Дипломная работа на тему "Устройства генерирования и канализации субмиллиметровых волн"

ГлавнаяКоммуникации и связь → Устройства генерирования и канализации субмиллиметровых волн




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Устройства генерирования и канализации субмиллиметровых волн":


СОДЕРЖАНИЕ

Введение

1. Ламповые и полупроводниковые генераторные приборы субмиллиметрового диапазона

1.1 Лампы обратной волны (ЛОВ)

1.2 Плазменные приборы

1.3 Полупроводниковые генераторы

2. Резонансные системы субмиллиметрового диапазона

3. Канализация энергии в субмиллиметровом диапазоне

3.1 Металлические волноводы

3.1.1 Одноволновые металлические волноводы

3.1.2 Металлические волноводы увеличенных сечений

3.2 Диэлектрические волноводы

3.3 Квазиоптическая линия, образованная передающей и приемной апертурами

3.4 Линзовые и зеркальные лучевые волноводы

4. Элементы трактов субмиллиметрового диапазона

4.1 Направленные ответвители

4.2 Аттенюаторы

4.3 Модуляторы

5. Элементы трактов субмиллиметрового диапазона

5.1 Измерение частоты и длины волны

5.1.1 Волномеры с объемными резонаторами

5.1.2 Резонансные волномеры с плоскими оптическими зеркалами

5.1.3 Резонансные волномеры с выпуклыми зеркалами

5.1.4 Гетеродинные частотомеры

5.1.5 Интерференционный метод измерения длины волны

5.1.6 Дифракционный метод измерения длины волны

5.2 Измерение мощности

5.2.1 Калориметрические измерения

5.2.2 Тепловые измерители проходящей мощности

5.2.3 Пондеромоторные измерители мощности

5.2.4 Болометрические измерители мощности

5.2.5 Пироэлектрические измерители мощности

6. Распространение и применение радиотехнических систем миллиметрового и субмиллиметрового диапазонов волн

6.1 Характеристики распространения

6.2 Эффект поверхности рассеяния объектов

6.3 Военные и гражданские применения

Заключение

Список использованных источников

Введение

Проблема генерирования колебаний в субмиллиметровом диапазоне радиоволн является одной из наиболее трудных проблем современной радиотехники.

В последние годы успешно разрабатываются маломощные генераторы миллиметрового и субмиллиметрового диапазонов. Но задача генерирования мощных высокостабильных колебаний в диапазоне 300—3000 ГГц практически пока не решена. Большинство методов генерирования колебаний большой мощности в указанном диапазоне исследовано лишь теоретически, а их экспериментальная проверка проводилась на миллиметровых волнах, что затрудняет в ряде случаев окончательную оценку их перспективности.

Следует особо подчеркнуть, что существующие генераторы субмиллиметровых волн, например ЛОВ, квантовые генераторы (лазеры) и другие, являются принципиально источниками монохроматических колебаний.

Под воздействием различных факторов спектральная линия современных генераторов субмиллиметровых волн уширяется, однако ширина этой спектральной линии значительно уже, чем спектр некогерентных источников. С помощью специальных мер ширина спектральной линии когерентных источников может быть значительно сужена. В этом случае говорят о стабилизации частоты когерентных генераторов. Таким образом, с проблемой генерации тесно связана проблема стабилизации частоты. Очевидно, в первую очередь представляют интерес исследования, направленные на повышение стабильности частоты существующих генераторов. Поэтому ниже рассматриваются вопросы стабилизации частоты генераторов типа ламп обратной волны и лазеров.

В настоящей работе на основе литературных источников дано общее представление о методике и способах проникновения в область субмиллиметровых волн, кратко освещены направления изысканий принципиально возможных способов генерирования субмиллиметровых волн. Теория рассматриваемых генераторов не приводится. Излагаются лишь основные принципы работы, а так же рассмотрены наиболее перспективные области применения и распространение радиотехнических систем миллиметрового и субмиллиметрового диапазонов волн.


1. Ламповые и полупроводниковые генераторные приборы субмиллиметрового диапазона

Задача создания генераторов субмиллиметровых волн решалась путем моделирования электровакуумных приборов СВЧ диапазона. Успехи, достигнутые при моделировании СВЧ приборов, в значительной степени определялись улучшением технологии изготовления электронных пушек и замедляющих структур (ЗС).

Естественно, по мере увеличения частоты возникают специфические трудности, ограничивающие генерируемые мощности и типы моделируемых приборов. В настоящее время из широко распространенных приборов СВЧ субмиллиметровые волны генерируют только лампы обратной волны типа О и клистроны.

Определенный интерес представляет возможность вместо обычной замедляющей структуры использовать плазменный волновод и на этой основе разработать плазменные усилители и генераторы.

1.1 Лампы обратной волны (ЛОВ)

Разработка ЛОВ для субмиллиметровых волн основывалась на методе масштабного копирования. Однако полное масштабное копирование невозможно, так как в субмиллиметровом диапазоне этому препятствуют трудность создания чрезвычайно больших плотностей тока в электронном пучке, сложность изготовления замедляющих систем, обеспечивающих высокие электрические характеристики и хороший отвод тепла.

С повышением частоты необходимо увеличивать плотность мощности пучка, что связано как с возрастанием омических потерь, так и с сокращением эффективно взаимодействующей с электромагнитным полем площади поперечного сечения пучка. При пропорциональном моделировании, как известно, площадь поперечного сечения электронного пучка уменьшается пропорционально квадрату длины волны.

Большое сжатие пучка обеспечивает его малый диаметр и большую плотность без перегрузки катода.

Однако для фокусировки сильно сжатого пучка требуется большая величина магнитного поля. Магнитное поле возрастает приблизительно пропорционально частоте. Весьма критичной становится точность центровки электродов и сопряжения пушки с ЗС. Угловая точность в субмиллиметровом диапазоне должна быть выше 1˚.

Задача создания электронных пушек для ЛОВ субмиллиметрового диапазона является весьма сложной. В опытах с одной из пушек самый малый диаметр пучка составлял 0,06 мм при 85%-ной фокусировке. Плотность тока превышала 1000 А/см2 при напряженности магнитного поля 8000 э.

Параметры электронных пушек в значительной мере определяют частотный предел ламп. По мере их совершенствования будут повышаться генерируемые частоты и энергетические характеристики ламп.

Замедляющие системы, таким образом, должны иметь по возможности большие геометрические размеры периодической структуры, обладать хорошим теплоотводом и быть простыми в изготовлении, т. е. для рассматриваемого диапазона перспективными являются замедляющие системы простой формы с наибольшим шагом периодической структуры. Этим требованиям наилучшим образом удовлетворяют различные варианты периодической структуры типа гребенки. Основные достоинства таких замедляющих систем: простота изготовления, малые омические потери, так как пучок обычно взаимодействует с первой пространственной гармоникой. Сопротивление связи мало (порядка Ома). Благодаря тому, что основание такой системы массивное, допускаются большие мощности рассеивания.

В связи с большими рассеиваемыми мощностями в современных субмиллиметровых ЛОВ, как правило, применяют водяное охлаждение.

М.Б. Голант и А.А.Негирев нашли оптимальные формы теплорассеивающих поверхностей в субмиллиметровых ЛОВ, что позволило разрешить проблему теплоотвода при разработке отечественных приборов.

Замедляющие структуры для ламп субмиллиметрового диапазона изготовляются методом фрезерования, штамповки, фототравления, фотоосаждения, резания ультразвуком и электронным лучом. Качество технологии в большой степени определяет параметры приборов.

Для нормальной работы прибора необходимо, чтобы период между двумя пролетами электронов был примерно кратен периоду генерируемых колебаний. Номера использующихся пространственных гармоник здесь очень высоки. В таких приборах можно снизить пусковые токи по сравнению с обычными ЛОВ, имеющими такую же длину замедляющей системы, и при этом получить к. п. д. примерно такой же, как у обычных ЛОВ малой мощности с малыми потерями в замедляющей системе.

Таким образом, сочетание резонанса в замедляющей системе и резонанса электронного пучка может способствовать использованию ЛОВ на более коротких волнах субмиллиметрового диапазона.

Приборы характеризуются многоэлектродной конструкцией, сравнительно высокими напряжениями питания и большими магнитными полями. До длин волн Рисунок убран из работы и доступен только в оригинальном файле.= 0,6 мм используются фокусирующие системы с постоянными магнитами, а в более коротковолновых лампах применены электромагниты. Отдельные экземпляры этих приборов на волнах 0,9 мм генерировали колебания мощностью около 100 мВт, а на волнах 0,9—0,6 мм – мощностью несколько десятков милливатт. Разрабатываются ЛОВ для генерирования волн длиной до 0,345 мм.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 1.1 Зависимость выходной мощности ЛОВ-1 и длины генерируемой волны от напряжения коллектора

Советскими учеными под руководством М. Б. Голанта разработаны генераторы типа ЛОВ, предназначенные для работы на волнах вплоть до 0,296 мм.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 1.2 Внешний вид приборов ЛОВ-1 и ЛОВ-0,5

1 – фланец; 2 – штуцер водяного охлаждения; 3, 4 – выводы накала и катода; 5 – геттер.

На графике рис. 1. показана зависимость выходной мощности и длины генерируемой волны от напряжения на замедляющей системе для одного из экземпляров прибора ЛОВ-1.

Электровакуумные приборы субмиллиметровых волн требуют для своей работы сильных магнитных полей, поэтому они выпускаются непакетированными. Для уменьшения потерь вывод энергии осуществляется через волновод с увеличенным сечением. Для генерирования колебаний в диапазоне 0,5 мм разработаны также резонансные ЛОВ, работающие в ряде дискретных областей.

Крутизна перестройки резонансных ЛОВ в 5 - 6 раз меньше, вследствие чего стабильность частоты подобных ЛОВ несколько выше; зоны плавной перестройки лежат в пределах сотен мегагерц.

Все существующие приборы требуют водяного охлаждения. Отечественные приборы обладают достаточно высокой надежностью и удобны в эксплуатации.

По принципу действия к ЛОВ близок предложенный Ф.С. Русиным и Г.Д. Богомоловым прибор типа О, названный ими оротроном, который, как показали исследования, может генерировать субмиллиметровые волны.

В оротроне эффективность взаимодействия электронов с СВЧ полем повышена благодаря использованию резонансной системы.

Под руководством А.Я. Усикова его сотрудниками М.Д. Трутнем и Т.Я. Левиным разработаны импульсные генераторы и генераторы непрерывного действия типов О и М с повышенной средней мощностью, работающие в милли- метровом и в значительной части субмиллиметрового диапазона. Рост мощности достигнут вследствие значительного увеличения объема области взаимодействий.

1.2 Плазменные приборы

Ряд исследователей высказывал предположение, что для генерирования и усиления субмиллиметровых волн вместо обычной замедляющей системы ЛОВ может быть применен плазменный волновод.

В изучение приборов, использующих электронно-ионную плазму, большой вклад внесли советские ученые В.Л. Гинзбург, Л.Д. Ландау, Г.А. Бернашевский, З.С. Чернов и др.

Расчеты показывают, что мощность колебаний плазменных субмиллиметровых генераторов и усилителей может достигать десятков ватт. В электроннолучевом плазменном приборе в отличие от ЛОВ высокочастотное поле не ослабевает по мере приближения к центру пучка. Участие всего пучка в процессе взаимодействия с полем плазменных колебаний обеспечивает более высокий к. п. д. и позволяет повысить выходную мощность за счет увеличения диаметра пучка. Однако при реализации таких устройств встречается ряд весьма серьезных затруднений, Из-за столкновения электронного пучка с ионами и нейтральными атомами энергия пучка рассеивается в плазме, появляются шумы. Этот эффект ограничивает рабочую частоту и требует увеличения степени ионизации плазмы.

Для увеличения рабочей частоты необходимо преодолеть две серьезные трудности:

1) получить плазму чрезвычайно высокой плотности (1014 — 1016 ион/см3) при ионизации больше 50%; чем плотнее плазма, тем выше должен быть процент ионизации;

2) найти эффективный способ ввода и вывода энергии.

Возможно, последнюю трудность удастся преодолеть путем использования таких явлений, как распространение поверхностных волн вдоль плазменного столба и волн в плазме, помещенной в магнитное поле.

1.3 Полупроводниковые генераторы

Трудности, возникающие при разработке полупроводниковых СВЧ генераторов и электровакуумных, одни и те же: мелкоструктурность элементов, сложность отвода тепла. Создание полупроводниковых приборов осложняется еще худшей теплопроводностью и меньшей допустимой рабочей температурой полупроводниковых материалов.

Несмотря на это, разработаны приборы на туннельных и лавинно-пролетных диодах, которые генерируют колебания небольшой мощности в миллиметровом диапазоне длин волн. Указанные ограничения делают невозможной работу классических полупроводниковых генераторов в субмиллиметровом диапазоне. В этом диапазоне могут использоваться умножители на полупроводниковых диодах и, очевидно, импульсные генераторы на лавинно-пролетных диодах (ЛПД). Были получены колебания на частоте Рисунок убран из работы и доступен только в оригинальном файле. = 340 ГГц с помощью генератора на ЛПД, работающего в импульсном режиме при больших импульсных токах. Можно предположить, что для работы в субмиллиметровом диапазоне могут быть созданы генераторы на туннельно-пролетных диодах.

Исследования последних лет указывают на большую перспективность использования объемных эффектов для генерации СВЧ колебаний. Первым таким эффектом, позволившим создать генераторы близкого к миллиметровому диапазона, явился эффект Ганна.

Применение так называемого режима ограничения накопления пространственного заряда (ОНПЗ) в диодах из арсенида галлия, предложенного Дж. Коуплендом, позволяет надеяться на создание высокоэффективных генераторов субмиллиметрового диапазона мощностью в несколько ватт.

Природа возникновения отрицательного дифференциального сопротивления в диоде из арсенида галлия, работающего в режиме ОНПЗ, та же, что и для режима, открытого Ганном.

В диоде Ганна отрицательная проводимость существует только в узкой области (домене) арсенида галлия с повышенной напряженностью поля, который дрейфует от отрицательного к положительному электроду. Область сильного поля разрушает большую часть отрицательной проводимости, и энергию в нагрузку отдает только часть электронов объема полупроводника. Частота в генераторе Ганна определяется длиной образца.

Режим ОНПЗ не связан с эффектом времени пролета, и частота генератора зависит в первую очередь от частоты настройки внешнего резонатора. Имеется возможность увеличить размеры прибора. При этом почти весь объем материала диода будет обладать отрицательной проводимостью. Вследствие этого мощность генераторов на диодах в режиме ОНПЗ увеличится на 4 - 6 порядков. Способ ограничения накопления пространственного заряда (режим ОНПЗ) основан на следующих явлениях.

Нарастание и спад (рассасывание) пространственного заряда происходят за конечное время, которое обратно пропорционально степени легирования материала полупроводника или концентрации носителей. Время нарастания пространственного заряда при величине поля, превышающей критический уровень возникновения отрицательной проводимости 3000 В/см, значительно больше, чем время спада (рассасывания), которое происходит, когда напряженность поля становится ниже критической. Таким образом, изменяя напряженность поля в диоде до уровня ниже критического на время, составляющее малую часть периода колебаний, можно осуществить рассасывание пространственного заряда, накопленного во время работы при напряженности, обеспечивающей появление отрицательного сопротивления.

Арсенидогаллиевый диод работает в режиме ОНПЗ, если выполняется условие

2*1014Рисунок убран из работы и доступен только в оригинальном файле.2*1015 шс/см3 (1.1)

Следовательно, необходимо обеспечить весьма узкий интервал допустимых уровней концентрации примесей в материале диода.

Вторым условием установления режима ОНПЗ является высокий импеданс внешних по отношению к диоду резонансных цепей, обеспечивающих получение больших амплитуд колебаний на диоде. При этом необходимо, чтобы напряженность поля, приложенного к диоду, в 3 - 4 раза превышала значение напряженности поля, которому соответствует эффект Ганна. Достаточно высокие значения добротности могут быть получены установлением слабой связи резонатора с нагрузкой в момент возникновения колебаний; после этого нагрузку резонатора, выходную мощность и к. п. д. можно заметно увеличить. Отрезок линии передачи между резонатором и нагрузкой может обеспечить задержку момента нагружения резонатора.

Поскольку рабочая частота генератора в режиме ОНПЗ не зависит от толщины образца, можно увеличить длину и объем образца в несколько раз. При этом возрастает и приложенное напряжение. Так как мощность пропорциональна квадрату приложенного напряжения, то появляется возможность значительного повышения выходной мощности. Диод, работающий в режиме ОНПЗ, может быть сконструирован для работы при любом напряжении от 25 до 500 В.

Увеличению выходной мощности диодов с ОНПЗ препятствуют в основном трудности обеспечения хорошего теплоотвода и поддержания постоянной напряженности электрического поля по всей длине диода.

Кроме задач, связанных с разработкой самих диодов, стоят также задачи создания специальных конструкций генераторов, в особенности для субмиллиметровых волн, где найдут применение открытые резонаторы.

Примером тому может послужить генератор субмиллиметрового диапазона, в котором используются объемные эффекты в арсениде галлия. Основой генератора служит пластина арсенида галлия длиной 3 мм, шириной 1 мм и толщиной 0,5 мм с концентрацией носителей 1,2*1016 см-3. На концах пластины создаются оловянные омические контакты. На одной стороне пластины в середине ее вырезана канавка шириной 1 мм и глубиной 0,15 мм. На дне канавки нанесена пленка титаната бария, на которую напылен слой проводника. С другой стороны пластины нанесены пленки из титаната бария, на которых напылен слой проводящего материала. Емкостный электрод в канавке соединен с одним из омических контактов.

К крайним выходным электродам на другой стороне пластины подсоединен отрезок замкнутого накоротко коаксиального кабеля. При подаче на контакты импульсов длительностью 60 нсек с амплитудой 80—100 В возникали колебания, частота которых зависела от длины отрезка кабеля и изменялась в больших пределах. В частности, наблюдались колебания с частотой 380 Ггц. По мнению разработчиков, этот эффект не связан с режимом ОНПЗ. Предполагается, что колебания вызывает слой нейтрализуемого объемного заряда. В момент приложения напряжения к омическим контактам начинает образовываться и распространяться объемный заряд. Однако развитию этого процесса препятствует сильное поле, создаваемое управляющим электродом, что обеспечивает отрицательное сопротивление всего объема материала.


2. Резонансные системы субмиллиметрового диапазона

Резонаторы являются важнейшими элементами целого ряда генераторных и измерительных устройств миллиметрового и субмиллиметрового диапазонов. В длинноволновой части миллиметрового диапазона в качестве резонансных систем еще используются обычные объемные резонаторы. Однако по мере укорочения рабочей длины волны размеры объемных резонаторов, в которых может существовать один вид колебаний, существенно уменьшаются. Это вызывает снижение добротности вследствие возрастания отношения площади поверхности стенок резонатора к его объему. Кроме того, малые линейные размеры налагают очень жесткие требования на точность изготовления резонатора, которая практически не может быть достигнута.

Особенности резонансных систем субмиллиметрового диапазона

Повышение добротности резонатора путем увеличения объема приводит к сгущению спектра резонансных частот, резонансные кривые отдельных видов колебаний перекрываются и резонатор теряет селективные свойства.

В устройствах миллиметрового и субмиллиметрового диапазонов и в оптических квантовых генераторах (ОКГ) был применен оптический резонатор, являющийся аналогом известного в оптике интерферометра Фабри-Перо (ИФП). Это наряду с дальнейшим развитием теории таких резонаторов позволило преодолеть затруднения, возникшие при разработке приборов субмиллиметрового диапазона.

Первоначально в миллиметровом диапазоне был создан открытый резонатор с плоскими полупрозрачными зеркалами для работы с отраженным сигналом, несколько позднее Колшоу разработал открытый резонатор проходного типа, обладающий значительно лучшими характеристиками. Последний прибор представлял собой систему из двух многослойных зеркал, расположенных параллельно друг другу, расстояние между которыми изменялось в широких пределах. Было показано, что с помощью подобного устройства можно определять малые потери в диэлектриках и производить точные измерения длины волны. Добротность оптического резонатора превышала 50 000, что близко к значению добротности лучших образцов объемных резонаторов. Улучшение качества зеркал позволило применить проходной оптический резонатор для таких точных измерений, как, например, измерение скорости распространения электромагнитных волн в вакууме.

Успешное использование А.М. Прохоровым, А. Шавловым и Ч. Таунсом открытых резонаторов для удлинения времени взаимодействия электромагнитной волны с рабочим веществом в квантовом генераторе заинтересовала многих исследователей, которые занялись разработкой теории ИФП с учетом явлений дифракции, существенно влияющей на работу прибора даже в оптической области спектра. В начале 60-х годов появились работы Фокса и Ли, в которых задача определения распределения полей, спектра резонансных частот и радиационных потерь, обусловливающих совместно с джоулевыми потерями ненагруженную добротность резонатора, сводилась к решению однородного интегрального уравнения Фредгольма второго рода. Резонаторы типа ИФП стали называть открытыми вследствие того, что поверхность их зеркал значительно меньше поверхности, ограничивающей резонансный объем между зеркалами. Благодаря сильной связи большинства собственных видов колебаний с открытым пространством происходит разрежение спектра резонансных частот. Резкую границу между оптическим резонатором и открытым резонатором провести невозможно. Систему называют открытым резонатором, если при ее возбуждении элементарным диполем или малым отверстием в центре одного из зеркал наблюдаются резонансы. Если же резонансы наблюдаются только при возбуждении плоской волной и резонансные кривые отдельных видов колебаний перекрываются, то система работает как интерферометр.

В простейшем случае открытый резонатор состоит из двух плоских бесконечно тонких дисков, расположенных параллельно друг к другу так, что их оси симметрии совпадают.

Экспериментально установлено, что такие резонаторы имеют дискретный спектр резонансных частот и соответствующие им собственные колебания с малыми потерями на излучение в свободное пространство.

Следовательно, если задать начальное распределение поля на одном из зеркал и представить его в виде суммы собственных колебаний такой системы, и считать, что эти колебания имеют различную связь со свободным пространством, то через некоторый промежуток времени, затухая по экспоненциальному закону, колебания будут иметь тем меньшую амплитуду, чем больше аргумент экспоненциальной функции. В конце концов в резонаторе будет существовать с заметной амплитудой только один вид колебаний с распределением поля, которое обеспечивает минимальные радиационные потери. Это в некотором приближении соответствует задаче Коши, но в данном случае различная связь со свободным пространством полей различных видов колебаний дает возможность найти характеристики нормального вида колебания, при котором потери минимальны. Очевидно, эту задачу разрешить тем легче, чем ближе исходное распределение поля к искомому.

Если отвлечься от явлений дифракции на ребрах зеркал, что справедливо для резонаторов с размерами зеркал, значительно превышающими длину волны, то можно смоделировать описанный выше процесс фильтрации, заменив отражения волны от зеркал последовательным прохождением ее сквозь абсолютно черные диафрагмы с апертурой отверстия, равной апертуре зеркала. Процесс распространения волны от диафрагмы к диафрагме можно описать с помощью линейного интегрального оператора, который позволяет найти поле в любой точке по заданному распределению на какой-либо поверхности. Очевидно, что если в такой системе останется волна, которая соответствует одному из собственных видов колебаний открытого резонатора, то при последовательном прохождении диафрагм нормированное поперечное распределение поля не будет изменяться. Связь с открытым пространством вызовет лишь уменьшение общей энергии, переносимой волной. Эти соображения позволяют свести задачу о нахождении собственных видов колебаний открытого резонатора к однородному интегральному уравнению Фредгольма второго рода типа

Рисунок убран из работы и доступен только в оригинальном файле., (2.1)

где v - поперечное распределение скалярного поля вблизи зеркала;

Рисунок убран из работы и доступен только в оригинальном файле. - константа, определяющая резонансные частоты и потери резонатора; интегрирование проводится по поверхности одного из зеркал.

В квазиоптическом приближении, когда

Рисунок убран из работы и доступен только в оригинальном файле. (2.2)

ядро интегрального уравнения упрощается, становится симметричным, но не эрмитовым:

Рисунок убран из работы и доступен только в оригинальном файле. (2.3)

где

Рисунок убран из работы и доступен только в оригинальном файле. (2.4)

d - максимальное расстояние между зеркалами;

R - расстояние между точкой (х1 у1, z1) на одном из зеркал и точкой (х2, у2,z2) на другом.

Уравнения с такими ядрами в настоящее время детально не исследованы, хотя работы в этом направлении ведутся. Следует отметить, что это интегральное уравнение можно вывести более строгим путем, исходя из уравнений Максвелла.


3. Канализация энергии в субмиллиметровом диапазоне

3.1 Металлические волноводы

3.1.1 Одноволновые металлические волноводы

Металлические одноволновые волноводы являются наиболее распространенными в сантиметровом диапазоне и длинноволновом участке миллиметрового диапазона.

При переходе в коротковолновую часть диапазона субмиллиметровых волн свойства одноволновых волноводов значительно ухудшаются. В первую очередь следует отметить быстрое увеличение погонных потерь по мере укорочения длины волны.

Стенки реальных волноводов имеют неровности, соизмеримые с глубиной проникновения тока вследствие поверхностного эффекта и часто превышающие ее. Это приводит к удлинению пути тока и, следовательно, к дополнительному увеличению затухания по отношению к расчетному. Поэтому уже на волне 2 мм результаты экспериментов почти в полтора раза превосходят расчетные данные.

При использовании одноволновых металлических волноводов неизбежными являются потери в местах сочленения секций линии передачи.

Таким образом, большие потери и чрезвычайно жесткие требования на изготовление и сочленения делают одноволновые волноводы непригодными для передачи энергии в субмиллиметровом диапазоне даже на малые расстояния. Однако в длинноволновом участке диапазона (Рисунок убран из работы и доступен только в оригинальном файле. = 1 - 0,5 мм) часто используют короткие, длиной от нескольких миллиметров до сантиметра, отрезки таких волноводов в детекторах, смесителях, возбудителях и других устройствах, моделирующих соответствующие устройства техники сантиметровых волн.

Одноволновые волноводы чаще всего изготовляют методами гальванопластики. Для этого предварительно из нержавеющей стали изготовляют оправку с размерами, равными размерам будущего волновода. Оправку полируют, обезжиривают и помещают в гальваническую ванну, где на ней наращивают слой меди требуемой толщины. Процесс изготовления волновода заканчивается извлечением оправки.

Для устранения потерь в сочленениях зачастую делают сложные составные оправки. Таким способом могут быть изготовлены скрещенные волноводы для смесителей, переходы от одноволновых волноводов к волноводам увеличенных сечений и т. п.

3.1.2 Металлические волноводы увеличенных сечений

Увеличение внутренних размеров волновода позволяет уменьшить затухание и повысить допустимую мощность. Так, одноволновый волновод на волну Рисунок убран из работы и доступен только в оригинальном файле.= 0,2 мм имеет затухание 120 Дб/м и допустимую мощность всего 0,02 кВт. На этой же волне волновод с сечением 10x23 мм характеризуется затуханием 0,8 Дб/м и допустимой мощностью 275 кВт. Однако, несмотря на малое затухание, использование таких волноводов ограничивается тем, что в них может существовать большое число колебаний высших видов.

Если поперечное сечение волновода значительно больше Рисунок убран из работы и доступен только в оригинальном файле.2, то число возможных волн в волноводе n можно приближенно найти по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.. (3.1)

Из этого соотношения следует, что число волн в волноводе пропорционально площади сечения волновода и обратно пропорционально квадрату длины волны. Так, на волне 0,2 мм в волноводе сечением 10*23 мм может существовать свыше 30000 типов волн.

3.2 Диэлектрические волноводы

Для передачи энергии в миллиметровом диапазоне радиоволн было предложено много разновидностей линий поверхностной волны.

Самым общим свойством линий поверхностной волны является то, что фазовая скорость волны в таких линиях меньше скорости света. Отсюда другое их название - линии замедленной волны. Именно замедлением фазовой скорости объясняется другое свойство линий поверхностной волны: электромагнитное поле «прижато» к некоторым направляющим структурам, хотя ничто не ограничивает его со стороны внешнего пространства. Поэтому линии поверхностной волны могут быть отнесены к открытым линиям.

Между замедлением фазовой скорости и протяженностью поля в поперечном направлении существует обратная зависимость - с уменьшением замедления концентрация энергии вблизи направляющей структуры ослабевает, а занятое электромагнитным полем пространство (в поперечном направлении) увеличивается. При этом напряженность поля у поверхности направляющей структуры понижается, что приводит к уменьшению тепловых потерь в конструктивных элементах линии. Снижение напряженности поля позволяет также передать по линии большие мощности без опасности электрического или теплового пробоя.

С другой стороны, если волна очень слабо замедлена и занимает большое сечение, то она оказывается слабо связанной с направляющей структурой. Распространение такой волны будет сопровождаться даже на слегка искривленных участках линии сильным излучением. Кроме того, слабо замедленные волны с трудом возбуждаются, т. е. при их возбуждении в линии значительная часть энергии источника может бесполезно излучаться.

С укорочением длины волны применение таких линий ограничивается как возрастанием погонного затухания, так и технологическими трудностями.

Для работы в диапазоне субмиллиметровых волн наиболее подходящим является, пожалуй, обычный диэлектрический волновод, представляющий собой стержень круглого или овального сечения, выполненный из высококачественного диэлектрика. Для передачи энергии целесообразно использовать основную, так называемую дипольную волну, которая в волноводе круглого сечения обозначается как НЕ11. Диаметр стержня выбирается так, чтобы получить требуемую степень концентрации энергии вблизи стержня. При уменьшении степени концентрации энергии структура поля дипольной волны становится близкой к структуре поля плоской поперечной волны ТЕМ.

Затухание в диэлектрическом волноводе при постоянной фазовой скорости растет пропорционально частоте, тогда как в стандартных металлических волноводах затухание пропорционально частоте в степени три вторых. Отсюда следует, что с укорочением длины волны относительные преимущества диэлектрического волновода возрастают.

Потери в направляющем стержне в сильной степени зависят от замедления фазовой скорости. Это понятно, так как в слабо замедляющем волноводе основная доля энергии переносится вне стержня, а в сильно замедляющем - внутри его.

Факт уменьшения потерь при уменьшении диаметра ряд авторов рассматривает как потенциальную возможность получения очень малых затуханий. Однако при этом не следует забывать, что диэлектрический волновод является открытой линией передачи, в которой любая неоднородность вызывает появление волн излучения. Волны излучения уносят энергию, которая является энергией потерь и увеличивает затухание в волноводе. Этот фактор все усиливается по мере уменьшения замедления фазовой скорости и ставит предел получению очень малых линейных затуханий.

При работе в субмиллиметровом диапазоне всегда следует считаться с потерями в среде, окружающей волновод. При весьма малых замедлениях эти потери будут близки к потерям волны, распространяющейся в свободном пространстве. Если потери в среде значительны, то могут оказаться более выгодными волноводы с сильнозамедленной волной в высококачественном диэлектрике.

Потери в местах размещения опор диэлектрического волновода могут быть существенными при использовании слабозамедленных волн. В качестве опор могут служить пластины пенополистирола или весьма тонкие диэлектрические нити. Диэлектрические нити более предпочтительны для линий с слабозамедленной волной.

Потери на опорах происходят из-за отражения, излучения и поглощения. Расчет потерь на опорах затруднителен, однако ясно, что потери будут снижаться по мере уменьшения тангенса угла потерь и диэлектрической проницаемости материала опоры и ее толщины. Согласно экспериментальным данным потери на одну опору, представляющую собой пенополистироловую пластинку, составляют 0,05 Дб.

Потери на возбуждение возникают в месте стыковки двух различных волноводных систем (например, диэлектрического волновода с металлическим волноводом генератора). В возбуждающих устройствах часть энергии теряется (отражается, излучается, уходит с нежелательными типами волн), и только определенная доля энергии распространяется в виде рабочей волны.

Общий принцип построения высокоэффективных возбудителей заключается в следующем: нужно плавно изменять форму и размеры первичного волновода с тем, чтобы в некотором сечении иметь амплитудное и фазовое распределение компонентов поля, близкое к распределению поля поверхностной волны. Если в этом сечении первичный волновод оборвать и продолжить дальше волновод диэлектрический, то потери на возбуждение будут минимальными.

Хорошие показатели могут быть достигнуты при возбуждении дипольной волны в круглом диэлектрическом волноводе колебаниями вида Н11 круглого металлического волновода, плавно переходящего в круглый рупор. Схематически разновидности рупорных возбудителей показаны на рис. 3.1. Рупор с линзой, корректирующей фазу, радиус раскрыва которого выбирается из соотношения может обеспечить возбуждение линии с потерями, не превышающими 30%.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 3.1 Различные виды эффективных возбудителей диэлектрического волновода.

Рисунок убран из работы и доступен только в оригинальном файле. (3.2)

Некоторым недостатком диэлектрического волновода круглого сечения является неустойчивость поляризации волны.

Для устранения поляризационной неустойчивости могут быть использованы волноводы эллиптического или овального сечения. Овальный волновод получают прокаткой круглого волновода. Экспериментально установлено, что оптимальным является такое сечение волновода, когда b/a = 2. Под Ь и а понимают максимальный и минимальный размеры сечения. При таких соотношениях достигается максимальный разнос фазовых скоростей волн (и соответственно затухания) с поляризацией вдоль большего и меньшего размера сечения волновода.

Диэлектрические волноводы очень удобны для работы в коротковолновом участке миллиметрового диапазона.

В субмиллиметровом диапазоне волн применение диэлектрических волноводов ограничивается рядом причин, среди которых в первую очередь следует назвать отсутствие диэлектриков с малыми потерями. Серьезные затруднения возникают при использовании волноводов со слабозамедленной волной из-за весьма малых поперечных размеров диэлектрического стержня, недостаточной его прочности и т. п.

3.3 Квазиоптическая линия, образованная передающей и приемной апертурами

Идеальной была бы система канализации, формирующая электромагнитное поле в нерасходящийся волновой пучок, который распространяется в свободном пространстве. К сожалению, идее формирования нерасходящихся волновых пучков противоречит волновая природа электромагнитного поля. Тем не менее системы с раскрывами излучающего отверстия, значитачьно большими длины волны, позволяют формировать пучки с весьма малой расходимостью. Наглядным примером может служить излучение квантового генератора, само по себе остронаправленное. Если такой генератор поместить в фокус телескопа, то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут оказаться наиболее простыми.

3.4 Линзовые и зеркальные лучевые волноводы

Описанные выше линии передачи не обладают свойствами самофильтрации и имеют ограничения по длине, определяемые величиной зоны Френеля. Действительно, в ближней и френелевской зонах излучаемое поле имеет вид лучевой трубки, диаметр которой увеличивается с ростом расстояния. Быстрое увеличение расходимости пучка начинается в конце зоны Френеля. Если же на некотором расстоянии от излучающего раскрыва, где фронт волны становится уже заметно выпуклым (расходящийся пучок), установить длиннофокусную линзу, преобразующую выпуклый волновой фронт в вогнутый, то получим сходящийся волновой пучок. Вследствие эффектов фокусировки и дифракционного расширения сечение пучка после линзы сначала несколько уменьшается, а затем вновь увеличивается. На следующую такую линзу падает расходящийся пучок; эта линза вновь фокусирует его, направляет к очередной линзе и т. д.

В результате получаем устройство, в котором осуществляется направленное распространение пучков электромагнитных волн. Такие канализирующие системы получили название лучевых волноводов. Линзовый лучевой волновод впервые был предложен Губо.

Назначение линз в линии Губо — периодически исправлять, корректировать распределение фазы по сечению пучка без заметного изменения его амплитудного распределения. Поэтому линзу в такой линии рассматривают как фазовый корректор. Линза из диэлектрика не является единственно возможным видом фазового корректора. Были предложены лучевые волноводы, где роль фазовых корректоров выполняют металлические фокусирующие зеркала. Такие линии передачи получили название зеркальных лучевых волноводов или зеркальных линий.

Пучок в лучевом волноводе представляет собой распространяющуюся электромагнитную волну, занимающую в пространстве область примерно цилиндрической формы, которую можно охарактеризовать некоторым эффективным радиусом. На расстояниях от центра пучка, превышающих этот радиус, поле экспоненциально убывает. Поперечное сечение фазовых корректоров выбирают так, чтобы «перехватить» возможно большую часть распространяющейся энергии, однако часть вышедшей из каждой предыдущей линзы энергии все же не достигает последующей, поэтому в лучевом волноводе всегда имеют место дифракционные потери.

Доказано, что пучок волн, направляемый лучевым волноводом, может быть разложен на элементарные пучки с вполне определенным устойчивым распределением полей в поперечном сечении. Эти элементарные пучки являются собственными волнами лучевого волновода. Как и у обычных волноводов, собственные волны лучевого волновода удовлетворяют соотношениям ортогональности. Вследствие того, что дифракционные потери растут с увеличением номера волны, энергия, переносимая высшими типами волн, быстро падает и по волноводу в конечном счете распространяется волна низшего типа, обычно называемая основной. Таким образом, заметное отличие дифракционных потерь различных типов волн и обусловливает свойства самофильтрации лучевого волновода.

Существует глубокая физическая аналогия между линиями из фазовых корректоров и соответствующими открытыми резонаторами. Оказывается, процесс распространения электромагнитных пучков в лучевых волноводах и колебания в соответствующих резонаторах близки настолько, что собственные колебания резонаторов и собственные волны лучевых волноводов описываются тождественным образом, дифракционные потери в резонаторах и волноводах одинаковы и т. п.

Оба вида устройств описываются одними и теми же однородными интегральными уравнениями Фредгольма второго рода. Аналогия между линиями и резонаторами широко использовалась уже в первых исследованиях квазиоптических систем. В частности, при расчете типов колебаний в открытых резонаторах Фокс и Ли применили эквивалентную математическую модель лучевых волноводов, а с другой стороны, Губо использовал эквивалентный открытый резонатор для экспериментального исследования дифракционных потерь и изучения установления стационарного процесса в линзовой линии.

При резонансе на определенном виде колебаний в резонаторе поле состоит из двух встречных волн эквивалентной линии. Поэтому все формулы и графики, полученные для собственных функций и собственных значений для открытых резонаторов, полностью переносятся на эквивалентные регулярные открытые линии.

Как в лучевых волноводах, так и в резонаторах поле формируется в виде длинных пучков. Обычно ширина пучка значительно меньше его длины и много больше длины волны. В таких системах большими числами являются следующие отношения:

Рисунок убран из работы и доступен только в оригинальном файле. (3.3)

где а — радиус раскрыва и d — расстояние между корректорами. Одной из основных характеристик системы является дифракционный параметр

Рисунок убран из работы и доступен только в оригинальном файле.. (3.4)

Практически все теоретические результаты для линий и резонаторов получены для условий, когда соотношения хорошо выполняются (резонаторы и линии для квантовых генераторов).

Потери в лучевых волноводах:

1. Дифракционные потери являются характерной особенностью лучевых волноводов. Благодаря этому виду потеоь лучевые волноводы обладают хорошо выраженными свойствами самофильтрации. Дифракционные потери регулярного конфокального лучевого волновода определяются только величиной параметра С. Соответствующим выбором значения С дифракционные потери могут быть сведены к сколь угодно малым значениям. Следует оговорить, что вопрос о допустимом уровне дифракционных потерь при расчете линии передачи должен быть решен с учетом всех остальных видов потерь, так как при очень малых дифракционных потерях (по отношению к остальным) свойства лучевого волновода ухудшаются - теряются селективные свойства и неоправданно возрастают габариты.

2. Потери на отражение для одной линзы линзового лучевого волновода равны

Рисунок убран из работы и доступен только в оригинальном файле.Дб , (3.5)

где Г - коэффициент отражения по мощности.

3. Тепловые потери в линзе определяются в первую очередь величиной тангенса угла потерь tgРисунок убран из работы и доступен только в оригинальном файле. исходного диэлектрика и его толщиной. Поскольку линза неравномерна по толщине, то поглощение в ней зависит еще и от распределения поля.

Величина тепловых потерь на одиночной линзе для волн ТЕМmn определяется следующим выражением:

Рисунок убран из работы и доступен только в оригинальном файле.Дб, (3.6)

где D0—максимальная толщина линзы.

4. Потери в среде всегда должны учитываться при построении субмиллиметровых линий передачи. Средой, в которой происходит распространение радиоволн при использовании квазиоптических методов, является, как правило, атмосферный воздух. Известно, что для волн с частотой ниже 1 Ггц атмосфера является практически прозрачной. Ослабление энергии весьма мало даже при большой протяженности линии передачи. На более высоких частотах сказываются два фактора:

- поглощение и рассеивание радиоволн на сосредоточенных объектах, присутствующих в воздухе;

- резонансное поглощение в атмосферных газах и парах воды.

5. Потери на возбуждение возникают в том случае, когда амплитудное и фазовое распределение волны, поступающей на вход лучевого волновода, отличается от распределения рабочей волны (первой собственной волны). Действительно, возбуждающее поле может быть разложено в ряд по собственным волнам регулярного лучевого волновода. Коэффициенты разложения будут представлять собой амплитуды возбуждаемых волн. Поскольку волны высших порядков при распространении в линии быстро затухают, энергия, затраченная на их возбуждение, теряется впустую.


4. Элементы трактов субмиллиметрового диапазона

В связи с изобретением и широким применением на практике лучевых волноводов возникла необходимость в разработке вспомогательных устройств, позволяющих управлять канализируемой энергией электромагнитных волн. В СВЧ диапазоне используются различные волноводные элементы: тройники, двойные тройники, направленные ответвители, аттенюаторы, делители мощности, согласованные поглощающие нагрузки, различного вида согласующие устройства и т. д.

Как и в обычных металлических волноводных линиях, связь генератора или передающей квазиоптической линии с измерительными приборами различного назначения осуществляется с помощью направленного ответвителя. Основное назначение этого устройства - ответвить некоторую часть энергии электромагнитных колебаний, проходящей по линии передачи в прямом или обратном направлении. Кроме этого он может использоваться как постоянный или переменный аттенюатор при измерении больших уровней энергии, в измерителях проходящей мощности, измерителях коэффициента стоячей волны, для связи индикаторов или спектральных приборов, контролирующих работу линии при настройке, и т. д.

4.1 Направленные ответвители

Рассмотрим различные варианты построения направленных ответвителей.

Если электромагнитная волна падает под углом 45° на проволочную решетку или диэлектрическую пластину, то ее энергия делится на две части: одна часть проходит прямо, а другая отражается под прямым углом к направлению пришедшей волны. Величина ответвленной энергии зависит от коэффициентов пропускания и отражения полупрозрачной пластины. В случае применения проволочной решетки коэффициент отражения зависит от густоты расположения проволок, точнее от отношения шага к длине волны облучающего сигнала. По мере укорочения длины волны или при увеличениишага решетки коэффициент отражения уменьшается.

Заметим, что коэффициент отражения делителя с решеткой зависит от поляризации волны. Благодаря этому имеется возможность изменять величину отражения. Если угол между направлением вектора Е и проволочками равен Рисунок убран из работы и доступен только в оригинальном файле., то коэффициент отражения

г' = г sinРисунок убран из работы и доступен только в оригинальном файле.. (4.1)

Коэффициент отражения тонкой диэлектрической пластинки, как известно, определяется величиной диэлектрической проницаемости Рисунок убран из работы и доступен только в оригинальном файле. материала. Для пластины, расположенной под углом 45° к направлению распространения электромагнитной волны, он может быть найден из соотношения:

Рисунок убран из работы и доступен только в оригинальном файле.. (4.2)

Если один диэлектрик расположен вблизи другого, как, например, в случае двух призм, то, как было замечено Бозе, происходит переход энергии из одной призмы в другую. Изменяя расстояние между призмами, можно получить отношение переданной и отраженной энергии электромагнитной волны от нуля до очень большой величины.

Квазиоптический призменный направленный ответвитель характеризуется теми же параметрами, что и волноводный: переходным затуханием, направленностью и диапазоном рабочих частот.

Направленность ответвителя характеризует отношение мощностей электромагнитных волн, распространяющихся в побочном плече в противоположных направлениях при бегущей волне в основной линии. Эта величина выражается в децибелах и может быть найдена как:

Рисунок убран из работы и доступен только в оригинальном файле.. (4.3)

Направленность квазиоптического ответвителя зависит от толщины воздушного зазора между призмами и рабочей частоты. Она может изменяться в широких пределах.

Рабочий диапазон призменного устройства весьма широк. С увеличением частоты он ограничивается допусками на обработку поверхности призм и требованиями к механизму перемещения. Ограничение со стороны длинных волн обычно обусловлено конструктивными элементами. Действительно, при увеличении длины волны сигнала, с одной стороны, оказывается необходимым увеличить размеры призм из-за расширения волнового пучка, с другой стороны, для достижения тех же характеристик потребуется увеличить воздушный зазор между призмами, а механизм перемещения имеет ограниченные возможности.

4.2 Аттенюаторы

Зависимость ответвляемой мощности от величины воздушного зазора призменного направленного ответвителя может быть также использована при конструировании аттенюаторов для квазиоптических линий передачи. Как известно, аттенюаторы используются для уменьшения мощности, поступающей от источника колебаний к нагрузке или развязки сверхвысокочастотных цепей между собой для уменьшения их взаимного влияния. Степень уменьшения мощности или затухание аттенюаторов выражается в децибелах:


Рисунок убран из работы и доступен только в оригинальном файле., (4.4)

т. е. определяется отношением мощности колебаний на выходе устройства (P1/) к мощности приходящего сигнала (P1).

Если аттенюатор используется совместно с измерителем малой мощности, то поступающая к нему мощность связана с измеренной следующим образом:

Р1=Р1/*100,1В

В субмиллиметровых квазиоптических линиях передачи наибольшее распространение нашли призменные, поляризационные и поглощающие аттенюаторы. Причем призменные устройства в известной степени являются аналогами предельных аттенюаторов сантиметрового диапазона радиоволн.

Для ослабления сигнала в квазиоптической линии передачи может быть использован поляризационный аттенюатор. В основу конструкции устройства положена зависимость уровня сигнала, прошедшего через проволочную или ленточную решетку, от угла, образованного направлением вектора электрического поля Е и лентами или проволоками.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 4.1. Схема решетчатого аттенюатора

Из теории дифракционных решеток известно, что если плоская электромагнитная волна падает на решетку нормально к ее поверхности, то происходит искажение конфигурации поля, характеризующееся отраженной волной (коэффициент отражения а0) и прошедшей волной (коэффициент прохождения Ь0).

Для поляризационного квазиоптического аттенюатора обычно используются густые проволочные или ленточные решетки, у которых период связан с длиной волны облучающего поля неравенством

L<<Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис. 4.2 Схема поляризационного аттенюатора с двумя дифракционными решетками

Существенным недостатком поляризационного аттенюатора на одной решетке является то, что он сам изменяет поляризацию сигнала. Это во многих случаях практики недопустимо. Поэтому была предложена система из двух решеток, свободная от указанного недостатка.

На рис. 4.2 показано взаимное расположение двух решеток. Причем одна из них может быть повернута на произвольный угол q относительно другой. Неподвижная (внешняя по отношению к падающей волне) решетка предназначена для восстановления первоначальной поляризации сигнала, т. е. для того, чтобы исключить влияние решетчатого аттенюатора на вид поляризации электромагнитной волны, распространяющейся по тракту.

Обычно для решеток аттенюатора выполняется условие l<<Рисунок убран из работы и доступен только в оригинальном файле.. Для случая взаимного расположения решеток, показанного на рис. 4.2, составляющая падающего поля Ех полностью пройдет через неподвижную решетку, а составляющая Еу, возникающая после прохождения через подвижную решетку, отразится и не пройдет дальше неподвижной решетки.

Затухание двухрешетчатого аттенюатора подсчитывает-ся по формуле:

Рисунок убран из работы и доступен только в оригинальном файле.Дб. (4.5)

4.3 Модуляторы

Используемые в диапазоне субмиллиметровых волн генераторные лампы не дают возможности осуществлять амплитудную модуляцию сигнала без сколько-нибудь заметных смещений частоты. Здесь практически приемлемой становится лишь амплитудная модуляция в линии передачи, основанная на активном поглощении части энергии без заметного отражения в источник излучения, так как последнее также может привести к неустойчивости частоты генератора.

Полупроводники, проводимость которых может электрическим путем меняться во много раз, позволяют создать активные модуляторы для линий передачи всех диапазонов длин волн начиная от метровых и кончая коротковолновым участком инфракрасного спектра. Основные конструктивные особенности модуляторов в соответствующем диапазоне частот в значительной степени определяются механизмом взаимодействия электромагнитных волн с полупроводниковым материалом и способом канализации энергии.

Поскольку с укорочением длины волны начинают сказываться явления, которые не проявлялись заметно на более низких частотах (дисперсия показателя преломления и показателя поглощения ряда веществ, увеличение потерь и др.), то в субмиллиметровом диапазоне для решения необходимых практических задач требуются совершенно новые методы и технические приемы. В частности, имеется тенденция решать практические и исследовательские задачи в субмиллиметровом диапазоне методами, принятыми в оптике. Управление энергией в этом диапазоне также целесообразно осуществлять, используя некоторые оптические свойства полупроводников, связанные с поглощением фотонов малой энергии.

Практически это можно осуществить, располагая на пути пучка электромагнитной энергии некоторый объем полупроводника, оптическая плотность которого может меняться вследствие изменения концентрации или подвижности свободных носителей тока. При этом используются процессы, совершающиеся в объеме тел, а не в очень малых по сравнению с длиной волны областях (как, например, в точечном диоде).

Наиболее простой метод изменения концентрации свободных носителей тока — это инжекция неосновных носителей с помощью р-п перехода. В этом случае модулятор представляет собой полупроводниковую пластинку, на одном конце которой имеется р -п переход, а на другом — неинжектирующий эксклюзионный п-п+ или р-р+ переход («омический контакт»). Пластинка располагается поперек сфокусированного пучка энергии в лучевом волноводе, заполняя все его сечение, причем контакты находятся за пределами электромагнитного поля. При пропускании тока через такой диод изменяются концентрация носителей тока в объеме вследствие инжекции неосновных носителей тока из р-п перехода при этом изменяется' и прозрачность слоя по отношению к электромагнитной энергии. Так может быть осуществлена модуляция энергии в лучевом волноводе.

Плоский слой вещества с управляемой концентрацией носителей тока обладает свойствами, интересными с точки зрения применения их для управления электромагнитным излучением. Отраженная от слоя и прошедшая сквозь слой энергия, а также коэффициент модуляции прошедшей энергии являются осциллирующими функциями относительной толщины слоя

Рисунок убран из работы и доступен только в оригинальном файле.

(d—толщина слоя, Рисунок убран из работы и доступен только в оригинальном файле. - длина волны электромагнитного излучения, Рисунок убран из работы и доступен только в оригинальном файле. - диэлектрическая проницаемость полупроводника). При этом возможен ряд вариантов.

Когда толщина слоя кратна половине длины волны в нем, коэффициент отражения, начальные потери и скачок фазы отраженной волны минимальны и слабо растут с увеличением проводимости слоя; коэффициент модуляции прошедшей волны максимален (т = 80 - 90%).

Если толщина слоя полупроводника кратна четверти длины волны в нем, то коэффициент отражения и начальные потери максимальны, скачок фазы отраженной волны мал (несколько градусов), коэффициент модуляции минимален.

Широкополосность модуляторов можно увеличить применением, например, антиотражающих покрытий или такой ориентировкой образца, при которой коэффициент отражения вертикально-поляризованной волны минимален. В качестве согласующих материалов используются кварц, полиэтилен, слюда.

5. Измерение частоты и мощности в субмиллиметровом диапазоне

5.1 Измерение частоты и длины волны

Частота или длина волны колебаний субмиллиметрового диапазона является одной из основных характеристик, подлежащих определению при аттестации генераторов и приемников, диагностике плазмы и изучении свойств различных веществ как твердых, так и газообразных. Особенно важно знать точное значение частоты или длины волны колебаний при спектроскопических исследованиях.

Развитие радиотехники миллиметрового диапазона радиоволн, освоение нового, более коротковолнового субмиллиметрового диапазона потребовало разработки специальных приборов для измерений частоты и длины волны. Принципиально возможны два пути решения этой задачи: использование хорошо известных радиотехнических методов частотных измерений и не менее хорошо разработанных оптических методов измерений длины волны с помощью различных оптических резонаторов (интерферометров) и дифрактометров. Кроме этого, возможны гибридные системы, использующие как радиотехнические, так и оптические методы измерений.

В свободном пространстве скорость движения волны v равна скорости света с. При распространении радиоволн в различных средах и линиях передачи их фазовая скорость отличается от скорости света. Фазовая скорость, или фазовая длина волны в волноводах, зависит от их формы и геометрических размеров. Итак, при постоянной частоте колебаний f их фазовая скорость и длина волны не являются постоянными величинами при распространении в различных средах и линиях передачи. В то же время частота колебаний не зависит от условий распространения электромагнитной энергии и является постоянным параметром, характеризующим электромагнитное колебание.

В практике измерений на СВЧ удобно пользоваться термином «длина волны», так как геометрические размеры колебательных систем соизмеримы с длиной волны. Благодаря этому имеется возможность во

Здесь опубликована для ознакомления часть дипломной работы "Устройства генерирования и канализации субмиллиметровых волн". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 614

Другие дипломные работы по специальности "Коммуникации и связь":

«Реклама и связи с общественностью», «Маркетинг»

Смотреть работу >>

Ремонт системы управления видеокамер аналогового формата

Смотреть работу >>

Теория электрических цепей

Смотреть работу >>

Роботизированные комплексы (РТК) предназначенные для технологического процесса сборки

Смотреть работу >>

Моделирование и методы измерения параметров радиокомпонентов электронных схем

Смотреть работу >>