмического УПЧ.

Динамический диапазон по соседнему каналу характеризует линейность тракта от входа РПрУ до входа УПЧ. Этот диапазон может сопоставляться с динамическим диапазоном входных сигналов. Верхняя граница диапазона определяется наименьшим значением интенсивности входных сигналов, при котором заметное влияние оказывают интермодуляции, блокирование или перекрестные искажения.

Известны методы измерения двухсигнальной избирательности, основанные на использовании двух генераторов стандартных сигналов, отличающиеся относительно малой информативностью и производительностью.

Существует метод, не имеющий таких недостатков и обеспечивающий двухсигнальное зондирование приёмника с панорамной индикацией. Функциональная схема прибора показана на рис.1 Генераторы сигналов ГС1 и ГС2 под действием пилообразных напряжений генераторов развертки ГР1 и ГР2 меняют частоты Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. соответственно по пилообразному закону. Периоды пилообразных напряжений Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. и соответствующие им периоды изменения частот сигналов существенно отличаются друг от друга. В нашем случае Рисунок убран из работы и доступен только в оригинальном файле..

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.1 Функциональная схема прибора с панорамной индикацией

Частотно-временные диаграммы перестройки ГС1 и ГС2 показаны на рис.2 Приёмник должен реагировать на сигналы, если их частоты совпадут с частотой настройки основного канала Рисунок убран из работы и доступен только в оригинальном файле. или с частотами канала промежуточной частоты Рисунок убран из работы и доступен только в оригинальном файле., зеркального Рисунок убран из работы и доступен только в оригинальном файле. и других побочных каналов и если уровень сигналов на входе приёмника будет достаточным. Этот уровень можно регулировать с помощью аттенюатора (Ат), включенного между сумматором Рисунок убран из работы и доступен только в оригинальном файле. и входом радиоприемника.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.2 Частотно-временные диаграммы перестройки ГС1 и ГС2

Рисунок убран из работы и доступен только в оригинальном файле.

В качестве индикатора (И) применяют осциллограф, при этом генераторы развёрток подключают на оси Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле., а выходной сигнал радиоприёмника подают на ось Рисунок убран из работы и доступен только в оригинальном файле. (электрод яркости).

На экране электронно-лучевого индикатора следует ожидать изображение, аналогичное показанному на рис.3. Основной канал приёма представляет крестообразную фигуру, пересекающиеся линии которой соответствуют равенствам Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.. Линии, пересекающиеся под прямым углом и параллельные осям координат Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле., изображают канал промежуточной частоты, зеркальный канал и другие побочные каналы. Интермодуляционные помехи на экране имеют форму наклонных прямых (см. рис.3). Каждый из интермодуляционных каналов показан на экране в виде наклонной прямой.

Аттенюатор является важнейшим измерительным инструментом, с помощью которого определяют восприимчивость приёмника к различным одиночным и двойным мешающим сигналам. При перестройке генераторов следует обеспечить все разности из частот Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле., что при наличии нелинейности в приёмнике приводит к образованию в тракте УПЧ комбинаций Рисунок убран из работы и доступен только в оригинальном файле.. Отклики приёмника позволяют оценить восприимчивость приёмника на частотах, соответствующих односигнальной и двухсигнальной избирательности.

Таким образом, новый подход к приёмнику с позиций ЭМС породил и новый метод построения измерительной аппаратуры. Статистическая теория ЭМС легко обосновывает целесообразность использования такого метода и дает возможность рассчитать основные характеристики реализующих его устройств.

1.Обзор патентной и технической документации

Изобретение относится к радиотехнике и может использоваться для контроля восприимчивости радиоприёмника к помехам по неосновным каналам приёма.

Цель изобретения – повышение достоверности контроля.

На (рис.1) представлена структурная схема предложенного устройства.

Устройство контроля восприимчивости радиоприёмника к помехам содержит генератор 1 тактовых импульсов, первый делитель частоты 2, первый генератор 3 пилообразного напряжения, первый генератор 4 качающейся частоты, первый счётчик 5 импульсов, второй генератор 6 пилообразного напряжения, второй генератор 7 качающейся частоты, сумматор 8, мультиплексор 9, первый дешифратор 10, управляемый аттенюатор 11, индикатор 12, блок 13 запуска, амплитудный детектор 14, компаратор 15, второй делитель частоты 16, второй счётчик 17 импульсов, второй дешифратор 18, показан также контролируемый радиоприёмник 19.

Устройство работает следующим образом.

Импульсы с выхода генератора 1 тактовых импульсов с периодом следования Тx поступают на первый делитель частоты 2 с коэффициентом деления Ny, а также запускают второй генератор 6 пилообразного напряжения, который управляет вторым генератором 7 качающейся частоты. При этом имеет место качание частоты fx в диапазоне Df с периодом Тx. С выхода первого делителя частоты 2 импульсы с периодом Ty поступают на первый генератор 3 пилообразного напряжения, который управляет первым генератором 4 качающейся частоты. При этом имеет место качание частоты fy в диапазоне Df с периодом T2/

Рисунок убран из работы и доступен только в оригинальном файле. (1.1)

Рисунок убран из работы и доступен только в оригинальном файле. (1.2)

Рисунок убран из работы и доступен только в оригинальном файле. (1.3)

где Df - диапазон перестройки генераторов по частоте;

Рисунок убран из работы и доступен только в оригинальном файле.- полоса пропускания усилителя промежуточной частоты (наиболее узкополосного звена) контролируемого радиоприёмника 19.

Сканирование по диапазону Df происходит по линейному закону, что соответствует гипотенузе о равномерном распределении частот мешающих сигналов. Уровень мощностей первого и второго генераторов 4, 7 качающейся частоты одинаков, поскольку нет оснований для установления других соотношений. Далее сигналы поступают на сумматор 8, с выхода которого суммарный сигнал поступает на сигнальный вход управляемого аттенюатора 11.

Импульсы с выхода генератора 1 тактовых импульсов поступают также на первый счётчик 5 импульсов, количество разрядов которого определяется из выражения:

Рисунок убран из работы и доступен только в оригинальном файле.; (1.4)

где Рисунок убран из работы и доступен только в оригинальном файле.- коэффициент давления первого делителя частоты 2;

h – количество уровней управляемого аттенюатора 11;

k – разрядный двоичный код с выхода первого счётчика импульсов 5 поступает на вход мультиплексора 9. Мультиплексор 9 предназначен для выделения из общей последовательности импульсов за время измерения

Рисунок убран из работы и доступен только в оригинальном файле.

тех импульсов время появления которых соответствует времени переключения управляемого аттенюатора 11 на каждую i-ю ступень.

Исходя из вероятностного закона распределения мощностей непреднамеренных помех являющегося в данном случае энергетической моделью электромагнитной обстановки:

Рисунок убран из работы и доступен только в оригинальном файле. ;

Где b – нормирующий множитель;

m – степень гиперболы;

P – мощность непреднамеренной помехи;

P0 – чувствительность контролируемого радиоприёмника 19;

Pб – мощность блокирующей помехи;

найдём относительное время появления необходимых импульсов:

Рисунок убран из работы и доступен только в оригинальном файле. (1.5)

где А=Р1/Р0 – относительный диапазон мощностей непреднамеренных помех;

R=(m-1)*2-k*Pбm-1/b; (1.6)

Рисунок убран из работы и доступен только в оригинальном файле. - относительное время следования импульсов;

Рисунок убран из работы и доступен только в оригинальном файле. - номер ступени управляемого аттенюатора 11.

При наступлении времени t(i) на выходе мультиплексора 9 вырабатывается двоичный код номера i, который преобразуется первым дешифратором 10 в сигнал, переключающий управляемый аттенюатор 11 на i-ю ступень.

Таким образом, на выходе управляемого аттенюатора 11 формируется зондирующее воздействие, соответствующее энергетической и частотной модели реальной электромагнитной обстановки.

С выхода управляемого аттенюатора 11 зондирующее воздействие подаётся на вход контролируемого радиоприёмника 19, отклики которого с выхода его усилителя промежуточной частоты поступают на амплитудный детектор 14, с выхода которого огибающая отклика поступает на компаратор 15, предназначенный для нормирования амплитуды отклика для согласования с входными уровнями цифровых микросхем. Импульсы, соответствующие откликам, поступают на в0торой делитель частоты 16 с коэффициентом деления

Рисунок убран из работы и доступен только в оригинальном файле.

N0 соответствует количеству откликов, возникающих на выходе контролируемого радиоприёмника 19 за время измерения Ти за счёт основных каналов приёма. Таким образом, на выходе второго счётчика импульсов 17 получают двоичный код

Рисунок убран из работы и доступен только в оригинальном файле., (1.7)

где Nc – общее количество откликов на выходе контролируемого радиоприёмника 19 за время измерения Т3 (за счёт как основных каналов приёма, так и побочных).

Физический смысл величины G виден из выражения:

Рисунок убран из работы и доступен только в оригинальном файле., (1.8)

где Рисунок убран из работы и доступен только в оригинальном файле.- эквивалентная по числу проникающих сигналов полоса пропускания радиоприёмника с учётом побочных каналов приёма.

Таким образом, G – статистическая характеристика контролируемого радиоприёмника 19, показывающая относительную ширину эквивалентной по числу проникающих сигналов полосы пропускания контролируемого радиоприёмника 19 в условиях реальной электромагнитной обстановки.

Двоичный код, полученный в результате измерения величины G, поступает на второй дешифратор 18, на выходе которого подключён индикатор 12.

После прохождения через первый счётчик 5 всей совокупности импульсов на его выходе переполнения появится импульс блокировки, поступающий на вход блока 13 запуска, на выходе которого появится потенциал, блокирующий работу генератора 1, и процесс контроля прекратится. Таким образом, время измерения строго стабилизировано, и цикл изменения полностью автоматизирован.

При очередном запуске после нажатия кнопки, входящей в состав блока 13 запуска, на выходе блока 13 запуска вырабатывается импульс установки первого и второго счётчиков 5, 17 импульсов и первого и второго делителей частоты 2, 16 в нулевое состояние, и процесс измерения повторится.

Формула изобретения

Устройство контроля восприимчивости радиоприёмника к помехам, содержащее первый и второй счётчики импульсов, индикатор, управляемый аттенюатор, выход которого является входом контролируемого радиоприёмника, амплитудный детектор, сумматор, выход которого соединён с информационным входом управляемого аттенюатора, последовательно соединённые генератор тактовых импульсов, первый делитель частоты, первый генератор пилообразного напряжения и первый генератор качающейся частоты, второй делитель частоты, последовательно соединённые второй генератор пилообразного напряжения, вход которого соединён с выходом генератора тактовых импульсов, и второй генератор качающейся частоты, отличающееся тем, что, с целью повышения достоверности контроля, введены блок запуска, компаратор, последовательно соединённые мультиплексор, вход которого соединён с информационным выходом первого счётчика импульсов, и первый дешифратор, выход которого соединён с управляющим входом управляемого аттенюатора, второй дешифратор, вход и выход которого соединены соответственно с выходом второго счётчика импульсов и входом индикатора, вход амплитудного детектора является выходом контролируемого радиоприёмника, а выход амплитудного детектора подключён к входу компаратора, выход которого соединён с входом второго делителя частоты, выход которого соединён с информационным входом второго счётчика импульсов, выходы первого и второго генераторов качающейся частоты соединены соответственно с первым и вторым входами сумматора, выход генератора тактовых импульсов соединён с входом первого счётчика импульсов, выход переполнения которого соединён с входом блока запуска, выход которого подключён к входу запрета генератора тактовых импульсов и к входу установки нуля первого и второго делителей частоты первого и второго счётчиков импульсов.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.1 Структурная схема устройства контроля восприимчивости радиоприёмника к помехам

2. Разработка структурной схемы устройства

2.1 Расчёт основных системных показателей

В данном разделе даётся описание метода обобщенной (однокритериальной) оценки частотной избирательности радиоприёмника, а так же соображения о построении аппаратуры. Предполагается применение двухчастотного зондирования с имитацией статистических характеристик прогнозируемой электромагнитной обстановки. Были получены количественные соотношения, характеризующие метод, среди которых важнейшим следует считать формулы для расчёта минимального времени контроля; анализируются пути его уменьшения. Частотная избирательность радиоприемников (РПр) является важнейшей характеристикой, во многом определяющей способность радиотехнической системы к совместной работе с другими радиосредствами.

Резкое усложнение ЭМО и обострение проблемы ЭМС требуют учета взаимодействия непреднамеренных радиопомех (НРП) между собой на нелинейных элементах самого РПрУ. В связи с этим целесообразно применить многосигнальное (хотя бы двухсигнальное) воздействие. Прототипом описываемого здесь метода может служить известный [4] более чем 12 лет, разработанный в Минском радиотехническом институте, метод двухчастотного зондирования. Предлагается дальнейшее развитие метода, состоящее в следующем: зондирующие сигналы должны воспроизводить статистические свойства НРП, в частности по вероятностным распределениям несущих частот и мощности; конечный результат должен формироваться как интегральный, полученный при установке прогнозируемых условий работы РПрУ. Краткое описание метода опубликовано в [5,6].

Структурная схема устройства, реализующего предлагаемый метод, изображена на рис.2.1. Управление сканированием частот соответственно управляемых генераторов УГ1 и УГ2 в диапазоне Df, осуществляется програмно по линейному закону.

Выбор количества генераторов равного двум обусловлен тем, что большинство вопросов, связанных с влиянием интермодуляции, могут быть решены на основе изучения случая взаимодействия двух сигналов. Выбор двух сигналов обосновывается и тем, что вероятность проникновения на вход первого нелинейного элемента РПрУ одновременно трех и более помеховых сигналов с мощностью, достаточной для образования интермодуляции для большинства современных РПрУ значительно меньше вероятности проникновения двух сигналов с такими же параметрами, а сложность процессов, происходящих в РПрУ и время измерения значительно возрастают при увеличении количества взаимодействующих сигналов.

Если считать функции f1(t) и f2(t) случайными, то можно обеспечить соответствие вероятностных распределений w(f) в диапазоне частот Df заданной ЭМО. В частном случае можно имитировать равномерное распределение несущих частот непреднамеренных радиопомех (НРП).

Сигналы УГ1 и УГ2 после прохождения соответственно аттенюаторов АТ1 и АТ2 складываются в сумматоре (С).

Микроконтроллер управляет коэффициентом затухания управляемого аттенюатора АТ1 и АТ2, обеспечения изменение мощности зондирующего сигнала по заданному закону Р(t) в диапазоне DP (Рисунок убран из работы и доступен только в оригинальном файле.). При этом за время измерения имитируемое ансамблевое распределение мощностей испытательных сигналов аналогично вероятностному распределению w(Р), получаемому методом статистических испытаний за произвольный период времени.

Таким образом, контролируемый РПрУ подвергается воздействию двух сигналов, имеющих заданные вероятностные распределения частот w(f) и мощностей w(P), которые должны соответствовать распределениям, полученным на основе изучения или прогнозирования реальной ЭМО. Это существенно сближает условия измерения и эксплуатации.

В предлагаемом устройстве оценка частотной избирательности происходит косвенно, путём определения числа:

Рисунок убран из работы и доступен только в оригинальном файле. (2.1)

где Рисунок убран из работы и доступен только в оригинальном файле.-количество откликов на выходе контролируемого РПрУ, возникающих за время измерения и обусловленных как основным, так и не основными каналами приёма; Рисунок убран из работы и доступен только в оригинальном файле.- количество откликов, обусловленных основным каналом приёма.

Так как величина Рисунок убран из работы и доступен только в оригинальном файле. известна заранее, то аппаратурная реализация вычислений по выражению (2.1) не представляет значительного труда. Эту функцию выполняет вычислитель т. е. микроконтроллер.

Можно показать, что измеряемая величина Рисунок убран из работы и доступен только в оригинальном файле. монотонно связана с эквивалентной по числу проникающих сигналов полосой пропускания Рисунок убран из работы и доступен только в оригинальном файле., являющейся расчётной статистической характеристикой, реальной частотной избирательности РПрУ.

Вид функциональной зависимости величин Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле., в общем случае, зависит от соотношения динамического диапазона радиоприёмника и диапазона мощностей помех, действующих на его входе.

При использовании метода существует проблема сокращения времени измерения. Пути решения проблемы могут быть определены, исходя из анализа, общего выражения для времени измерения, которое в первом приближении может быть получено из следующих соображений.

С определенной погрешностью можно считать, что динамические эффекты в контролируемом РПрУ отсутствуют, если скорость перестройки частоты испытательного сигнала не превышает величины:

Рисунок убран из работы и доступен только в оригинальном файле. (2.2)

где Рисунок убран из работы и доступен только в оригинальном файле. Гц - полоса пропускания контролируемого РПрУ.

На нелинейных элементах РПрУ интермодуляционные каналы приёма образуются преобразованием функций Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. по закону:

Рисунок убран из работы и доступен только в оригинальном файле. (2.3)

где Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.- целые числа;Рисунок убран из работы и доступен только в оригинальном файле. порядок интермодуляции.

Пусть скорость перестройки первого генератора Рисунок убран из работы и доступен только в оригинальном файле. намного больше скорости перестройки второго генератора Рисунок убран из работы и доступен только в оригинальном файле.. В этом случае скорость перестройки Рисунок убран из работы и доступен только в оригинальном файле.-ой гармоники первого генератора не должна превышать величины Рисунок убран из работы и доступен только в оригинальном файле.. При этом должно выполняться неравенство:

Рисунок убран из работы и доступен только в оригинальном файле. (2.4)

Подставляя в (2.4) выражение (2.2), получим:

Рисунок убран из работы и доступен только в оригинальном файле. (2.5)

При этом сканирование УГ1 в пределах диапазона Df произойдет за время:

Рисунок убран из работы и доступен только в оригинальном файле. (2.6)

При дискретном изменении частоты второго генератора в диапазоне Df дискретность не должна превышать величины Рисунок убран из работы и доступен только в оригинальном файле..

Таким образом, количество перестроек второго генератора в диапазоне Df равно:

Рисунок убран из работы и доступен только в оригинальном файле. (2.7)

Минимальное время, в течении которого частота второго генератора УГ2 остается постоянной, не должно превышать времени Рисунок убран из работы и доступен только в оригинальном файле. . При этом перестройка УГ2 в диапазоне Df произойдет за время:

Рисунок убран из работы и доступен только в оригинальном файле.,

или, с учётом (6) и (7), получим:

Рисунок убран из работы и доступен только в оригинальном файле. (2.8)

Зависимость P(t), имитирующая заданное распределение w(P), реализуется с помощью УА, имеющего h уровней затухания. Период времени, в течении которого уровень мощности Рисунок убран из работы и доступен только в оригинальном файле. зондирующего сигнала остается постоянным, не должен быть меньше Рисунок убран из работы и доступен только в оригинальном файле.. Поэтому общее минимальное время измерения составит:

Рисунок убран из работы и доступен только в оригинальном файле. (2.9)

При этом имеется ввиду, что обработка получаемой информации происходит в течении времени измерения.

Таким образом, время измерения определяется: количеством h уровней УА, зависящим, в общем случае, от диапазона мощностей DP испытательных сигналов и требуемой точности измерений; диапазоном частот Df испытательных сигналов; наибольшим номером Рисунок убран из работы и доступен только в оригинальном файле. гармоники испытательного сигнала, оказывающей влияние на результат измерений и полосы Рисунок убран из работы и доступен только в оригинальном файле. испытуемого РПрУ.

Величина Рисунок убран из работы и доступен только в оригинальном файле. может быть оценена исходя из того, что амплитуды высшие составляющих с ростом номера гармоники быстро падают, и практически имеет смысл учитывать порядок интермодуляции не более 10.

Динамический диапазон зондирующего сигнала по мощности

Рисунок убран из работы и доступен только в оригинальном файле.

определяют на основе изучения реальной (прогнозируемой) ЭМО, в которой будет эксплуатироваться контролируемый РПрУ, с учётом возможного его сужения с использованием соответствующих положений статистической теории ЭМС [3].

В результате такого изучения должны быть известны максимальная и минимальная мощности НРП и вероятностное распределение w(P).

Диапазон Df выбирают исходя из величины Рисунок убран из работы и доступен только в оригинальном файле. и характеристик модели РПрУ. Предположим для определенности, что исследуемый РПрУ имеет одноконтурную входную цепь (БЦ), нормированная передаточная характеристика по мощности которой известна:

Рисунок убран из работы и доступен только в оригинальном файле. (2.10)

где Рисунок убран из работы и доступен только в оригинальном файле.-полоса пропускания ВЦ на уровне 0,5.

Известен также порог чувствительности РПрУ Рисунок убран из работы и доступен только в оригинальном файле..

Можно показать, что при

Рисунок убран из работы и доступен только в оригинальном файле. ,

где Рисунок убран из работы и доступен только в оригинальном файле. - границы частотного диапазона зондирования, диапазон частот равен (учитывая, Рисунок убран из работы и доступен только в оригинальном файле.):

Рисунок убран из работы и доступен только в оригинальном файле. (2.11)

При этом будут учтены все сигналы с мощностью, не меньшей величины Рисунок убран из работы и доступен только в оригинальном файле. могущие проникнуть на вход первого нелинейного элемента (НЭ) РПр.

Рассмотрим возможности сокращения времени измерения, не приводящие к существенной потере точности измерения.

При мощности НРП, не превышающей некоторую верхнюю величину Рисунок убран из работы и доступен только в оригинальном файле., процессы, происходящие в первом НЭ имеют преимущественно линейный характер. Результат такого воздействия может быть определен аналитически.

Вероятность появления НРП в реальной ЭМО уменьшается с увеличением их интенсивности. Поэтому может быть определен интервал мощностей Рисунок убран из работы и доступен только в оригинальном файле., вероятность присутствия НРП за пределами которого не превышает допустимой величины Рисунок убран из работы и доступен только в оригинальном файле., определяющую точность измерений. В связи с этим верхнюю границу имитируемого диапазона мощностей испытательных сигналов целесообразно ограничить величинойРисунок убран из работы и доступен только в оригинальном файле..

Таким образом, получаем практический вероятный динамический диапазон мощностей

Рисунок убран из работы и доступен только в оригинальном файле.

Подставляя это выражение в уравнение (2.11) получим практический диапазон частот сканирования генераторов УГ1 и УГ2, позволяющий получить результаты измерений с точностью, не ниже заданной.

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.Таким образом, можно получить значительный выигрыш во времени измерения.

3. Разработка функциональной схемы

Генераторы с плавной перестройкой в широком диапазоне частот и их разновидность — генераторы качающейся частоты — используются в панорамных приёмниках и анализаторах спектра, в измерителях частотных характеристик, в следящих фильтрах и других радиоэлектронных устройствах [13]. К важнейшим показателям качества таких ДГН относятся: перекрытие максимального диапазона частот, обеспечение заданного закона электронной перестройки частоты, минимальные нелинейные искажения колебаний, которые должны реализовываться при высоких показателях качества второй группы. При этом рассмотрение характеристик ДГН с одним управителем частоты, работающих в диапазоне от коротких до миллиметровых волн, свидетельствует о принципиальных технических трудностях, с которыми сопряжено выполнение комплекса перечисленных требований.

Повышению эффективности генераторов плавного диапазона, выполненных на основе ДГН с согласованной настройкой управителей частоты, способствует возможность использования сравнительно простых электронных устройств, для автоматической настройки одного или нескольких ведомых управителей по определенному закону при регулировке ведущего управителя частоты.

Принцип действия автоматических устройств, используемых для согласованной настройки управителей в рассматриваемых генераторах, основан на зависимости амплитуды колебаний от расстояния изображающей точки генератора в пространстве параметров до колебательной границы устойчивости (КГУ): при увеличении этого расстояния амплитуда колебаний увеличивается, а при его уменьшении уменьшается. Следовательно, для стабилизации амплитуды колебаний в диапазоне перестройки частоты при регулировке одного из управителей частоты другие должны подстраиваться таким образом, чтобы закону перестройки управителей соответствовало движение ИТ генератора в пространстве его параметров на неизменном расстоянии до КГУ.

Таким образом, назначение устройств автоподстройки управителей частоты в рассматриваемых ДГН состоит в том, чтобы при независимой регулировке ведущего управителя, приводящей к изменению амплитуды колебаний, сформировать управляющий сигнал, обеспечивающий подстройку другого (или других) управителя частоты в направлении, соответствующем стабилизации амплитуды колебаний.

В качестве примера рассмотрим реализацию описанного принципа в генераторе на негатроне типа N с параллельным LC-контуром и парой резистивных управителей частоты. Функциональная схема устройства показана на рис.3.1 . В его состав входят: генератор 1 с управителями частоты 5 и 6, широкополосный усилитель 2, амплитудный детектор 3, усилитель постоянного тока (УПТ) 4. Узлы 2-4 используются для автоматической подстройки управителя 6 при регулировке управителя 5 с помощью управляющего сигнала источника.

Принцип действия устройства состоит в следующем. Управитель 5 включён в индуктивную ветвь колебательного контура и выполняет функции переменного резистора RL, управитель 6 в емкостной ветви контура используется в качестве переменного резистора Rс (см. рис.5.2). Устройство настраивается так. чтобы в начальный момент времени номиналы сопротивлений

Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.

были максимальными, причём частота колебаний минимальна. Затем значение RL уменьшается и приводит к увеличению амплитуды колебаний генератора, а следовательно, к повышению напряжения усилителя 2, амплитудного детектора 3 и увеличению тока УПТ 4 Тип и полярность включения управителя 6 выбрано такими, чтобы увеличение тока УПТ приводило к увеличению сопротивления управителя переменному току, уменьшению амплитуды колебаний до первоначального значения и увеличению их частоты. Дальнейшее уменьшение значения сопротивления RL приводит к еще большему повышению частоты, причём описанный процесс продолжается до тех пор, пока частота колебаний генератора не достигнет верхней границы диапазона перестройки.

Принципиальная схема генератора плавного диапазона, в которой реализуется согласованная настройка резистивных управителей частоты, показана в приложении. Генератор выполнен на ТД типа ГИ103Б (Д2). Номиналы элементов схемы рассчитаны в пункте 5.2, и указаны на схеме. Функции резистивных управителей частоты выполняют реостат R1 и точечный полупроводниковый диод Д1. Использование реостата R1 в качестве ведущего управителя частоты удобно при выполнении измерений в дискретных точках диапазона. На ТД подается напряжение смещения Uсм=170 мВ, соответствующее значению Рисунок убран из работы и доступен только в оригинальном файле. Ом.

Шунтирование реостата R1 дросселем L1 обеспечивает стабилизацию смещения на ТД при регулировке реостата.

Система автоматической подстройки дифференциального сопротивления диода Д1 при регулировке реостата R1 содержит: широкополосный усилитель, собранный на транзисторах Т1 и Т2; амплитудный детектор, выполненный на диодах Д3 и Д4; УПТ на интегральной микросхеме А1 (операционный усилитель типа К1УТ401А) и транзистор Т3. Для обеспечения функционирования устройства в соответствии с описанным выше принципом при его настройке необходимо учитывать следующие факторы: для реализации выбранного закона перестройки частоты, характеристика амплитудного детектора должна быть такой, чтобы увеличение амплитуды колебаний генератора (а, следовательно, и выходного напряжения усилительного каскада на Т2) приводило к уменьшению выпрямленного тока и наоборот; для обеспечения минимальных нелинейных искажений широкополосный усилитель должен работать в режиме класса А и его АЧХ должна иметь минимальную неравномерность в диапазоне перестройки частоты; коэффициенты усиления усилительных каскадов и постоянная времени амплитудного детектора должны выбираться с учетом комплекса технических требований по обеспечению высокой скорости перестройки частоты в наиболее широком диапазоне при устойчивой работе системы автоподстройки управителя частоты.

В описанной схеме коэффициент усиления широкополосного усилителя по напряжению Ки =40 дБ, причём напряжение практически не отличается от синусоидального в полосе перестройки частоты 3,95—24,6 МГц. В процессе перестройки дифференциальное сопротивление диода Д1 изменяется от 3 до 100 Ом, что соответствует изменению напряжения на диоде от 07 до 0,25 В.

Для работы устройства в режиме генератора качающейся частоты вместо реостата R1 в схеме на рис. 21 следует использовать полупроводниковые резисторы (см. § 4) с соответствующими источниками управляющего напряжения или тока. При этом могут наблюдаться снижение устойчивости работы системы авторегулирования, сужение частотного диапазона и повышение нелинейных искажений. Устранение этих недостатков обеспечивается путём подстройки режима системы авторегулирования с помощью реостатов R13, R15 и коррекции сигналов, используемых для перестройки управителей частоты.

В описанном устройстве, а также в генераторах, выполненных по другим схемам (см. табл. 2), при понижении и повышении центральной частоты наблюдается соответственно расширение и сужение диапазона перестройки. Это подтверждает теоретические выводы относительно ограничивающего влияния реактивностей негатронов на диапазон перестройки частоты (см. § 8). Поэтому при создании высокочастотных генераторов с перестройкой частоты по методу СНУЧ целесообразно применять наиболее высокочастотные из современных негатронов: ТД, ИПД, ЛПД, ДГ [ ] в сочетании с полупроводниковыми управляющими устройствами, используемыми в диапазоне СВЧ [ ].

При этом следует учитывать особенности физических процессов в генераторах на негатронах с динамическим отрицательным сопротивлением. Так, ДГ ведут себя как устойчивые отрицательные сопротивления при работе в режимах с подавлением домена и ограниченным накоплением объемного заряда [ и др.]. Такие режимы возникают в генераторах, у которых добротность колебательной системы настолько велика, что амплитуда колебаний высокочастотного напряжения на ДГ может оказаться соизмеримой с напряжением питания или его превышать. Поэтому в генераторах на ДГ согласованная настройка управителей частоты должна осуществляться таким образом, чтобы добротность колебательной системы понижалась незначительно. Для реализации такой перестройки можно, например, рекомендовать регулировку связи генератора с нагрузкой и соответствующее изменение тока подмагничивания магнитной системы ЖИГ, имеющей острую резонансную кривую [ ].

В генераторах на ЛПД наиболее простым способом реализации метода СНУЧ представляется регулировка связи генератора с нагрузкой и соответствующее изменение тока питания диода [ ].

Отметим, что в СВЧ генераторах с автоматической электронной настройкой управителей частоты и усиление, и детектирование колебаний могут выполняться в каскадах, собранных на негатронах [ ], т. е. существует принципиальная возможность реализации генераторов плавного диапазона на негатронах.

4. Электрический расчёт

4.1 Электрический расчёт аттенюатора

Аттенюатором (ослабителем) называется устройство, предназначенное для уменьшения (ослабления) в требуемое число раз электрической мощности, а следовательно, напряжения и тока, поступающих от источника сигнала в нагрузку.

Установка необходимой величины затухания аттенюатора производится переключением звеньев, каждое из которых представляет собой П-образное звено. Группа звеньев применяется вместо одного звена для уменьшения частотной погрешности затухания при большом затухании в звене. Дополнительным источником частотной погрешности затухания аттенюатора является ёмкостные связи между его входом и выходом, а также между отдельными звеньями. Эти связи приводят к уменьшению затухания с увеличением частоты и проявляется тем сильнее, чем больше величина затухания, установленная на аттенюаторе. Для устранения этих связей производится установка звеньев в отдельные отсеки или разделение звена экранирующей перегородкой. Затухание аттенюатора определяется суммой затуханий включённых звеньев.

Для построения звеньев, оптимальным является выбор металлоплёначных резисторов с сопротивлениями 50…250 Ом и мощностью рассеивания 03…05 Вт. Реактивные составляющие элементов аттенюатора нужно учитывать, как правило, на частотах свыше 30 МГц. В высокочастотной области необходимо избегать применения аттенюаторов с затуханием >30 дб, а большее значение затухания следует обеспечить с помощью каскадного соединения нескольких звеньев; сопротивления <50 Ом и >250 Ом рекомендуется «набирать» путём соединения (параллельного или последовательного соответственно) нескольких резисторов с номиналами (желательно различными), попадающими в область оптимальных значений. На Рис.4.1 изображено одно из звеньев аттенюатора.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 4.1 П-образное звено аттенюатора

Расчёт резисторов будет рассчитываться по формулам;

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Так как аттенюатор симметричный, то r1=r2, отсюда следует, что R1=R2

Затухание a должно быть представлено в Нп.

1.Рассчитаем номиналы R1,R2,R3 для случая когда

a=1дБ=0.115Нп

Рисунок убран из работы и доступен только в оригинальном файле. Нп

Рисунок убран из работы и доступен только в оригинальном файле. Ом Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

2. Рисунок убран из работы и доступен только в оригинальном файле. Нп

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

3. Рисунок убран из работы и доступен только в оригинальном файле. Нп

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Нп

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Нп

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. Ом

Рисунок убран из работы и доступен только в оригинальном файле. Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 448

Другие дипломные работы по специальности "Коммуникации и связь":

«Реклама и связи с общественностью», «Маркетинг»

Смотреть работу >>

Ремонт системы управления видеокамер аналогового формата

Смотреть работу >>

Теория электрических цепей

Смотреть работу >>

Роботизированные комплексы (РТК) предназначенные для технологического процесса сборки

Смотреть работу >>

Моделирование и методы измерения параметров радиокомпонентов электронных схем

Смотреть работу >>