Дипломная работа на тему "Устройства РВК"

ГлавнаяКоммуникации и связь → Устройства РВК




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Устройства РВК":


ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1 АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

2 РЕЗУЛЬТАТ ПАТЕНТНОГО ПОИСКА

3 ПОСТАНОВКА ЗАДАЧ ПРОЕКТИРОВАНИЯ

4 МЕТОДЫ РАДИОВОЛНОВОГО КОНТРОЛЯ НА СВЧ

4.1 Общие сведения о радиоволновом контроле

4.2 Классификация методов радиоволнового контроля диэлектрических изделий и материалов

4.3 Измеряемые параметры и принципы измерений РВК

5 ВЫБОР МЕТОДА РАДИОВОЛНОВОГО КОНТРОЛЯ ДИЭЛЕКТРИЧЕСКИХ ОБРАЗЦОВ И МАТЕРИАЛОВ

5.1 Выбор метод а РВК. Суть и недостатки выбранного метода

5.2 Возможности метода модулированного отражения при технологическом контроле диэлектрических изделий и материалов

6 РАЗРАБОТКА И ОПИСАНИЕ СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА РВК

7 РАЗРАБОТКА И ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА РВК

8 ПРИНЦИПЫ ДЕЙСТВИЯ И КОНСТРУКТИВНО-ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ УСТРОЙСТВ СВЧ ТРАКТА

8.1 Выбор и расчет характеристик волновода

8.2 Элементы и устройства волноводных трактов

8.2.1 Изгибы и скрутки волноводов

8.2.2 Конструкция и размеры типовых контактных фланцевых соединений

Заказать дипломную - rosdiplomnaya.com

Новый банк готовых защищённых студентами дипломных работ предлагает вам скачать любые проекты по требуемой вам теме. Безупречное написание дипломных работ на заказ в Санкт-Петербурге и в других городах РФ.

8.2.3 Волноводное разветвление

8.2.4 Волноводные согласованные поглощающие нагрузки

8.3 Расчет направленного ответвителя

8.4 Резонансный вентиль

8.5 Модулирующий отражатель

8.5.1 Переключательный диод

8.5.2. Диафрагмы в прямоугольном волноводе

8.6 Расчет рупорного облучателя

9 ОЦЕНКА ЭФФЕКТИВНОСТИ РВК ПО МЕТОДУ МОДУЛИРУЮЩЕГО ОТРАЖЕНИЯ

10 КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

10.1 Технические требования

10.1.1 Общие требования

10.1.2 Основные параметры и характеристики

10.1.3 Требования по устойчивости к внешним воздействиям

10.1.4 Требования к конструкции

10.1.5 Требования к надежности

10.1.6 Комплектность

10.1.7 Маркировка

10.1.8 Консервация и упаковка

10.1.9 Требования безопасности

10.1.10 Правила приемки

10.1.11 Транспортирование и хранение

10.1.12 Указания по эксплуатации

10.1.13 Гарантии изготовителя

10.2 Оценка технологичности конструкции КНЭ

10.2.1 Количественные показатели технологичности конструкции изделия

11 РАЗРАБОТКА БИЗНЕС ПЛАНА ПРОЕКТА

11.1 Резюме

11.2 Описание продукта

11.2.1 Назначение

11.2.2 Форма реализации

11.2.3 Технико-эксплуатационные параметры

11.3 План маркетинга

11.3.1 Описание характеристик товара

11.3.2 Достоинства и недостатки товара конкурента

11.3.3 Предполагаемые потребители

11.3.4 Разработка маркетинговых стратегий

11.4 Организационный план

11.5 Производственный план

11.6 Финансовый план

11.6.1 Расчет и анализ экономической эффективности инвестиционного проекта

12 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ И САНИТАРНО-ГИГИЕНИЧЕСКИЕ УСЛОВИЯ ТРУДА НА РАБОЧЕМ МЕСТЕ ПОЛЬЗОВАТЕЛЯ ПЭВМ – РАЗРАБОТЧИКА РАДИОПЕРЕДАЮЩИХ УСТРОЙСТВ

12.1 Безопасность труда при эксплуатации проектируемой аппаратуры, разработка средств защиты

12.2 Параметры микроклимата на рабочем месте

12.3 Электрическая опасность

12.4 Требования к пожарной безопасности

12.5 Безопасность труда при работе на установке с использованием источника излучения электромагнитных полей радиочастот

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Высококачественный объект должен отличаться постоянством химического состава, микро - и макроструктурой, электрических и магнитных характеристик материалов, неизменными геометрическими размерами, повышенными механическими и другими свойствами. Для исследования различных свойств изделий, материалов и полуфабрикатов могут быть использованы все известные виды электромагнитных излучений. Особенно успешно можно использовать методы радиоволнового контроля (РВК) материалов на сверхвысоких частотах (СВЧ).

Создание высокоточных и надежных измерителей параметров технологических процессов, способных работать в сложных эксплуатационных условиях, является одной из актуальных проблем.

Таким образом, актуальность проекта обуславливается тем, что применяя средства неразрушающего радиоволнового контроля, можно полностью автоматизировать многие производственные процессы изготовления изделий, повысить производительность и качество выпускаемой продукции.

Целью данного дипломного проекта является разработка устройства для неразрушающего радиоволнового контроля диэлектрических материалов, выполненных в виде пластин, которые в дальнейшем будут использоваться в различных целях.

Задачами дипломного проекта являются разработка конструкции устройства радиоволнового фазометрического контроля радиопрозрачных изделий, выбор метода контроля, разработка конструкции индикаторной части устройства с целью минимизации погрешностей контроля, оценка технической и экономической эффективности.

1 АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

По техническому заданию к дипломному проекту требуется разработать устройство радиоволнового фазометрического контроля радиопрозрачных диэлектрических пластин (образцов) в условиях лаборатории. Изделия и конструкции из диэлектриков могут иметь в себе дефекты следующих типов:

- нарушения сплошности (расслоения, отслоения, непроклеиность, воздушные включения, трещины и т. п.);

- инородные включения (металлические и диэлектрические с отличными от основного материала диэлектрическими свойствами), имеющие разнообразные формы и размеры;

- структурные неоднородности (изменение плотности и пористости, отсутствие или недостаток связующего, неравномерное распределение вещества – негомогенность состава или смеси, технологические или эксплуатационные проявления анизотропии и т. д.).

Схема устройства должна предусматривать возможность автоматической записи результатов контроля. Контролируемыми параметрами являются электрическая толщина стенки, изменения электрической толщины.

Основными исходными данными являются: длина электромагнитной волны, радиус кривизны стенки в зоне контроля, характерные размеры контролируемого участка стенки, чувствительность фазометрического устройства к изменению электрической толщины. Также известно, что электрическая толщина контролируемых радиопрозрачных стенок θ кратно λ0/2√ε, где ε=2…5 (относительная диэлектрическая проницаемость материала стенки).

Таким образом, был проведен анализ технического задания, из которого был сделан вывод, что для проектирования устройства все нужные данные известны.

2 РЕЗУЛЬТАТ ПАТЕНТНОГО ПОИСКА

Был произведен патентный поиск глубиной 14 лет по материалам патентов России. Источником служил основной индекс МПК. В результате поиска был найден следующий патент:

Устройство для измерения параметров диэлектриков.

Регистрационный номер заявки: 2066457.

Дата публикации: 10.09.1996.

Страна публикации: Россия.

Основной индекс МПК: G01R27/26.

Использование: техника измерений СВЧ параметров материалов и антенных обтекателей.

Сущность изобретения: в устройстве, для измерения параметров диэлектриков вдоль всей образующей антенного обтекателя, достигается высокая точность измерений за счет выполнения приемо-передающей антенны в виде зеркальной двухфокусной антенны, согласованной со свободным пространством использования модулированного отражателя, содержащего модулирующий диод и диафрагму малых размеров, и поглотитель, размещенного внутри исследуемого антенного обтекателя в любой его части.

3 ПОСТАНОВКА ЗАДАЧ ПРОЕКТИРОВАНИЯ

В диапазоне сверхвысоких частот (СВЧ) применяются разнообразные по своему назначению и принципу действия приборы, предназначенные для народного хозяйства, военного дела и научных исследований. Существует ряд устройств СВЧ, в которых применяются диэлектрические материалы. Примером таких устройств являются:

- антенные обтекатели и антенные окна летательных аппаратов авиационной, ракетной и космической техники;

- СВЧ антенны (линзовые, диэлектрические, поверхностных волн и т. п.);

- герметизирующие окна, оболочки малых размеров, вставки, заглушки в каналах ненаправленных излучателей;

- генераторные устройства, устройства управления электромагнитным полем, фазовращатели, ограничители мощности, неотражающие нагрузки;

- индикаторные антенны, зонды, контактные индикаторы комплексов для различных физических исследований.

Необходимым применяемым методом обеспечения качества диэлектрических изделий является их радиоволновый контроль (РВК). По условиям дипломного проекта контроль параметров радиопрозрачных образцов (стенок) должен осуществляться при одностороннем подходе, из-за невозможности размещения приемной антенной системы позади исследуемого образца. В связи с этим, одной из задач дипломного проекта является выбор метода РВК и схемы элементной базы. Также, основываясь на выбранном методе, необходимо разработать структурную и принципиальную электрическую схемы, провести конструктивно-электрический расчет основных функциональных устройств СВЧ тракта.

Основной целью дипломного проекта является разработка конструкции СВЧ модулирующей отражающей части устройства с целью минимизации погрешностей контроля в сравнении с существующими методами.

4 МЕТОДЫ РАДИОВОЛНОВОГО КОНТРОЛЯ НА СВЧ

4.1 Общие сведения о радиоволновом контроле

Радиоволновый контроль – это определение методами и средствами измерительной техники на сверхвысоких частотах фактических характеристик и параметров объекта контроля. Получаемая при этом информация дает возможность объективно судить о фактическом состоянии исследуемых изделий и материалов.

Физической основой радиоволнового контроля на СВЧ является взаимодействие электромагнитных волн диапазона СВЧ с объектом контроля. Поэтому возможности и ограничения РВК зависят от вида и относительной интенсивности такого взаимодействия, которое может быть установлено экспериментально методами и средствами измерений на СВЧ.

Все измерения на СВЧ при РВК – это косвенные измерения, так как характеристики и параметры объекта контроля определяются путем соответствующих дополнительных вычислений через измеряемые радиотехнические характеристики электромагнитного поля или радиоволны.

Радиоволновые методы основаны на использовании взаимодействия радиоизлучений с материалами контролируемыми изделиями. Это взаимодействие может носить характер взаимодействия только падающей волны (процессы поглощения, дифракции, отражения, преломления), относящиеся к классу радиооптических процессов или взаимодействия падающей и отраженной волн (интерференционные процессы). Диапазон длин волн, используемых в РВК, составляет 1…100 мм (в вакууме), что соответствует частотам 300…3 ГГц.

Отдельные устройства радиоволнового контроля могут работать на частотах f, выходящих за пределы этого диапазона, однако чаще всего для неразрушающего контроля используют трехсантиметровый диапазон (fср ≈ 10 ГГц) и восьмимиллиметровый диапазон (fср ≈ 35 ГГц). Эти два диапазона наиболее освоенные и обеспеченные хорошим набором элементов и измерительной аппаратурой.

Особенности радиоволн СВЧ диапазона:

- СВЧ диапазон обеспечен большим перепадом мощностей генерируемых волн, что позволяет контролировать материалы и среды различной степени прозрачности;

- радиоволны СВЧ могут быть генерированы в виде когерентных поляризованных гармонических колебаний (волн), а это дает возможность обеспечивать высокую чувствительность и точность контроля, используя интерференционные явления, возникающие при взаимодействии когерентных волн с диэлектрическим слоем;

- с помощью радиоволн СВЧ можно осуществить бесконтактный контроль качества при одностороннем расположении аппаратуры по отношению к объекту;

- радиоволны СВЧ могут быть остро сфокусированы, что позволяет обеспечить локальность контроля, минимальный краевой эффект, помехоустойчивость по отношению к близко расположенным предметам, исключить влияние температуры объекта контроля на измерительные датчики;

- информация о внутренней структуре, дефектах и геометрии содержится в большом числе параметров СВЧ зондирующего сигнала: амплитуде, фазе, коэффициенте поляризации, частоте;

- применение радиоволн СВЧ обеспечивает весьма малую инерционность контроля, что позволяет наблюдать и анализировать быстропротекающие процессы;

- аппаратура СВЧ диапазона может быть выполнена достаточно компактной и удобной в эксплуатации.

С точки зрения теоретической электродинамики задача контроля сред методами СВЧ может быть сформулирована в виде граничной задачи во взаимодействии конкретных типов электромагнитных волн определенного вида поляризации с ограниченными или полуограниченными в пространстве объемами этих сред, имеющими разнообразные геометрические формы, свойства поверхности и диэлектрические свойства, изменяющиеся при изменении структуры сред. Результаты взаимодействия зависят от геометрии объектов контроля от значений их диэлектрической проницаемости и тангенса угла диэлектрических потерь, которые, в свою очередь, определяются кристаллической структурой, степенью однородности, влагосодержанием материала объекта контроля и др [1].

4.2 Классификация методов радиоволнового контроля диэлектрических изделий и материалов

По своим характерным признакам радиоволновый контроль может быть разрушающим, неразрушающим (не повреждающим изделие), аналитическим и метрологическим. Наибольшее распространение получили разрушающие и аналитические методы контроля, основное достоинство которых заключается в возможности определять абсолютные параметры и характеристики (в первую очередь прочность) изделий и материалов.

В последнее время все более широкое применение находят неразрушающие физические методы контроля. Им присущи свойства, которыми не обладают разрушающие и аналитические методы контроля, поэтому неразрушающие физические методы контроля могут включаться в технологические процессы производства [5].

Приборы радиоволнового контроля могут быть классифицированы по различным признакам. По информативному параметру различают приборы:

- амплитудные;

- фазовые;

- амплитудно-фазовые;

- поляризационные;

- резонансные;

- лучевые;

- частотные;

- преобразовательные (вид волны);

- спектральные.

По схемам расположения приемника и излучателя энергии СВЧ относительно контролируемого образца могут быть:

- на прохождение (двусторонний доступ);

- на отражение (односторонний доступ);

- комбинированные.

Неразрушающий метод контроля диэлектрических изделий и материалов, размещаемых в свободном пространстве (метода свободного пространства), состоит в сравнении параметров электромагнитной волны, прошедшей через геометрически правильный диэлектрический образец (метод на прохождение), или им же отраженной, с параметрами волны, проходящей то же пространство без образца, либо с волной, отраженной от идеального отражателя (метод на отражение). Данные примеры методов приведены на рисунке 4.1.

Под идеальным отражателем понимается плоский металлический экран, практически не создающий при отражении электромагнитной волны потерь и фазовых искажений её фронта. При измерениях по этой методике диэлектрический образец располагается в свободном пространстве, т. е. он не имеет непосредственного механического контакта с какими-либо узлами измерительной или вспомогательной аппаратуры, кроме элементов крепления самого образца, находящихся практически вне электромагнитного поля и не оказывающих существенного влияния на результаты измерений. Сравнение параметров указанных волн позволяет вычислить собственные параметры диэлектрика. В принципе диэлектрический образец и фазовый фронт падающей электромагнитной волны могут быть любой формы, однако в таком общем случае установить достаточно точную связь между параметрами волны и электрическими параметрами взаимодействующего с ней диэлектрика становится весьма затруднительно. Задача решается достаточно точно для немногих частных случаев.

а)Рисунок убран из работы и доступен только в оригинальном файле.

б)Рисунок убран из работы и доступен только в оригинальном файле.

в)Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 4.3 – Метод РВК в свободном пространстве:

а – метод на прохождение (двусторонний доступ). Исследуемый образец размещается между приемной и передающей антеннами.

б – метод на отражение (односторонний доступ) с использованием отражателя (металлического экрана). Исследуемый образец размещается на некотором расстоянии от передающей и приемной антенн.

в – метод на отражение (односторонний доступ) с использованием отражателя (металлического экрана). Исследуемый образец размещается на некотором расстоянии от приемопередающей антенны.

Обычно в практике исследований используется так называемое «плосковолновое приближение» – фазовый фронт электромагнитной волны в зоне взаимодействия с диэлектрическим образцом должен быть приближенно плоским. Это приближение приемлемо не только с точки зрения математического описания процесса, но и с технической точки зрения, т. е. возможности формирования приближенно плоской (квазиплоской) волны. Если измеряются параметры волны, проходящей через образец, или волны, отраженной от его передней и задней поверхности, то диэлектрический образец выполняется при этом, как правило, в виде плоскопараллельной пластины. Если же измеряются параметры волны, отраженные только передней поверхностью, то диэлектрическому образцу с теневой стороны придается такая форма (например, форма клина), при которой волны, отраженные задней поверхностью или прошедшие через эту поверхность, не попадают в приемное устройство. В любом случае, чтобы исключить явление дифракции и возникающие при этом дополнительные ошибки измерения, края образца должны находиться вне облучающего электромагнитного поля. С этой целью на образец направляется не безграничная плоская волна, а конечный волновой пучок, при этом размеры самого образца в зоне взаимодействия должны превышать размеры поперечного сечения волнового пучка.

Метод свободного пространства может быть применен в следующих случаях:

- для измерений в миллиметровом и сантиметровом диапазонах, в которых другие (например, резонаторные или волноводные) методы становятся неприемлемыми;

- при исследовании параметров однородных, неоднородных и слоистых листовых материалов, как в условиях лаборатории, так и в производственных условиях, когда изготовление образцов специальной формы из листового материала не целесообразно;

- при исследовании пленочных материалов;

- при исследовании готовых изделий из диэлектриков (например, обтекателей антенн, антенных окон и других радиопрозрачных оболочек), которые нельзя разрушать для изготовления из них образцов, в целях проведения измерений;

- при исследовании диэлектриков в процессе воздействия на них каких-либо внешних факторов: радиации, механических усилий, тепловых потоков, плазменных сред, при которых любая другая измерительная аппаратура, контактирующая с диэлектрическими образцами, становится либо помехой для действия этих факторов, либо сама разрушается под их воздействием [14].

4.3 Измеряемые параметры и принципы измерений РВК

В технике СВЧ для формального описания свойств диэлектриков принято пользоваться несколькими парами параметров, а именно:

- относительной диэлектрической проницаемостью ε и проводимостью материала σ;

- действительной ε′ и мнимой ε″ частями абсолютной комплексной диэлектрической проницаемости:

έа = ε′а - јε″а , (4.1)

- действительной n и мнимой nk частями комплексного коэффициента преломления ń = n(1 - jk) либо коэффициентом преломления n и коэффициентом поглощения k;

- относительной диэлектрической проницаемостью ε и тангенсом угла диэлектрических потерь tg δ.

Между названными параметрами существует однозначная связь, в результате чего одни могут быть выражены через другие, например:

ε′ = εа = εεо; ε″ = σ / w; tgδ = ε″/ ε′ = σ / w εа ; έа = n², (4.2)

где εεо= εа – абсолютная диэлектрическая проницаемость;

εо ≈ 8,86∙10‾ ¹² Ф/м – электрическая постоянная;

έ = έа/εо – относительная комплексная диэлектрическая проницаемость.

Приведенные параметры удобны для описания свойств однородных материалов. Для неоднородных материалов (например, слоистых) либо с дефектами необходимо найти поле электрических параметров (их распределение). В подобных случаях удобно характеризовать не материал с электрическими (ε и tg δ), а изделие, диэлектрический слой с радиотехническими параметрами, в частности комплексными коэффициентами прохождения Т (метод на прохождение) либо отражения R (метод на отражение):

Рисунок убран из работы и доступен только в оригинальном файле., (4.3)

Рисунок убран из работы и доступен только в оригинальном файле., (4.4)

где |Т| и |R| - модули комплексных коэффициентов,

φ и ψ – соответственно их фазы.

Так как в практике измерений в большинстве случаев используется квадратичное детектирование, при котором показания токового индикатора пропорциональны мощности детектируемого сигнала, то удобно использовать не модули, а квадраты модулей коэффициентов прохождения и отражения, т. е. |Т|² и |R|². Эти величины обычно называются просто коэффициентами прохождения и отражения по мощности и показывают, какая часть мощности падающей волны проходит или отражается от диэлектрического образца. Величины φ и ψ показывают, как меняется фаза волны при её прохождении или отражении от объекта.

Комплексные коэффициенты T и R являются функцией нескольких переменных, а именно:

Т = f1(ε, tgδ, d/λε), (4.5)

R = f2(ε, tgδ, d/λε), (4.6)

где ε и tg δ – электрические параметры материала;

d – геометрическая толщина образца в зоне измерения;

λε – длина волны в диэлектрике.

При известном отношении d/λε между комплексными величинами T и R и параметрами материала существует определенная аналитическая связь. Поэтому по известным значениям T или R могут быть вычислены ε и tgδ и наоборот. Если материал неоднороден, то измеренные значения T или R позволяют перейти к эффективным значениям электрических параметров εэфф tgδэфф. Значения эффективных электрических параметров зависят не только от толщины пластины и длины волны, но и от угла падения электромагнитной волны, а также от выбранного параметра (T или R), по которому они определяются.

Таким образом, в дипломном проекте будет использовать ряд параметров: электрические – ε и tgδ, относящиеся к однородному материалу; и радиотехнические –T, |T|, |Т|², φ (метод на прохождение), R, |R|, |R|², ψ (метод на отражение), относящиеся к изделию (диэлектрической пластине) из однородного либо неоднородного материала, и, наконец, εэфф и tgδэфф, применяемые иногда для характеристики только неоднородных диэлектрических пластин (например, для слоистых пластин или пластин, подвергающихся действию теплового удара).

Перейдем к рассмотрению известных способов измерения электрических и радиотехнических параметров методом свободного пространства. Если на плоскопараллельную пластину под некоторым углом φпад падает плоская, определённым образом поляризованная, электромагнитная волна, то амплитуда и фаза отраженной и прошедшей волн несут информацию о комплексной диэлектрической проницаемости материала. Соответственно существуют две основные группы методов измерения ε и tgδ в свободном пространстве: первые основаны на наблюдении волн, отраженных диэлектрическим объектом, вторые – прошедших диэлектрический объект.

Как известно, комплексный коэффициент отражения Рисунок убран из работы и доступен только в оригинальном файле. границы раздела воздушной и диэлектрической среды определяется формулами Френеля. Эти формулы являются исходными и в теории некоторых методов, основанных на анализе отраженных волн. Как видно, искомая диэлектрическая проницаемость ε связана функциональной зависимостью с φпад, Рисунок убран из работы и доступен только в оригинальном файле.,Рисунок убран из работы и доступен только в оригинальном файле., которые в принципе могут быть определенны экспериментально [2, 3].

Сравнение результатов работ различных авторов показывает, что минимальная величина tgδ, которую удалось измерить, используя отраженные волны, составляет 0,001 – 0,002, что, видимо, говорит о реально достижимой чувствительности применяемой аппаратуры.

Сравнение комплексных коэффициентов отражения различно поляризованных волн лежит в основе «поляризационного» метода исследования диэлектриков в свободном пространстве. Суть этого метода заключается в следующем. Если на поверхность раздела двух сред падает электромагнитная волна с круговой или эллиптической поляризацией, то отраженная волна меняет поляризационную структуру [4]. Комплексный коэффициент поляризации отраженной волны p равен отношению коэффициентов Френеля для параллельно и перпендикулярно поляризованной волны.

Рисунок убран из работы и доступен только в оригинальном файле. . (4.7)

Таким образом, экспериментальное нахождение р, например, по амплитудам вертикальной и горизонтальной составляющих поля и углу ориентации поляризационного эллипса также дает возможность вычислить ε.

Другой вариант поляризационного метода определения ε состоит в измерении угла Брюстера и отношения модулей коэффициентов отражения параллельно и перпендикулярно поляризованных волн. Основная ошибка измерений по углу Брюстера и поляризационными методами обусловлено тем, что теория этих методов учитывает отражение волн только от границы раздела двух сред и предполагает отсутствие внутренних многократных отражений, вызываемых теневой поверхностью образца.

Комплексные коэффициенты прохождения параллельно и перпендикулярно поляризованных волн через границу раздела «свободное пространство - диэлектрик» согласно формулам Френеля записываются в виде:

Рисунок убран из работы и доступен только в оригинальном файле., (4.8)

Рисунок убран из работы и доступен только в оригинальном файле.. (4.9)

Выражения (4.8), (4.9) позволяют вычислить комплексный коэффициент прохождения волны через плоскопараллельную пластину определенной толщины, по значению которого затем можно найти и ε. Иллюстрацией сказанного может быть методика определения ε, в которой используется тот факт, что модуль коэффициента прохождения является осциллирующей функцией толщины плоской диэлектрической пластины [4]. Задача определения ε сводится к экспериментальному нахождению такой толщины, при которой приемная антенной воспринимается максимум или минимум мощности, при этом найденная осциллирующая функция, представляемая графически, позволяет определить и tgδ. Естественно, что определение ε в общем случае может производиться и по одновременно наблюдаемым прошедшей и отраженной волнам.

Радиотехнические параметры T и R функционально связаны с электрическими параметрами ε и tgδ, которые могут быть вычислены по результатам измерений первых. Аналитическая связь между этими параметрами может быть найдена различными способами. В частности, необходимый результат дает последовательное суммирование многих волн, отраженных и прошедших через образец, возникающих в результате многократного переотражения от передней и задней поверхностей образца [8, 9].

Пользуясь упомянутым методом можно найти, что фаза коэффициента прохождения перпендикулярно и параллельно поляризованных волн может быть выражена следующим образом:

Рисунок убран из работы и доступен только в оригинальном файле., (4.10)

Рисунок убран из работы и доступен только в оригинальном файле.. (4.11)

При нормальном падении волны оба уравнения приводятся к одному.

Для вычисления модуля коэффициента прохождения применяются выражения:

Рисунок убран из работы и доступен только в оригинальном файле. , (4.12)

Рисунок убран из работы и доступен только в оригинальном файле., (4.13)

Рисунок убран из работы и доступен только в оригинальном файле., (4.14)

где Рисунок убран из работы и доступен только в оригинальном файле..

При выводе формул (4.10) – (4.14) не учитывались потери в диэлектрике, однако можно показать, что при tgδ ≤ 0,1 их достоверность снижается весьма незначительно [10].

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 4.4 – Эквивалентный четырехполюсник, отображающий диэлектрическую пластину, находящуюся в свободном пространстве

При нормальном падении волны выражения для вычисления модуля и фазы коэффициента прохождения (или отражения) пластины из диэлектрика с потерями можно получить, используя следующую модель. Диэлектрический слой (рис. 4.4) толщиной d можно представить в виде отрезка линии передачи с комплексным волновым сопротивлением:

Рисунок убран из работы и доступен только в оригинальном файле., (4.15)

а свободное пространство по обе стороны от пластины в виде линии передачи без потерь с волновым сопротивлением:

Рисунок убран из работы и доступен только в оригинальном файле.. (4.16)

Комплексные коэффициенты отражения и прохождения могут быть найдены при этом волновой матрицы передачи эквивалентного четырехполюсника, образованного двумя скачками волновых сопротивлений (Z02) и отрезком линии с потерями (Ż02). При выводе этих выражений необходимо произвести замену параметров ε и tgδ на n (коэффициент преломления) и k (коэффициент поглощения), причем связь между ними определяется соотношением Рисунок убран из работы и доступен только в оригинальном файле., т. е. Рисунок убран из работы и доступен только в оригинальном файле., откуда:

Рисунок убран из работы и доступен только в оригинальном файле.,

Рисунок убран из работы и доступен только в оригинальном файле.. (4.17)

В развернутом виде полученные выражения для коэффициента прохождения и его фазы имеют следующий вид:

Рисунок убран из работы и доступен только в оригинальном файле., (4.18)

Рисунок убран из работы и доступен только в оригинальном файле., (4.19)

для коэффициента отражения и его фазы:

Рисунок убран из работы и доступен только в оригинальном файле., (4.20)

Рисунок убран из работы и доступен только в оригинальном файле., (4.21)

где

Рисунок убран из работы и доступен только в оригинальном файле.,

Рисунок убран из работы и доступен только в оригинальном файле.. (4.22)

Из выражений (4.18) – (4.22) находим соответствующие выражения и для диэлектриков без потерь:

Рисунок убран из работы и доступен только в оригинальном файле., (4.23)

Рисунок убран из работы и доступен только в оригинальном файле. , (4.24)

Рисунок убран из работы и доступен только в оригинальном файле., (4.25)

Рисунок убран из работы и доступен только в оригинальном файле.. (4.26)

Выражения (4.18) – (4.21), а также (4.23) – (4.26) являются исходными для установления количественной связи электрических и радиотехнических параметров диэлектриков, измеряемых в свободном пространстве при нормальном падении плоской электромагнитной волны.

5 ВЫБОР МЕТОДА РАДИОВОЛНОВОГО КОНТРОЛЯ ДИЭЛЕКТРИЧЕСКИХ ОБРАЗЦОВ И МАТЕРИАЛОВ

5.1 Выбор метод а РВК. Суть и недостатки выбранного метода

По условиям дипломного проекта, разрабатываемое устройство, предназначенное для неразрушающего контроля качества радиопрозрачных изделий, должно иметь ограниченно-односторонний доступ, из-за невозможности размещения приемной антенной системы позади исследуемого образца. Поэтому, для реализации контроля качества радиопрозрачных изделий (пластин) возникает необходимость использования метода «на отражение».

В применяемом методе исследуемый образец размещается на некотором расстоянии от приемо-передающей антенны, а к задней поверхности образца должна примыкать отражающая поверхность, выполненная из проводящего материала или диэлектрика с значительно большей диэлектрической проницаемостью. В данном случае измеряемым параметром является фаза волнового коэффициента передачи диэлектрического слоя S12=|S12|exp(jφ12), рассматриваемого как эквивалентный четырехполюсник, включенный между источником (передающая антенна) и нагрузкой (отражатель), причем электромагнитная волна падает на исследуемый образец нормально к его поверхности.

В методе «на отражение» искомая величина φ12 вычисляется по измеренному значению комплексного коэффициента отражения системы «диэлектрический образец – отражатель», что связано со значительными погрешностями, вызванными отражениями элементов измерительного тракта и неопределенностью значения коэффициента отражения отражателя, а также дополнительными трудностями, возникающими при наличии заметных потерь в исследуемом образце. Таким образом, в данном методе имеется ряд недостатков и для их устранения предлагается воспользоваться методом модулированного отражения, сочетающего в себе компактность обычного метода «на отражение» и высокую точность измерения, приближающуюся к точности метода «на отражение».

Таким образом, вместо отражающей поверхности, необходимо разработать и установить модулирующий отражатель, который позволит уменьшить погрешности при контроле и наиболее точно определить контролируемыми параметрами диэлектрических материалов.

5.2 Возможности метода модулированного отражения при технологическом контроле диэлектрических изделий и материалов

Метод модулированного отражения в течение многих лет используется в измерительной технике и позволяет осуществлять как фазовые, так и амплитудные измерения. Сущность выигрыша, обеспечиваемого данным методом, можно пояснить следующим образом. Известно, что входной коэффициент отражения произвольного взаимного четырехполюсника, нагруженного на нагрузку с коэффициентом отражения Гн, равен:

Гвх=S11+S212Гн/(1-S22Гн), (5.1)

где S11, S22, S12 – комплексные коэффициенты отражения и передачи четырехполюсника, причем S12 – параметр, подлежащий измерению.

Как видно, информация о параметре S12 в обычном измерении «на отражение» теряется на фоне других отраженных сигналов, так как не отличается от них по структуре. В методе модулированного отражения Гн модулируется по амплитуде или фазе, что позволяет выделить полезный сигнал S212Гн на фоне мешающих немодулированных отраженных сигналов (S11, отражения в СВЧ – тракте и т. д.) и затем непосредственно измерить φ12, выделяя из полного отраженного сигнала ту его часть, которая соответствует основной частоте модуляции Гн.

Очевидно, что необходимым условием реализации метода является малость величины Гн, иначе нарушается прямая связь между измеренным значением Гвх и искомой величиной S12. Однако в реальной установке уменьшение Гн возможно лишь до некоторого предела, связанного хотя бы с ограниченностью мощности СВЧ – генератора и соответствующим увеличением ошибки за счет собственных шумов измерителя.

Суммарная ошибка измерения методом модулированного отражения зависит также от схемного решения фазометрической части измерителя, в особенности от выбора схемы фазового дискриминатора, преобразующего входные СВЧ – сигналы в напряжение низкой частоты (равной частоте модуляции коэффициента отражения отражателя), амплитуда которого зависит от фазового сдвига, вносимого исследуемым образцом, т. е. от φ12.

Рассмотрим характерную ошибку метода, предположив вначале, что основным элементом схемы СВЧ – фазометра является простой суммирующий дискриминатор, состоящий из трехдецибельного моста любой конструкции, на два взаимно развязанных входа которого поступают опорный и измеряемый сигналы, и детектора в одном из выходных плеч моста (рисунок 5.1,а).

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 5.1 – Фазовые дискриминаторы: а – простой суммирующий; б – балансный (суммо-разностный)

Введем следующие обозначения:

а1=| а1| – амплитуда опорного сигнала на входе фазового дискриминатора;

а2=| а2| exp (j φ12) – комплексная амплитуда измеряемого сигнала на входе исследуемого образца;

S11=S22=|S11| exp (j φ11) – коэффициент отражения образца;

S12= |S12| exp (j φ12) – коэффициент передачи (прохождения) образца;

Гн=Г0(1+m(t)) exp (j φг) – коэффициент отражения модулятора, модулируемый по амплитуде, причем m<1;

а′2= а2S122Гн – комплексная амплитуда измеряемого сигнала на входе фазового дискриминатора.

Поскольку амплитуды сигналов а1 и а2 малы, то можно считать, что детектор фазового дискриминатора работает в режиме квадратичного детектирования и его выходное напряжение равно

U=|a1+a2Гвх|2=|а1|2|1+К(S11+S212Гн/(1-S22Гн))|2≈

≈а21|1+К|S11| expj(φ2+φ11)+K|S212Гн| exp j (2φ12+φг+φ2)+

+К|S212Г2нS11| exp j (2φ12+2φг+φ11+φ2)|2, (5.2)

где К=|a2|/|a1|, а |S11Гн|<<1.

Выделяя из выходного сигнала те его составляющие, которые содержат m(t) в первой степени, и опуская промежуточные вычисления, получим

U(t)=2а21mК′[cos (φ2+2φ12+φг)+ К′(1+p)+2|S11Г0|cos (φ2+2φ12+φг+ φ11)], (5.3)

где К′=|а′2|/a1; p=2|S11Г0|+|S11|cos (2φ12+φг- φ11)+ |S11/S12|2×cos(2φ12+2φг)+3| S11Г0/S212|cos(φ11+ φг).

Точностные возможности метода наиболее полно реализуются при компенсационном измерении φ12. При этом очевидно, что

cos(φ2+2φ12+φг)+К′(1+p)+2|S11Г0|cos(φ2+2φ12+φг+ φ11)=0.

Так как фазовые углы первого и второго членов здесь можно считать независимыми, то в наихудшем случае cos(φ 2+2φ 12+φг+ φ11)=±1, т. е.

cos(φ2+2φ12+φг)±2|S11Г0|+ К′(1+p)=0.

Последний член этого выражения представляет собой известное отклонение фазового сдвига при балансе от π/2, вызванное конечным отношением амплитуд сигналов a2 и a1, однако в данном случае это отношение может изменятся в процессе измерения. Поэтому для полного устранения ошибки должно быть К′<0,01, что практически не выполнить. Если |S11Г0|<<1, то:

Рисунок убран из работы и доступен только в оригинальном файле.. (5.4)

Если основным элементом схемы фазометра является балансный, или суммо-разностный, фазовый дискриминатор (рисунок 5.1,б), то напряжение на его входе:

U=|a1+a2Гвх|2-|a1- a2Гвх|2 . (5.5)

Составляющая выходного напряжения, содержащая m(t) в первой степени, теперь оказывается равной:

U(t)=4a21mК′[cos(φ 2+2φ 12+φг)+ 2|S11Г0|cos(φ2+2φ12+2φг+ φ11)], (5.6)

а условием баланса будет:

Рисунок убран из работы и доступен только в оригинальном файле. (5.7)

6 РАЗРАБОТКА И ОПИСАНИЕ СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА РВК

На рисунке 6.1 представлена структурная схема устройства, предназначенного для контроля электрической толщины радиопрозрачных диэлектрических стенок методом свободного пространства на отражение с использованием модулирующего отражателя. На схеме присутствуют следующие элементы:

1 – СВЧ генератор;

2 – направленный ответвитель (НО);

3 – фазовращатель;

4 – направленный ответвитель (НО);

5 – фазовый дискриминатор;

6 – индикатор нуля;

7 – эллипсоидный отражатель;

8 – облучатель приемопередающей антенны;

9 – приемопередающая антенна;

10 – диэлектрический образец;

11 – модулирующий отражатель;

12 – модулирующий диод;

13 – поглотитель согласованной нагрузки.

14 – импульсный генератор;

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 6.1 – Структурная схема устройства микроволнового фазометрического контроля радиопрозрачных изделий

Устройство для контроля электрической толщины радиопрозрачных диэлектрических стенок (рисунок 6.1) работает следующим образом. Непрерывный СВЧ сигнал от СВЧ генератора 1 проходит через направленный ответвитель (НО) 2, где разветвляется на опорный и исследуемый сигналы.

Опорный СВЧ сигнал через образцовый фазовращатель 3 поступает на первый (опорный) вход фазового дискриминатора 5.

Исследуемый сигнал поступает к приемопередающей антенне 9, а именно на ее облучатель 8, излучается в виде электромагнитной волны в свободное пространство, которая падает и отражается эллипсоидным отражателем 7, затем собирается в узкий волновой пучок луч в районе второго фокуса эллипсоидного отражателя 7. Волновой пучок проходит через контролируемый диэлектрический образец 10 и отражается модулирующим отражателем 11. Фазовая модуляция отраженной электромагнитной волны осуществляется с помощью металлической диафрагмы и модулирующего диода 12, встроенных в волновод, и поглотителя (согласованной нагрузки) 13. Модулирующий диод питается от импульсного генератора 14.

Отраженные волны проходят через диэлектрическую стенку, изменяя свою фазу, принимаются приемопередающей антенной 9 и в виде электромагнитного сигнала, содержащего информацию о параметрах контролируемого образца 10, ответвляются направленным ответвителем 4 и поступают на второй (измерительный) вход фазового дискриминатора 5. Эти два сигнала (отраженный модулированный и опорный от СВЧ генератора) сравниваются в фазовом дискриминаторе по фазе, в результате чего выделяется необходимая информация о модуле (Т) и фазе фи коэффициента прохождения диэлектрической стенки. Электромагнитная волна, отражаемая от наружной поверхности диэлектрической стенки, является не модулированной и не создает погрешности измерения. Поглотитель 13 служит для повышения точности измерений путем поглощения паразитных отражений волны от элементов конструкции модулированного отражателя 11, а также для поглощения волн, прошедших за металлическую диафрагму с модулирующим диодом.

7 РАЗРАБОТКА И ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА РВК

Принципиальная схема устройства РВК диэлектрических образцов представлена на рисунке 7.1. На этой схеме функциональные устройства образуют измерительную СВЧ схему, предназначенную для контроля электрической толщины стенки диэлектрического образца, расположенного в свободном пространстве между фокусирующей приемопередающей антенной и модулирующим отражателем.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 7.1 – Принципиальная схема устройства микроволнового фазометрического контроля радиопрозрачных изделий

СВЧ генератор (Г1) представляет собой стандартный генератор лабораторного типа миллиметрового или сантиметрового диапазона волн, мощностью 5-10 мВт и с относительной нестабильностью частоты 10-3-10-4. Нужный уровень выходной мощности генератора определяется необходимой суммарной мощностью, подаваемой к фазовому дискриминатору по опорному и измерительному каналам с учетом затухания мощности в элементах схемы. Допустимая нестабильность частоты генератора определяется степенью согласования и широкополосностью элементов СВЧ тракта, а также отличием электрических длин опорного и измерительного канала. Чтобы нестабильность частоты оказывала пренебрежимо малое влияние на точность контроля кроме конструктивного выравнивания длин каналов, имеет смысл стабилизировать частоту СВЧ генератора до 10-4-10-5. Такая стабилизация может быть достигнута различными способами, предпочтительным (при условии работы на фиксированной частоте) является стабилизация клистронного генератора внешним резонатором с высокой добротностью. По дипломному проекту, генератор настраивается на рабочую частоту 9,38 ГГц, генератор работает в режиме амплитудной модуляции.

Непрерывный СВЧ сигнал разветвляется в опорный и измерительный каналы при помощи направленного ответвителя (НО). Основными параметрами НО являются направленность (D), переходное ослабление (С), входной КСВ и широкополосность ответвителя, которая определяется рабочим диапазоном частот Δf = f2 - f1, в пределах которого параметры НО не выходят за допустимые значения. Вторичная линии передачи НО нагружена на встроенную согласованную нагрузку.

При измерении модуля и фазы коэффициента прохождения применяется образцовый фазовращатель. Фазовращатель состоит из отрезка прямоугольного волновода, внутри которого параллельно вектору Е электромагнитного поля помещена тонкая пластина из высококачественного диэлектрика. При ее перемещении от узкой стенки к центру волновода происходит концентрация поля в месте расположения пластины, что эквивалентно увеличению фазового сдвига.

Выходные НЧ сигналы фазового дискриминатора, значения которых пропорциональны синусу и косинусу измеряемой разности фаз φ, могут регистрироваться каждый в отдельности, при этом для нахождения φ необходимо вычислить величину tg φ, взяв отношение этих сигналов. Отношение сигналов можно получить автоматически с помощью специального устройства – измерителя отношения напряжений, выход которого может быть соединен с записывающим либо цифровым отсчетным устройством, проградуированным непосредственно в единицах измеряемой разности фаз.

8 ПРИНЦИПЫ ДЕЙСТВИЯ И КОНСТРУКТИВНО-ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ УСТРОЙСТВ СВЧ ТРАКТА

8.1 Выбор и расчет характеристик волновода

Для передачи энергии источника к приемнику излучения применяют волноводные линии.

Волновод, по которому распространяется электромагнитная волна, представляет собой металлическую трубу прямоугольного или круглого сечения. Волноводы характеризуются поперечными размерами (а – ширина, b – высота для прямоугольного волновода; а – радиус, φ – угол поворота для круглого волновода), критической длиной волны λкр, длиннее которой волны не распространяются в данном волноводе, и длиной волны в волноводе λв. Волна, распространяющаяся по волноводу, определяется видом колебаний и обозначается с помощью индексов (Еmn и Нmn), соответствующих числу полуволновых изменений напряженностей Е и Н вдоль широкой (индекс m) и узкой (индекс n) стенок волновода.

В данном дипломном проекте выбран прямоугольный тип волновода с поперечными размерами (а=23 мм и b=10 мм), и соответствующий тип волны H10. Критическая длина волны типа H10 рассчитывается по формуле:

λкрН10=2а, (8.1)

где а – размер широкой стенки волновода.

Известна длина электромагнитной волны λ0=3,2 см. Соответственно можно найти длину волны в волноводе, которая рассчитывается по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.. (8.2)

Рабочее значение частоты рассчитывается по формуле:

Рисунок убран из работы и доступен только в оригинальном файле., (8.3)

где с=3·108 – скорость света.

Таблица 8.1 – Характеристики прямоугольных волноводов

--------------------------------------------------
Сечение волновода, мм | Предельные значения | Рабочие значения | Затухание дБ/м |
---------------------------------------------------------
Ширина | Высота | Частота, ГГц | Длина волны, см | Частота, ГГц | Длина волны, см |
---------------------------------------------------------
23,0 | 10,0 | 6,56 | 4,57 | 8,2 – 12,4 | 3,66– 2,42 | 1,38 |
---------------------------------------------------------
19,0 | 9,5 | 7,87 | 3,81 | 10,0 – 15,0 | 3,0 – 2,0 | 1,67 |
---------------------------------------------------------
16,0 | 8,0 | 9,5 | 3,16 | 12,4 – 18,0 | 2,42 – 1,67 | 2,2 |
---------------------------------------------------------
13,0 | 6,5 | 11,57 | 2,59 | 15,0 – 22,0 | 2,0 – 1,36 | 2,9 |
---------------------------------------------------------
9,0 | 4,5 | 17,4 | 1,73 | 22,0 – 33,0 | 1,36 – 0,91 | 5,5 |
---------------------------------------------------------
7,2 | 3,4 | 21,1 | 1,43 | 26,5 – 40,0 | 1,13 – 0,75 | 7,4 |
--------------------------------------------------------- --------------------------------------------------

Таким образом, был произведен расчет необходимых данных: критическая длина волны типа H10 λкрН10=46 мм; длина волны в волноводе λв=44 мм; рабочее значение частоты f=9,38 ГГц.

8.2 Элементы и устройства волноводных трактов

8.2.1 Изгибы и скрутки волноводов

Изгибы и скрутки волноводов используются в качестве вспомогательных соединительных элементов при монтаже тракта. Изгибы прямоугольных волноводов выполняются по широкой (Е-изгиб) и узкой (Н-изгиб) стенкам и делятся на плавные или радиусные (рисунок 8.1) и уголковые с одним поворотом и многоступенчатые. При резком изгибе тракта возникают отражения, для уменьшения которых изгиб выполняется на участках длиной в несколько длин волн в волноводе.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 8.1 – Изгибы волноводов

Плавные изгибы обладают минимальными отражениями при длине L ≈ 0,5nλв (n = 1,3,5, …), что обусловлено взаимной компенсацией отражённых волн от концов изгиба. Высокие значения КБВ достигаются при величине внутреннего радиуса изгиба R > λв . Основные размеры и параметры плавных изгибов стандартных прямоугольных волноводов в плоскостях Е и Н приведены в таблице 8.2.

Таблица 8.2. – Параметры радиусных изгибов прямоугольных волноводов в плоскостях Е и Н.

--------------------------------------------------
Номинальные размеры волновода, мм | Номинальный радиус изгиба и допустимые отклонения, мм | Номинальный (А, Б) угол изгиба и допустимые отклонения, град. | КСВН в плоскости изгиба, не более |
---------------------------------------------------------
Е | Н | Е | Н |
---------------------------------------------------------
11 × 5,5 |

5 ± 0,3

7 ± 0,3

11 ± 0,5

20 ± 0,5

|

7 ± 0,3

12 ± 0,5

20 ± 0,5

|

А ± 1

Б ± 0,5

|

1,1

1,07

1,05

|

1,1

1,05

|
---------------------------------------------------------
23 × 10 |

9 ± 0,3

15 ± 0,3

23 ± 0,5

40 ± 0,5

|

15 ± 0,3

25 ± 0,5

40 ± 0,5

|

А ± 1

Б ± 0,5

|

1,1

1,07

1,05

|

1,1

1,05

|
---------------------------------------------------------
П р и м е ч а н и е. А соответствует значениям угла изгиба 15, 30,45, 60, 75, 90°, б – значениям 15, 30, 60, 75, 90, 105, 120, 135, 150, 165, 180°. Допустимые отклонения сечения в зоне изгиба +0,3…–0,2 мм. |
--------------------------------------------------------- --------------------------------------------------

Отражения от изгибов в сильной степени зависят от тщательности изготовления и деформации стенок волновода при изгибе; по всей длине изгиба необходимо обеспечить постоянство внутренней полости волновода и высокую чистоту токонесущих поверхностей; в многократно изогнутых волноводах малого сечения рекомендуется серебрить присоединительные поверхности фланцев, внутренние поверхности покрывать лаком УР-231 или ВЛ-831.

Скрученные секции предназначены для поворота плоскости поляризации волны в волноводе. Плавно скрученная секция прямоугольного волновода с волной Н10 показана на рисунке 8.2. Длина L скрученного отрезка волновода выбирается равной L > 2λв (1+ 0,25n) (n = 0, 1, 2, …).

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунке 8.2. - Конструкция скрученной секции прямоугольного волновода

8.2.2 Конструкция и размеры типовых контактных фланцевых соединений

Различают три основных вида соединения волноводов: неразъемные, разъемные для редкой и частой разборки. Соединения характеризуются следующими основными электрическими параметрами: величиной КСВН, коэффициентом электрогерметичности, дБ, Nг = 10lg(P0/Pизл) и коэффициентом вносимых потерь α = 10lg(Pпот/P0 ) (Р0 – мощность в месте соединения; Ризл – мощность паразитного излучения через соединение; Рпот – активные потери из-за несовершенства конструкции и ошибок монтажа).

Разъемные соединения прямоугольных волноводов осуществляются при помощи фланцев двух основных типов: контактных и дроссельных.

Контактные соединения просты по конструкции, широкополосны, требуют высокой точности изготовления, обладают низкой надежностью при многократных переборках тракта; электрогерметичность и вносимые потери сильно зависят от размера зазора между фланцами. Повышение электрогерметичности достигается использованием тонких контактных прокладок из бериллиевой бронзы БрБ2Т. Конструктивные размеры контактных прокладок и контактных фланцев даны на рисунке 8.3, а рекомендуемые посадки для установочных элементов представлены в таблице 8.3. Для герметизации соединений используются прокладки из резины ИРП-1267 или резиновой смеси ИРП-1354.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунке 8.3 – Конструкция и размеры типовых контактных фланцевых соединений (а) и соответствующих им контактных прокладок (б)

Таблица 8.3 – Рекомендуемые посадки для установочных элементов фланцевых соединений прямоугольных волноводов для конструкций серийного производства

--------------------------------------------------
Виды соединений | Посадки |
---------------------------------------------------------
Штифтовые (для двух установочных штифтов) | Н9/b8 |
---------------------------------------------------------

Винтовые:

для 2-, 4-установочных винтов

для многорядного соединения

|

Н9/b11

Н13/b12 или Н13/b11

|
---------------------------------------------------------

Болтовые:

для установочных болтов

для 2-, 4-установочных болтов

для многорядного соединения

|

Н9/b11

Н9/b11

Н13/b12 или Н13/b11

|
--------------------------------------------------------- --------------------------------------------------

8.2.3 Волноводное разветвление

Двойной Т-образный мост (рисунок 8.4) состоит из совмещенных Е - (плечи А, Б, В) и Н- (плечи А, В, Г) тройников. Мощность, поступающая в волновод Б, делится поровну между волноводами А и В и не попадает в волновод Г; аналогично, мощность из плеча Г делится пополам между волноводами А и В и не попадает в плечо Б. Плечи Г и Б оказываются развязанными (величина развязки > 40 дБ), что позволяет, например, к плечу Г подключить приёмную антенну, к плечу Б – Г гетеродин, к плечам А и В – детекторы. Для согласования плеч двойного Т-образного моста применяются индуктивный штырь в плече Б и ёмкостный – в плече Г.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 8.4 - Двойной Т-образный мост

8.2.4 Волноводные согласованные поглощающие нагрузки

Волноводные согласованные поглощающие нагрузки предназначены для поглощения СВЧ энергии и обеспечивают при минимальном уровне КСВН в заданном диапазоне частот рассеяние определенного уровня мощности – от низкого (до 10 кВт) или высокого. Конструктивно выполняются в виде короткозамкнутого на одном конце отрезка волновода с расположенным внутри поглощающим элементом. Различают согласованные нагрузки с поверхностным и объемным поглощающими сопротивлениями из специального поглощающего материала, называемого ферроэпоксидом. Эти нагрузки отличаются малыми габаритами, простотой конструкции и изготовления, низким значением КСВ и широкополосностью (рисунок 8.5).

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 8.5 – Волноводные поглощающие клинья сантиметровых и миллиметровых волн из ферроэпоксида:

а – расположение одно - и двуэкспоненциального клина в волноводе (разрез в плоскости Е); б – размеры клина, используемые при расчете экспоненциального профиля

Основными компонентами ферроэпоксида являются карбонильное железо и эпоксидная смола, используемые в весовом соотношении 5:1. Он механически обрабатывается подобно пластмассам, а также может отливаться в формы сложной конфигурации. Интервал рабочих температур от –60 до +150 °С. Малая длина поглощающего клина при низком КСВ достигается благодаря использованию экспоненциального профиля клина в Е-плоскости. Экспериментальные исследования показали, что на сантиметровых волнах при использовании стандартных сечений волноводов для получения ρнаг < 1,1 необходимо применять клинья с двуэкспоненциальным профилем, а в волноводах пониженной высоты, у которых размер b меньше стандартного в два и более раз, а также в волноводах миллиметрового диапазона можно ограничиться одноэкспоненциальпым профилем, что технологически проще. Следует учитывать, что ферроэпоксид довольно хрупок.

Расчет экспоненциального профиля клина h(l) при заданной его длине l0 (рисунок 8.5, б) производится по формуле экспоненты h = n(eγl −1) , где n – коэффициент, а γ определяется заданными значениями l0 и h0:

Рисунок убран из работы и доступен только в оригинальном файле.. (8.4)

Для одноэкспоненциального клина h0 = b, для двуэкспоненциального h0 = b/2. Коэффициент n, имеющий размерность длины, определяет величину «прогиба» экспоненты. Графический анализ влияния его величины на форму экспоненциального профиля, измерение КСВ двух клиньев одинаковых размеров, отличающихся значениями n (0,5 и 1), и соображения технологичности изготовления привели к выводу о целесообразности выбора n = 1. Это значение n используется на практике во всех случаях. При креплении поглощающего клина в волноводе (приклеиванием эпоксидной смолой или другим способом) необходимо следить за тем, чтобы острие одноэкспоненциального клина плотно прилегало к широкой стенке волновода, а линия острия двуэкспоненциального клина проходила через середины узких стенок волновода. При этих условиях получаются минимальные КСВ.

8.3 Расчет направленного ответвителя

Направленным ответвителем называется четырехплечее устройство, состоящее из двух отрезков линии передачи, между которыми с помощью «элементов связи» или области связи осуществляется направленная передача электромагнитной энергии. Линия, из которой исходит энергия, называется основной или первичной; линия в которую поступает энергия – дополнительной или вторичной. Термин «направленная передача энергии» означает, что если в основной линии передачи распространяется бегущая волна определенного направления, то во вторичной линии будет возбуждаться тоже бегущая волна, распространяющаяся от области связи только в одном определенном направлении. В идеальном случае, в противоположном направлении от области связи во вторичной линии волна вообще не распространяется. Если в основной линии передачи изменить направление движения бегущей волны, то во вторичной линии направление движения ответвленной волны также изменится на обратное. Таким образом, НО является «взаимным » устройством (рисунок 8.6).

Рисунок убран из работы и доступен только в оригинальном файле.

а)

Рисунок убран из работы и доступен только в оригинальном файле.

б)

Рисунок убран из работы и доступен только в оригинальном файле.в)

Рисунок 8.6 – Изображение НО на принципиальных электрических схемах (а); направление движения энергии в основной и вторичной линиях передачи (б, в)

Основными параметрами НО являются направленность (D), переходное ослабление (С), входной КСВ, допустимая рабочая мощность Pmax и широкополосность ответвителя, которая определяется рабочим диапазоном частот Δf = f2 - f1, в пределах которого параметры НО не выходят за допустимые значения.

Переходным ослаблением называется логарифмическая мера отношения мощности бегущей (падающей) волны на входе основной линии передачи (P1) к ответвленной мощности на выходе вторичной линии перед (P3) при условии, что остальные плечи НО (2 и 4) нагружены на согласованные нагрузки:

Рисунок убран из работы и доступен только в оригинальном файле., (8.5)

где Рисунок убран из работы и доступен только в оригинальном файле..

Собственной направленностью называется логариф

Здесь опубликована для ознакомления часть дипломной работы "Устройства РВК". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 416

Другие дипломные работы по специальности "Коммуникации и связь":

«Реклама и связи с общественностью», «Маркетинг»

Смотреть работу >>

Ремонт системы управления видеокамер аналогового формата

Смотреть работу >>

Теория электрических цепей

Смотреть работу >>

Роботизированные комплексы (РТК) предназначенные для технологического процесса сборки

Смотреть работу >>

Моделирование и методы измерения параметров радиокомпонентов электронных схем

Смотреть работу >>