Дипломная работа на тему "Экзогенные геологические процессы на юге Ивановской области"

ГлавнаяГеология → Экзогенные геологические процессы на юге Ивановской области




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Экзогенные геологические процессы на юге Ивановской области":


Содержание

Введение

1. Освещение темы «Экзогенные геологические процессы» на территории юга Ивановской области

2. Физико-географический очерк

3. Геология

3.1 Стратиграфия осадочного чехла

3.2. Тектоника

3.3 История геологического развития

3.4 Полезные ископаемые

Выв оды

4. Геоморфология

4.1 Ледниковые формы рельефа

4.2 Морфология речных долин

Выв оды

5. Экзогенные геологические процессы, развитые на территории юга Ивановской области

5.1 Карстовые процессы

5.2 Процесс заболачивания территории

5.3 Современные физико-геологические процессы

Выв оды

Заключение

Литература

Приложение


Введение

Тема нашей научно-исследовательской работы называется экзогенные геологические процессы юга Ивановской области. Геология – фундаментальная важнейшая наука. Геологическое изучение территории является основополагающим аспектом при комплексной оценке географии и геоморфологии рельефа.

История развития и становления рельефа, основные пути его формирования напрямую связаны с геологическими процессами, крупными тектоническими структурами.

Изучаемая территория расположена в центральной части Восточно-Европейской платформы, на южном борту Московской синеклизы, занимает южную часть Ивановской области, в геологическом отношении относящуюся к северной оконечности Окско-Цнинского вала.

Актуальность выбранной темы определяется двумя основными моментами. Во-первых, именно в этом районе широкое развитие получили карстовые явления, с которыми связаны экзогенные геологические процессы. Карст существенно влияет на ландшафтные особенности территории, ее рельеф, сток подземных вод, характер рек и озер, почвенно-растительный покров, хозяйственную деятельность населения. Во-вторых, слабая научно-информационная база современной школы по таким вопросам, как общая геология, геоморфология, так и в частности, проявление на территории области экзогенных процессов.

Основной целью данной работы было поставлено изучение характерных проявлений экзогенных геологических процессов и важнейших факторов на них влияющих.

В соответствии с поставленной целью, был выдвинут ряд задач.

1. Анализ опубликованных работ ученых, краеведов, занимавшихся изучением геологи и геоморфологии Ивановской области.

2. Выбор и обобщение из опубликованных литературных материалов данных, непосредственно касающихся геологического строения территории изучаемого района.

3. Анализ и обобщение сведений по геоморфологии изучаемого района.

4. Изучение и обработка данных о развитии экзогенных геологических процессов в пределах изучаемого района и проявлении современной активности этих процессов.

5. На основе полученных данных, обобщенных в единой работе, разработать возможные варианты применения этих сведений в учебно-воспитательном процессе школы, а так же педагогических вузов, подготавливающих студентов по специальности география.

Проблема исследования темы заключается в том, что отсутствуют литературные источники, содержащие конкретные сведения о развитии экзогенных геологических процессов в пределах изучаемой территории.

Объектом исследования в данной работе является территория юга Ивановской области, с развитыми на ней экзогенными геологическим процессами.

Исследование проводилось с использованием следующих методов:

- анализ литературных источников (изучение литературы по исследуемой теме);

- картографический метод;

- метод полевых наблюдений;

- описание и др.

Методологической основой и исходными материалами послужили работы российских ученых – географов: Архангельского А.Д., Гордеева Д.И., Дикенштейна Г.Х., Гвоздецкого Н.А., Сухова В.П., Смурнова Г.В., Суходонова А.К., Щукина И.С. и др. [4, 8, 13, 18, 45, 46, 47, 49].

Исходные материалы: фондовые данные, литературные источники, карты, материалы полевых исследований, собственные исследования.

Научная новизна. Впервые были собраны в единую работу материалы по развитию экзогенных геологических процессов на юге Ивановской области.

Широкого и подробного описания юга Ивановской области не проводилось. Частично отдельные участки описывались как сопредельные при изучении соседних областей, или же районов Ивановской области, граничащих с изучаемой территорией. Теоретическая значимость заключается в обобщении разрозненных данных и составления комплексного описания изучаемой территории.

Практическая значимость работы заключается в том, что материалы исследования могут быть использованы в школе для создания учебно-методических пособий; в качестве пособия для школьного курса физической географии; как основа для создания факультативных курсов по геологии, геоморфологии, развитию экзогенных геологических процессов на территории родного края. Эти материалы подобным образом могут быть использованы так же в вузах при подготовке учителей географов.

Структура и объем работы: данная работа состоит из введения, четырех глав, заключения, списка использованной литературы и приложения. Содержит 59 страниц. Список использованной литературы включает 45 источников.

рельеф геологический экзогенный геоморфология


1. Освещение темы «Экзогенные геологические процессы на территории юга Ивановской области» в фондовых и литературных источниках

Тема нашей дипломной работы включает не только описание экзогенных геологических процессов, но и содержит подробную информацию о геологическом строении, тектонике, полезных ископаемых, морфологии изучаемой территории.

Первые исследования геологического строения на территории нашей области проводились в 30-е годы.

С конца 50-х годов до настоящего времени проведено несколько работ, освещающих геологическое строение, тектонику, гидро-геологичские и инженерно-геологические условия, полезные ископаемые рассматриваемой площади. Особенно следует отметить работу А. И. Москвитина (1976 г.), посвященную четвертичным отложениям и книгу «Московский ледниковый покров Восточной Европы» под редакцией Г. И. Горецкого. В этих книгах содержится подробная информация о динамике московского ледника. В частности говорится о том, что московский ледник полностью перекрывал Ивановскую область. В отчетах Ивановского геологического фонда опубликованы данные, свидетельствующие о том, что московский ледник не дошел до границ с Ивановской областью, и изучаемая нами территория перекрыта отложениями днепровского ледника. В нашей работе мы используем данные, опубликованные в книгах под редакцией Горецкого, Москвитина и придерживаемся, точки зрения, что московский ледник был на территории Ивановской области и оставил мощные отложения, заложившие основу для формирования современного рельефа [34, 35].

Некоторые сведения по изучаемой теме можно получить, проанализировав литературу, в которой дается описание всей Ивановской области. Это такие книги как «Природные ресурсы Ивановской области» (сборник статей) под редакцией Хелевина Н. В.; учебное пособие для 8 класса Барской Х. И. и Кряковского И. В. «География Ивановской области» 1966 г.; Гордеев Д. И. и Касаткин В. Г. «Поверхность и почвы Ивановской области», 1931 г.; сборник статей «Природа Ивановской области» 1976 и 1984. Из названия книг понятно, что они содержат поверхностные данные, в крайне сжатом варианте [5, 14, 43, 42]

Изучаемая нами территория описывалась на основании четырех листов: О – 37 ХХХ (Абрамов, Воронина), О – 38 ХХХI (Алехин), О – 38 ХХХVI (Абрамов, Воронина) и лист О – 38 ХХV [1, 2, 15, 16] Наши данные основываются на результатах геолого-гидрологической съемки масштаба 1:200 000. Нужно отметить, что исследования юга Ивановской области не проводились, и лишь отдельные районы изучаемой территории были охвачены съемкой и описаны. Анализ материалов ХХХ, ХХХI, ХХХVI, ХХV листов позволил составить комплексное описание территории. Так как данные листы содержат объяснительную записку и прилагающиеся к ней карты дочетвертичных, четвертичных отложений и геолого-гидрологических условий, с их помощью описаны геологическое строение и морфология изучаемой территории. При описании геологии были так же использованы и другие источники литературы. Подробные сведении о геологической истории Ивановской области содержатся только в одной книге «Геологическая история области» автора Гордеева 1931 г. В этом источнике автор очень подробно и доступно описывает историю развития территории родного края. Однако в 30-х годах геологическая история области была доступна изучению лишь с каменноугольной эпохи. Более древние отложения еще не были изучены, и говорить о том, как шло развитие территории в вендскую, кембрийскую, ордовикскую, силурийскую и девонскую эпохи не предоставлялось возможным [13]. Дополнительные сведения о геологическом строении территории были получены путем выборки материала из источников, которые охватывают большие районы и содержит материал о геологии, полезных ископаемых, тектонике и истории развития в  различные эпохи всей территории СССР или же Восточно-Европейской платформы. В качестве примера можно привести IV том геологии СССР. В данной работе обобщен огромный фактический материал о геологии центра Европейской части СССР, включая территорию Ивановской области [12].

Сведения о экзогенных геологических процессах содержатся в отчетах: Платоновой Г. К., Семенова В. А., опубликованных в 80-е годы. На основе анализа данных, полученных из отчетов, обобщения и систематизации информации были сделаны выводы [40].

Основным источником при описании экзогенных геологических процессов служила «Инженерно-геологическая карта интенсивности проявления экзогенных геологических процессов», составленная Платоновой Г. К. Данная карта является приложением к отчету по изучению экзогенных геологических процессов на территории Ивановской, Костромской и Ярославской областей. Карта наглядно демонстрирует площадную и линейную пораженность территории по коэффициенту интенсивности проявления экзогенных геологических процессов. Однако в самом отчете содержится лишь краткое описание процессов юга Ивановской области.

Наиболее развитым процессом в пределах изучаемой территории является карст. Основной теоретический материал о данном процессе, этапах развития, формах содержится в книге «Карст» И. А. Гвоздецкого. Особенности карстового рельефа описаны в учебниках общего землеведения автора Неклюковой [8,36].

Краткое описание основных физико-геологических процессов содержится в фондовых данных, учебниках по общему землеведению.

Итак, изучаемая тема практически не освещена в доступных литературных источниках. Наиболее полная информация о геологическом и геоморфологическом строении изучаемой территории, а так же об интенсивности проявления экзогенных геологических процессов в пределах изучаемого района содержится только в отчетах Ивановского

Государственного геологического фонда. Эти материалы и используются в написании данной работы.


2. Физико-географический очерк

Территория изучаемого района занимает южную часть Ивановской области.

В орографическом отношении изучаемая территория располагается в пределах Балахнинской низины, в которую входит Лухская низина.

В составе изучаемой территории можно выделить районы: левобережье реки Клязьмы; междуречье рек Уводи, Шижегды, Тезы и Луха.

Изучаемая нами территория представляет собой равнинную поверхность. Однако комплексное использование морфологических критериев позволяет выделить следующие типы рельефа. Северная часть представляет собой пологоволнистую, почти плоскую равнину. Южная часть изучаемой территории – чуть волнистую, заболоченную и очень слаборасчлененную равнину. Выделяемая в составе Балахнинской низины Лухская низина представляет собой плоскую, местами слабоволнистую, залесенную и заболоченную равнину.

Преобладают абсолютные отметки высот, изменяющиеся в среднем от 80 до 120 м. Характерно общее падение высот в южном направлении [14].

Гидрографическая сеть принадлежит бассейну реки Клязьмы. Главными водными артериями являются реки Клязьма, Лух и Теза.

Реки относятся к равнинному типу. Питание рек осуществляется за счет атмосферных осадков, которым принадлежит основная роль, и грунтовых вод. Режим всех рек характеризуется четко выраженным высоким весенним половодьем, наличием летних и осенних паводков, связанных с затяжными ливнями и продолжительной меженью. Половодье начинается обычно во второй половине марта – начале апреля и длится 5 – 6 дней. Уровень воды в половодье поднимается на 4 – 6 м, иногда на 8 – 9 м. На этот период падает небольшой расход воды в реках. В межень расход воды не значителен и составляет обычно 5 – 7 м3/сек. Так для Клязьмы меженный уровень (июль – сентябрь) характеризуется, расходами воды более 15 м3/сек, а для других рек он не превышает 4 – 6 м3/сек. Средний годовой расход варьируется от 2,13 до 18,6 м3/сек. Абсолютные отметки меженного уровня изменяются от верховий к низовьям в среднем от 120 до 94 м. Модуль поверхностного стока составляет, примерно 5,3 л/сек с 1 км 2. Средне годовой модуль стока изменяется, от 5,3 до 9,67 л/сек с 1 км 2. Подземный сток составляет 30 – 40% от общего речного стока.

Замерзают реки в конце ноября. Толщина льда 4 – 55 см. Расход воды в реках в этот период резко сокращается, а на мелких ручьях прекращается совсем. Вскрытие происходит в апреле, реже в марте, продолжительность ледостава и ледохода составляет в среднем от 3 до 6 дней [16].

Река Клязьма пересекает изучаемую территорию в широтном направлении. Средний уклон русла составляет 0,00016, скорость течения в межень 0,3 – 0,6 м/сек. Ширина русла реки 200 – 250 м, глубина в летнюю межень составляет примерно 1 – 6 м. На отдельных участках встречаются ямы и провалы карстового происхождения. Пойма возвышается на 3 – 5 м над меженным уровнем, в половодье затапливается, изобилует болотами. Долина реки имеет резко ассиметричный профиль с низким террасированным левым и крутым правым берегом. Ширина долины 17 – 20 км.

Река Лух пересекает восточную половину изучаемой территории в меридиональном направлении. Для нее характерны: сильная заболоченность долины, плоская пойма, низкие берега, обилие стариц. Русло реки извилистое, зарастающее, ширина его 60 – 100 м. Глубина изменяется от 0,2 – 0,5 до 2 – 3 м. Долина выражена в рельефе не четко. Река равнинная с небольшим уклоном русла 0,1 м на 1 км, в верховьях уклон увеличивается до 2,0 – 2,5 м на 1 км. Скорость в меженный период составляет 0,1 – 0,4 м/сек, в половодье 1,6 – 1,5 реже 2,0 м/сек.

Главная водная артерия в пределах западной части территории – река Теза, пересекает изучаемую территорию почти меридионально. Протяженность реки составляет около 130 км. Скорость течения 0,1 – 0,4 м/сек. Подъем воды в реке, во время половодья составляет 2,0 – 3,5 м.

Речные воды по химическому составу гидрокарбонатные, натриево-кальциевые и кальциево-натриевые, пресные, с минерализацией 0,1 – 0,2 г/л, общей жесткостью 0,15 – 0,26 мг*экв/л, со слабощелочной реакцией (Рh 7,3 – 7,5).

Озера в пределах изучаемой территории ледникового и карстового происхождения. В южной части распространены озера старичного происхождения [15].

Климат изучаемого района умеренно-континентальный с умеренно теплым летом продолжительностью 120 – 130 дней и продолжительной холодной зимой до 145 дней. Весенний период короткий, а осень облачная и часто дождливая. Средне годовая многолетняя температура составляет 4 градуса, средняя температура самого холодного месяца (января) – 11,2С, самого теплого (июля) + 18,4С. Минимальные температуры воздуха – 36С, максимальные +32С. Безморозный период составляет 120 – 130 дней. Средняя многолетняя норма осадков 440 мм, при колебаниях 304 – 683 мм. Около 70% осадков выпадает с мая по ноябрь. Наибольшее количество осадков наблюдается в июле – августе 75 – 77 мм, наименьшее 26 – 29 мм в феврале – марте. По многолетним данным количество наиболее влажных дней в году (относительная влажность воздуха 80 – 100%) 11 – 13, сухих 2 – 4. Южная часть изучаемой территории находится в условиях избыточного увлажнения. Годовая относительная влажность воздуха в среднем в пределах изучаемой территории равна 76%. Толщина снежного покрова колеблется от 25 до 50 см. Наибольшая толщина снежного покрова отмечается в январе – марте (35 – 55 мм). Глубина промерзания почвы изменяется от 21 до 77см. Испарение за год 320 мм, что составляет 63 – 67% к годовому количеству осадков.

Описываемая территория расположена в зоне смешенных лесов. Леса в пределах изучаемой территории березово-осиновые с елью. Обширные песчаные пространства заняты сосной; заболоченные – черной ольхой, карликовой березой и мелким осинником. Заболоченность Балахнинской низины способствует развитию болотной растительности – мхов, осоки, камыша, кустарников.

Почвы преобладают песчано-суглинистые подзолистые, дерново-подзолистые и болотные. На левобережье Клязьмы в области развития песков, почвенный слой в основном отсутствует [14].

Изучаемый нами район в основном сельскохозяйственной специализации. Главными отраслями сельского хозяйства являются производство зерна и животноводство. Ведутся лесозаготовки. Развита текстильная промышленность.


3. Геология

В данной главе рассматриваются вопросы стратиграфии осадочного чехла, особенности тектонического строения изучаемой территории, геологическое прошлое, полезные ископаемые и их размещение.

3.1 Стратиграфия осадочного чехла

Глубокого бурения на территории изучаемого района не проводилось, соответственно невозможно достоверно точно определить стратиграфию осадочного чехла в его пределах.

Как и в других районах Русской плиты, осадочный чехол территории может быть подразделен на два комплекса: рифейско-нижневендский комплекс авлакогенов (бурением не вскрыт, по геофизическим данным можно полагать, что он сложен преимущественно сильно уплотненными аргиллитами) и верхневендско-кайнозойский собственно плитный комплекс [12].

В основании осадочного чехла залегают отложения верхнего венда общей мощностью около 700м., охарактеризованные остатками водорослей. Нижняя часть отложений выделяется в редкинскую серию. Она сложена темно-серыми аргиллитами с прослоями кварцевых песчаников в ее подошве. Мощность серии 234м (интервал глубин 2250 – 2484м). Непосредственно над редкинской серией лежит поворовская серия, сложенная толщей ритмичного переслаивания пестроцветных (преимущественно красновато-коричневых и зеленовато-голубых) аргиллитов, алевролитов и песчаников, мощностью 482м.

Со следами размыва и базальными песчаниками в основании на венде залегают кембрийские отложения, общая мощность которых228м. Нижний кембрий сложен глинами с прослоями алевролитов и песчаников. В его верхней части залегает почти белая коалиновая глина – кора выветривания нижнекембрийских пород. Отложения нижнего кембрия в нижней части содержат фауну алданского яруса. Выше со стратиграфическим перерывом  алегает толща песчаников с прослоями красноцветных глин и алевролитов, условно отнесенная к среднему кембрию. Отложения верхнего кембрия представляют собой зеленовато-серые глины с обломками брахиопод.

Вскрыты ордовикские отложения, мощностью 89 м. В основании она представлена серо-зелеными глинами с прослоями мергелей, известняков и доломитов. Выше залегают органогенные известняки с прослоями мергелей и остатками кораллов, брахиопод, трилобитов и криноидей среднего ордовика.

Из разреза выпадают верхний ордовик, силур и нижний девон. Таким образом, отложения девона залегают на среднем ордовике со стратиграфическим несогласием.

Девонские отложения начинаются толщей глинистых, карбонатных и песчаных пород среднего девона мощностью 41 м, условно относящимися к эйфельскому ярусу. Вышележащий живетский ярус имеет мощность 153 м. Он сложен кварцевыми песками и песчаниками с единичными прослоями серых и коричневых глин с остатками остракод. К среднему девону отнесена и восемнадцатиметровая перекрывающая толща песчаников, пестроцветных алевролитов, глин и песчаников. Отложения верхнего девона представлены мощностью 327 м, состоящей из известняков, сменяющихся вверх по разрезу чередованием мергелей, доломитов, известняков и глин. Над ними залегают известняки, доломиты и мергели с прослоями глин мощностью 211 м.

Начиная с каменноугольного периода, о стратиграфии осадочного чехла можно судить не только по результатам глубокого бурения, но и по многочисленным гидрогеологическим скважинам, поэтому они хорошо палеонтологически изучены. Каменноугольные отложения представлены всеми тремя отделами. Нижний карбон (мощность около 90 м) в нижней части сложен алевролитами и глинами, а выше – карбонатными породами визейского яруса. Мощность среднего карбона около 200 м, он состоит преимущественно из доломитов с прослойками глин и известняками в верхней части толщи. Верхний карбон (около 160 м) представлен в основном серыми и светло-серыми доломитами, тонкозернистыми, иногда органогенно-обломочными, мелкозернистыми которые переслаиваются со слабо доломитизированными желтовато- и светло-серыми известняками. В доломитах и известняках содержаться гнёзда и кристаллы гипса, а так же остатки брахиопод, пелеципод, фузулинид, кораллов и морских лилий. В верхней части верхнего карбона залегают светло-серые, желтовато- и зеленовато- светло-серые мелкозернистые, загипсованные доломиты, переслаивающиеся со светло-серыми, органогенно-обломочными, пористыми и кавернозными известняками; встречаются остатки древней фауны: брахиоподы и фузулиниды.

Отложения пермской системы представлены морскими лагунными отложениями нижнепермских ассельского, сакмарского и нерасчлененных артинского-кунгурского ярусов, а также верхнепермскими отложениями казанского (морскими) и татарского (континентальными) ярусов. На дневную поверхность пермские отложения не выходят, они повсеместно перекрыты нижним триасом [18].

В основании нижнего отдела пермской системы лежит ассельский ярус, мощностью около 30 м, который представлен серовато- и желтовато-белыми, мелко- и тонкозернистыми доломитами, слабо трещиноватыми с многочисленными гнёздами, кристаллами и редкими прослоями гипса и органогенно-обломочного известняка. Без следов перерыва на доломитах ассельского яруса залегает сакмарский ярус, имеющий мощность около 35 м. Он сложен светло-серыми, желтовато- и серовато-белыми, мелко- и тонкозернистыми доломитами с гнёздами и кристаллами гипса, слабо трещиноватыми и массивными, плотными и порывистыми. Трещины распределены горизонтально, имеют неровные поверхности. Доломиты сильно огипсованы, в их толще наблюдаются прослои известняков серовато- и желтовато-белых, мелкозернистых, органогенно-обломочных доломитизированных. Нерасчленённые артинские-кунгурские отложения (общей мощностью 70 – 80 м) сложены сульфатной толщей, литологически подразделяющейся на две пачки. Нижняя пачка (мощностью до 40 м) состоит из плотных голубовато-серых мелкокристаллических ангидритов и светло-серых кристаллических гипсов, содержащих прослои светло-серых мелкозернистых доломитов, мергелей и коричневых доломитизированных глин. В верхней пачке (до 40 м) прослои доломита отсутствуют, она сложена гипсами и ангидритами с единичными маломощными прослойками мергелей и глин. В верхней части пачки имеется 4 – 6 м слой чистого гипса.

Верхней отдел пермской системы, имеющий мощность около 110 м, состоит из двух ярусов. Из отложений казанского яруса на территории изучаемого района развит только нижнеказанский подъярус, который подвергается сильному размыву. Его мощность доходит до 33 м, сложенных в основном светло- и желтовато-серыми, тонко- и мелкозернистыми, органогенно-обломочными, огипсованными вторичными доломитами, образовавшимися за счет органогенно-обломочных известняков. В отложениях встречаются прослои гипсов, мергелей, известняков, а также многочисленные фаунистические остатки брахиопод, гастропод, мшанок, кораллов, пелеципод. Татарский ярус представлен нижним и верхним подъярусами. Уржумский горизонт нижнего подъяруса делится на нижнеустьинскую и сухонскую свиты общей мощностью 60 – 68 м. Отложения нижнеустьинской свиты (около 40 м) представлены преимущественно обломочными породами: алевролитами, переслаивающимися песчаниками и глинами. Алевролиты имеют блеклые коричневато-серые серо-коричневые цвета, разнозернистые, неравномерно глинистые, плотные с прожилками гипсов. Песчаники нижнеустьинской свиты коричневато-серые и серые, тонкозернистые; глины красновато- и серо-коричневые алевритовые, плотные. Породы огипсованы и доломитизированы, в них встречаются прослои мергелей, доломитов и гипсов. Сухонская свита сложена серовато- и красновато-коричневыми неравномерно песчанистыми глинами, участками аргиллитоподобными, с прослоями мергелей, алевритов, аргиллитов, доломитов, песчаников и песков. В отложениях мощностью 20 – 28 м содержится значительное количество остатков древней фауны: в основном филлоподов и остракод. Верхний подъярус татарского яруса представлен северодвинским горизонтом, залегающим на сухонской свите со следами размыва и конгломератом в основании. Мощность отложений, сложенных песками коричневыми, полимиктовыми, мелко- и тонкозернистыми, в различной степени глинистыми, с прослоями глин, составляет около 15 м в основании толщи. Залегающий конгломерат состоит из галек, песчаника и глинисто-карбонатных пород с остатками фауны остракод [12].

Отложения мезозойской эры представлены на территории изучаемого района только нижним триасом [Приложение 1].

Триасовая система представлена в районе обоими ярусами. Индский ярус имеет сложное литологическое строение. Он состоит из нескольких ритмичных пачек, в которых наблюдается или увеличение зернистости пород вверх по разрезу, от хорошо отмоченных глин через алевролиты к песчаникам, или, напротив, от рыхлых песчаников с карбонатным гравием к глинам. Индский ярус мощностью около 30м залегает на размытой поверхности верхней перми. Он сложен коричневыми и красновато коричневыми сильно песчанистыми, комковатыми, слабо карбонатными глинами с прослоями алевритов, песков и песчаников с органогенными включениями, характерными для нижнего триаса (остатками филлопод и остракод). Оленёкский ярус (мощность50 – 60м) представлен глинами с маломощными прослоями песчаников. В основании его залегает конгломерат мощностью 0,1 – 0,25м, состоящий из галек, песчаника и глинисто-карбонатных пород размером до одного сантиметра. Выше залегает толща серовато-коричневых, комковатых и плитчато-оскольчатых, алевритистых и песчанистых глин с прослоями алевритов, песчаников и алевролитов. В средней части глинистой пачки обнаруживается прослой оолитового известняка мощностью 0,4 – 1м, включающего большое количество гастропод. В отложениях также содержатся многочисленные остатки филлопод и остракод, изредка позвоночных. Более молодые отложения, кроме четвертичных, отсутствуют [24].

Четвертичные отложения распространены на территории изучаемого района повсеместно. Как правило, по своему генезису они могут быть отнесены к двум основным типам: ледниковому – гляциальному (лат. claciales – ледяной) и водно-ледниковый – флювиогляциальный (лат. fluvius – река). Ледниковый тип отложений связан с геологической деятельностью покровов льда в течение ледниковых эпох. Флювиогляциальные отложения обязаны своим происхождением водно-ледниковым потокам, они формировались преимущественно по периферии покровов льда, когда они значительно сокращались, вплоть до полного таяния. Флювиогляциальные формы образовывались и во время наступления ледника, но имели ограниченное распространение в пограничных регионах ледникового покрова и внеледниковых областей [11].

Многие положения теории четвертичных материковых оледенений до сих пор являются спорными. Не вполне понятны причины, обуславливающие ритмическое наступление и отступание огромных массивов льда, дискуссионным является вопрос о количестве циклов оледенений, однако, основные положения ледниковой теории сегодня представляются уже незыблемыми и находят однозначное решение у различных специалистов:

1. Древнее оледенение было. При этом оно являлось многократным: ледниковые и межледниковые эпохи чередовались друг с другом.

2. Древнее оледенение было глубоко своеобразным в различных местных природных условиях. Отмечаются некоторые местные особенности развития древних ледниковых форм в различных природных условиях.

По результатам проведения геолого-геоморфологических работ обнаружены следы трёх оледенений: днепровского, московского и валдайского. Кроме перечисленных генетических типов отложений широко развиты древний аллювий двух надпойменных террас, покровные суглинки на водоразделах, современные озерно-болотные и аллювиальные образования. Мощность четвертичной толщи изменяется от 20 до 80 м. [34].

Нижнечетвертичные отложения являются наиболее древними. Повсеместного распространения не имеют. На территории изучаемого района они, очевидно, представлено только водно-ледниковыми, аллювиальными, озерными и болотными отложениями нерасчлененными окско-днепровского горизонта (f, lgl ok – ll dn), сложенного песками разнозернистыми с гравием и галькой, супесями, глинами и алевритами.

Среднечетвертичные отложения наиболее широко распространены на территории города. Они представлены сложным комплексом, в котором выделяются московская морена, а также флювиогляциальные образования днепровско-московского и московского горизонтов.

Днепровско-московский горизонты имеют мощность от 1 до 25м. Это водно-ледниковые, аллювиальные, озерные и болотные отложение нерасчлененные (f, lgll dn – ms), сложенные флювиогляциальными светло-серыми песками разнозернистыми с гравием, галькой и валунами, с прослоями глин, суглинков и алевритов. Залегают они на дочетвертичных, как правило – триасовых, породах и перекрываются московской мореной. Образование отложений относится ко времени отступания днепровского и наступления московского ледника. Днепровско-московские (межморенные) отложения часто выходят на дневную поверхность.

Московский горизонт представлен мореной (gll ms) мощностью 10 – 20 м, в некоторых местах она достигает 40м. Морена, представлена коричневыми и красновато-коричневыми, грубопесчанистыми, плотными, однородными суглинками с прослоями песков и супесей (мощность 1 – 6м), с небольшим количеством гальки и валунов кремния, гнейса, гранита и других пород. На территории изучаемого района, морена развита очень широко. Она часто обнажается по берегам рек. Обычно морена залегает на днепровско-московских отложениях.

Аллювиальные и водно-ледниковые отложения времени максимального распространения ледника (a, f, lgll msmax) широко развиты в исследуемом районе. Сложены они песками и супесями, светло-серыми, мелко- и тонкозернистыми, тонкослоистыми, с гравием, галькой, реже валунами. Мощность отложений от 3 – 8м. Пески обычно залегают в нижней части разреза, супеси – в верхней. Образование флювиогляциальных отложений связано с максимальным распространением московского ледника, залегают они плащеобразно на различных абсолютных высотах, часто выходят на поверхность.

Водно-ледниковые отложения времени отступания ледника (f, lgll mss) имеют мощность от 4 до 8м. Широко распространены. Залегают зандровые пески на московской морене на различных высотах. Представлены они песками серыми, серовато- желто-коричневыми, кварцево-полевошпатными, разнозернистыми, в различной степени глинистыми, с примесью гравия и гальки различных пород (иногда с прослоями суглинков и супесей мощностью до 5,5м). Имеющиеся в изучаемом районе зандровые пески соответствуют раннему этапу отступания ледника, они образовывались южнее краевых образований московского ледника. Лежат пески непосредственно под почвенным слоем, поэтому часто вскрываются долинами рек и оврагами [45].

Средне-верхнечетвертичные отложения развиты в виде отдельных изолированных пятен. Из отложений, относящихся к этому времени, наиболее распространен нерасчлененный комплекс отложений перигляциальных зон московского и валдайского оледенений на водоразделах (pr II – III, pr III), залегающий на московской морене. Представлены покровные образования бурыми, желтовато-серыми, светло-серыми, тонкими, легкими, пылеватыми, плотными, пористыми суглинками с характерной столбчатой отдельностью, линзочками и прослоями песков. В покровных отложениях преимущественно преобладают пылеватые (алевритовые) частицы, содержание которых составляет 46 – 56%, содержание песка меняется от 20 – 40%, глинистая часть составляет 11 – 19%. Накопление покровных отложений происходило в основном во время валдайского оледенения, однако за границей московского оледенения они могли отлагаться талыми водами московского ледника. Вопрос о происхождении этих отложений на изучаемой территории не выяснен. Предложен ряд гипотез, связывающих образования покровных суглинков с эоловыми, флювиогляциальными, элювиально-флювиогляциальными и другим процессами или с комбинациями указанных процессов. Мощных покровных суглинков изменяется от 1 до 3 м.

Верхнечетвертичные отложения залегает непосредственно под современными, они сложены озерными и болотными отложениями, а также отложениями надпойменных террас.

Микулинский горизонт представлен аллювиальными, озерными и болотными отложениями (a, l, h III mk), перекрытыми только современными болотными образованиями. Мощность отложений составляет около 12 м. Залегают они на московской морене. Сложены микулинские отложения песком грязно-зеленовато-серым, глинистым, разнозернистым; глиной темно-серой, сильно известковистой, с гнездышками торфа; торфом землистым, почти черного цвета; илом темно-зеленовато-синим, глинистым, с растительными остатками. Встречаются перегнившие остатки растений.

Нижневалдайский горизонт валдайского надгоризонта представляет собой аллювиальные отложения второй надпойменной террасы (a(2t) III v1), которые имеют ограниченное распространение. Терраса является структурно-аккумулятивной, её высота достигает 6 – 10 м., а мощность аллювия не превышает 3 – 7 м. Аллювий сложен серыми, серовато-желтовато-коричневыми, разнозернистыми песками, в которых встречаются прослои супесей, суглинков и гавийно-галичного материала.

Средневалдайский – верхневалдайский горизонты представлены аллювиальными отложениями первой надпойменной террасы (a(1t) III v2 – 3). Они развиты по долинам рек. Терраса почти всегда аккумулятивная. Аллювий, обычно, не уходит под урез воды и залегает на морене или подморенных песках. Мощность аллювия первой террасы обычно 6 – 7 м. Образование первой надпойменной террасы относится к середине и к концу валдайского оледенения [34].

Верхнечетвертично-современные отложения выражены на территории только в виде эоловых отложений (v III - IV). Они развиты на поверхности первой и второй надпойменных террас в виде небольших песчаных холмов с относительными высотами не более 1,5 м. Своим происхождением они обязаны эоловым процессам, происходившим в голоценовое и верхнечетвертичное время.

Современные отложения представлены отложениями современных рек и болот.

Аллювиальные отложения (a IV) слагают пойменные террасы рек, многочисленных оврагов и балок. Выраженность террасы зависит от размеров водотока, поэтому у разных рек она колеблется от нескольких метров до 2 км. Высота поймы также колеблется от нескольких сантиметров до 2 – 3,5 м. Пойма сложена песками различной окраски и зернистости, суглинками, супесями, реже гравийными песками с примесью гальки различных пород. Мощность пойменных отложений изменяется от 1 – 2 до 10 – 13 м. Подстилается современный аллювий, как правило, московской мореной, водно-ледниковыми отложениями времени отступания московского ледника или водно-ледниковыми межморенными отложениями московско-днепровского горизонтов.

Болотные образования (h IV) имеют очень широкое распространение на территории изучаемого района. Особенно они распространены в долинах рек, на водоразделах. Преобладающим типом болот являются низинные, однако встречаются и водораздельные верховые. Отложения болот имеют мощность от 2 – 3 до 10 м. Представлены они торфом и в меньшей степени глинами и суглинками, неравномерно гумусированными и иловатыми, изредка встречаются болотные мергели [27].


3.2 Тектоника

Территория изучаемого района расположена в центральной части Восточно-Европейской платформы на южном борту московской синеклизы. В основании описываемой территории выделяется кристаллический фундамент, отражающий архейско-нижнепротерозойскую стадию развития платформы. Залегающий над фундаментом осадочный чехол, соответствует платформенному этапу ее развития от верхнего протерозоя до четвертичного периода. Кристаллический фундамент сложен архейскими и нижнепротерозойскими интенсивно дислоцированными гнейсами, гранито-гейсами и кристаллическими сланцами, прорванными гранитами и ультрабазитами. Площадь кристаллического фундамента не представляет собой плоскую поверхность, она постепенно погружается в северо-восточном направлении. Интенсивность погружения невелика – в среднем она составляет 5 м. на километр. На фоне этого общего погружения отмечаются отдельные пологие поднятия и впадины. В районе города Южи выделяется поднятый участок с амплитудой 100 – 200 м., связанный с интрузией основных и ультраосновных пород. Возраст кристаллических пород определен в диапазоне 1510 – 1850 млн. лет. На кристаллическом фундаменте с резким угловым несогласием залегают верхнепротерозойские, палеозойские, мезозойские и кайнозойские отложения, образующие осадочный чехол платформы.

По магнитометрическим данным территория расположена в зоне сочленения двух полей, характеризующихся развитием различно выраженных магнитных аномалий. К северной части широким развитием пользуются магнитные аномалии большей интенсивности северо-восточного простирания. В южной части развиты магнитные и гравитационные аномалии изометрической формы небольшой интенсивности.

Описываемая территория приурочена к зоне сочленения двух крупных надпорядковых структур Русской платформы: Московской синеклизы и Токмовского свода Волго-Уральской антиклизы, расположенного юго-восточнее изучаемого района [12].

Главным структурным элементом территории является Окско-Цнинский вал. Большая часть вала расположена во Владимирской области, в пределах Рязанско-Саратовского прогиба. Изучаемую территорию вал затрагивает своим северным окончанием.

Окско-Цнинский вал представляет собой вытянутую в меридиональном направлении полосу пологих поднятий, в сводах которых обнаружены отложения верхнего карбона и перми. На изучаемой территории выход верхнего карбона имеется только юго-западнее города Южи. Поперечный профиль вала ассиметричный: западный склон более крутой, величина падения слоев составляет в среднем не менее 30 м. на километр. Падение слоев на восточном склоне вала весьма пологое. В осевой части вал осложнён рядом куполовидных поднятий, кулисообразно примыкающих друг к другу и разделенных седловинами. В пределах Окско-Цнинского вала установлены два поднятия: Непейцинское и Ковровское. Оба они расположены южнее изучаемого района [Приложение 2].

О времени формирования Окско-Цнинского вала нет единого мнения. Анализируя мощности верхнекаменноугольных отложений, можно сделать вывод, что поднятия в верхнем карбоне не происходило. Значительные структурные преобразования возобновились в конце ранней перми, когда территория значительной части Русской платформы вышла из-под уровня моря, и в континентальных условиях возобновились подвижки фундамента по древним тектоническим швам. Предположительно к этому времени относят начало формирования вала. В пермскую эпоху и в последующее время область

Окско-Цнинского вала, по-видимому, испытывает преимущественно восходящие движения. Однако, нужно отметить, что возможно происходило погружение отдельных участков осевой части на фоне общего поднятия территории. Распространялись ли в пределах вала триасовые отложения неизвестно. В юрское время здесь существовал морской бассейн, и поднятий в пределах вала не было. Преимущественно восходящие движения вновь возникли в предчетвертичное время. Предположительно к этому времени, произошло окончательное формирование вала. Наличием вала, по-видимому, определена конфигурация древней долины реки Клязьмы, огибающей в пределах площади изучаемого района южную оконечность вала [15].

В начале четвертичного периода происходит общее поднятие всей территории, и образуются глубоко врезанные речные долины.

В начале московского времени активизируются положительные движения по широтному разлому вдоль долины реки Клязьмы. Левобережье испытывает погружение и здесь в древних долинах продолжает формироваться относительно мощная толща аллювиально-флювиогляциальных отложений московского времени.

В валдайское время вся территория испытывает в основном поднятие. С этим временем связано формирование второй и первой надпойменных террас.

Активная тектоническая деятельность продолжается и в современную эпоху. Область, расположенная к северу от долины реки Клязьмы, активно опускается. На это указывает слабая расчленённость рельефа и его сглаженные формы, широкое развитие аллювиальных отложений и их большая мощность, образование бессточных впадин и болот.

По материалам аэрофотодешифрирования на территории изучаемого района наблюдается интенсивная трещиноватость и закарстованность карбонатных пород казанского возраста. Чётко выделяется прямолинейная долина реки Исток широтного простирания, прямолинейность всех бортов заболоченных пространств в долине реки Луха северо-западного и меридионального направления [16].


3.3 История геологического развития

Вся геологическая история территории, на которой расположен изучаемый район, за последние шестьсот миллионов лет сохранилась в напластовании различных осадочных пород. Наиболее молодые из них можно увидеть на крутых берегах рек, обрывистых склонах оврагов. Самые глубокие отложения вскрываются буровыми скважинами.

На территории изучаемого района глубокого бурения не проводилось, поэтому для восстановления геологической истории местности до каменноугольного периода включительно приходится пользоваться косвенными данными, дополняя их другими материалами.

О развитии местности в архейскую и протерозойскую эры трудно судить достоверно. Наиболее древние отложения образовались в нашем районе во второй половине вендского периода. В это время территория была покрыта морским бассейном, пришедшим с запада и северо-запада, из района современной Балтики. Это море имело большую площадь, оно занимало всю современную Ивановскую область и северо-запад Русской плиты. Существование морского бассейна сопровождалось накоплением песчаников, красноцветных и серых глин, в которых встречаются остатки морских водорослей. Присутствие красноцветов указывает на существование в жарком климате.

В конце венда и в начале нижнего кембрия (томский ярус) происходила регрессия морского бассейна. Территория, изучаемая нами, представляла собой низменную сушу без накопления осадков, то есть происходил стратиграфический перерыв. Новая трансгрессия моря началась в алданском веке. Это море, как и вендское, наступало с северо-запада, со стороны Балтики.

Даная трансгрессия, однако, не выходила на востоке за пределы территории Ивановской области. Поскольку в отложениях алданского яруса распространены красноцветные породы, можно считать, что в нижнем кембрии на территории Русской платформы продолжал существовать тропический климат. В отложениях алданского яруса встречаются трилобиты, относящиеся к теплолюбивой (тропической) фауне. В конце нижнего кембрия произошла регрессия моря. Породы алданского яруса оказывались на суше, в континентальном тропическом режиме. Верхние слои этого яруса под влиянием элювиального процесса образовали коалиновую кору выветривания. Присутствие коалиновых глин в коре отложений алданского яруса указывает на жаркий влажный климат на территории Ивановской области в конце раннего кембрия.

Начиная с раннего кембрия, до конца среднего ордовика, на большей части территории Ивановской области (исключая восточный и юго-восточный районы) существовал морской бассейн с теплолюбивой фауной (трилобиты, брахиоподы, кораллы, морские лилии и т.п.). В позднем ордовике, силуре и вплоть до раннего девона территория Ивановской области представляла собой низменную равнинную сушу. Стратиграфический перерыв заканчивается в среднем девоне. Начинается медленная морская трансгрессия со стороны Уральского океана, на месте которого, в последствии возникают Урал и Западная Сибирь.

Среднедевонское море на территории Ивановской области было мелководным. Среди органических остатков широко представлены остракоды, характерные для опресненных вод. Мощные толщи среднего девона сложены преимущественно песчаными породами, возможно, в аллювиальных и дельтовых фациях.

Среди них встречаются и красноцветные породы, указывающие на существование в это время на Русской плите тропического климата.

В позднем девоне море углубляется. Увеличивается мощность карбонатных отложений, распространены морские животные: кораллы, брахиоподы и др.

В конце позднего девона море мелеет. В верхних слоях появляются лагунные фации: присутствуют гипс и ангидрит [23].

К началу карбона, после короткой трансгрессии с накоплением карбонатных отложений, морской бассейн уходит к востоку от Московской синеклизы. В турнейском ярусе (нижнем ярусе карбона) в западной части синеклизы устанавливается низменная равнина с развитием обширных болот, из которых возник Подмосковный буроугольный бассейн.

На территории Ивановской области турнейские отложения отсутствуют. Здесь на девоне накапливаются морские известняки визейского и серпуховского ярусов нижнего карбона. В конце этой эпохи море снова уходит, и в течение башкирского века на всей Московской синеклизе устанавливается континентальный режим. Здесь на протяжении всего башкирского века среднего карбона существовала низменная равнина с тропическим климатом.

В московском веке и в поздней эпохе карбона вся территория современной Ивановской области была перекрыта морским бассейном, на дне которого накапливались доломиты и известняки с остатками теплолюбивой фауны: кораллов, брахиопод, многообразных простейших организмов - фораминифер (особенно среди них были распространены фузулины). В конце позднекаменноугольной эпохи, в оренбургском веке, морской бассейн становится мелководным и засолоненным, возможно превращается в ряд лагун, где в условиях жаркого климата накапливались загипсованные доломиты. Сокращение и обмеление морского бассейна было связано с поднятием горных сооружений в Западной Европе и началом воздымания уральского хребта.

В начале пермского периода, в ассельском и сакмарском веках, на территории Ивановской области существовало теплое море с карбонатными осадками и многочисленными беспозвоночными животными. В этом море были широко распространены кораллы, иглокожие, брахиоподы и, особенно, многочисленные простейшие, такие как бентосные (донные), так и планктонные (в поверхностных водах) формы. В нижней перми в базальных слоях ассельского яруса накопилось множество остатков фораминифер рода швагерина. По массовому появлению раковин мельчайших швагерин на Русской платформе проводится граница между каменноугольными и нижнепермскими известняками. Нижние, известняковые слои ассельского яруса, ввиду многочисленности остатков швагерин, выделяются как особый швагериновый горизонт.

Во второй половине ранней перми морской бассейн резко обмелел. В северо-западной части области в артинском веке возникла суша. В юго-восточной части, в частности, в Шуйском и расположенных южнее его районах, существовал солеродный бассейн (лагуны и озера), где в жарком аридном климате накапливались ангидриды и гипсы. Возможно, это происходило в течение артинского и кунгурского веков, вплоть до поздней перми. Следует отметить, что кунгурский ярус сложен мощными толщами каменной соли в Предуральском прогибе (Соликамск другие разработки солей) и в Прикаспийской впадине, где существуют многокилометровые купола и штоки солей.

Начало поздней эпохи перми ознаменовалось новой трансгрессией. На всей территории Ивановской области накапливаются карбонатные отложения казанского яруса. Эта территория находилась в тропической зоне. В теплом казанском море были распространены многочисленные беспозвоночные, образовавшие органогенные известняки. Временами происходило обмеление этого моря и тогда, в условиях тропического климата, откладывались загипсованные карбонатные осадки.

В конце поздней перми, в татарском веке, на изучаемой территории накопились преимущественно красноцветные терригенные породы с тонкими прослоями доломитов и включениями гипсов, с остатками пресноводных и солоноводных раковинных рачков – остракод и филлопод. Данные литологические и палеонтологические особенности отложений указывают на накопление осадков в опресненных и засолоненных водных бассейнах – лагунах и озерах. Таким образом, в конце перми морской бассейн покинул изучаемую территорию, как и всю Московскую синеклизу. Возник континентальный лагунно-озерный режим. Климат установился аридный, в тропической и экваториальной зонах [13].

В целом, в палеозое, изучаемая территория располагалась в тропическом и экваториальном поясах. Протяженность времени существования морских условий составляет приблизительно 190 млн. лет, суммарная протяженность озерно-лагунных бассейнов – 30 млн. лет, суши – 90 млн. лет.

В начале мезозоя, в раннем триасе, на изучаемой территории, после незначительного стратиграфического перерыва, устанавливается озерно-лагунный водный бассейн. Присутствие красноцветных отложений указывает на существование аридного климата. Бассейн представлялся в основном пресноводным: наряду с остракодами и филлоподами в озерах и лагунах жили земноводные и водные рептилии, остатки которых обнаружены в отложениях нижнего триаса.

Начиная со среднего триаса, и до конца средней юры территория Ивановской области представляла собой низменную равнину. Только в келловейском веке средней юры эта территория стала огромным морским бассейном, который сливался с Арктическим океаном на севере и океаном Тетисом на юге. Этот бассейн просуществовал до конца раннего мела. В юре здесь накапливались глинистые породы, в мелу – в основном, пески. В последующем, вероятно, в начале четвертичного времени, в связи с образованием Окско-Цнинского вала эти отложения в районе изучаемой нами территории были уничтожены в результате эрозии и ледниковой экзарации. В кайнозое, палеогене, неогене и в четвертичное время, особенно до начала оледенения на территории Окско-Цнинского вала выведены на дневную поверхность пермские карбонатные и сульфатные породы, с которыми связан процесс карстоообразования. В целом, на поверхности дочетвертичных отложений к началу плейстоцена на территории юга Ивановской области существовала низменная равнина с равнинно-долинным рельефом, при этом отдельные долины врезались до глубин 60 – 80 м [27].

Четвертичный период

С наступлением четвертичного периода климат, растения и животные приобрели все современные основные характеристики. В это время, на изучаемой территории происходило накопление толщ осадочного материала (в основном песков, супесей, суглинков), мощностью до 60 -80 м.

С наступлением четвертичного периода климат в отдельные моменты плейстоцена становится настолько холодным, что с севера Фенно-Скандии, Скандинавии и Балтийского моря на юг надвигаются огромные ледники, которые покрывают всю территорию Англии, Германии, Польши и значительную площадь европейской части России. Тщательное изучение ледниковых отложений указывает на то, что ледниковая эпоха обнимает собой огромный отрезок времени, около 1 млн. лет. На протяжении этого времени ледник несколько раз наступал на юг, периодически надолго отступая на север, к центрам оледенения.

Перемещение ледника по территории равнин вероятнее всего происходило следующим образом: ледник шел не сплошным ледниковым фронтом, а в виде отдельных языков, заполнявших сначала понижения в рельефе, а затем все более высокие районы. Так как наиболее низкие высоты были заняты доледниковыми речными, или озерными бассейнами, то именно по ним и распространялся ледник. При этом при своем движении он сначала незначительно, а потом все глубже перерабатывал поверхность суши. Достигнув максимальной мощности, ледник двигался в виде нескольких языков, или потоков. Иногда ледник срывал толщи коренных пород, сносил целые холмы, все речные долины были серьезно преобразованы: некоторые углублены и расширены, а некоторые, наоборот, заполнены мореным материалом. Таким образом, шло выравнивание доледникового рельефа.

Таяние ледника происходило следующим образом: ледник, скорее всего, распадался на отдельные глыбы, вытаивающие в течение столетий. Ледниковые массивы распределялись по территории неравномерно. Они не выстраивались в какие-либо цепи, их размещение подчинялось закономерностям, которые в настоящее время не возможно достоверно восстановить. Именно эти глыбы, с имеющимися между ними понижениями, сформировали современный холмистый рельеф территории изучаемого района.

Ледниковые века сменялись межледниковыми [23].

Вопрос о количестве оледенений на Русской равнине является спорным. Но большинство ученых склоняется к мысли, что оледенений было четыре: окское, днепровское, московское и валдайское.

На территории изучаемого района достоверно установлены следы окского оледенения, наиболее широко распространены следы днепровского и двух фаз московского оледенения, а так же отложения перигляциальных зон валдайского оледенения. Наибольшее влияние на формирование рельефа местности оказало московское оледенение.

Граница распространения окского оледенения проходит по долине реки Оки. Вероятно, что окский ледник сильно переработал доледниковый рельеф, однако результаты его деятельности были существенно изменены последующими днепровским и московским ледниками. Поэтому в современном рельефе практически невозможно найти следы первого окского материкового покровного оледенения. Отложения окского горизонта можно встретить на больших глубинах, в основании древних долин.

Основа современного рельефа сформирована в среднечетвертичное время. Здесь выделяют два оледенения: днепровское и московское.

Днепровский ледник распространялся по всей территории Ивановской области и доходил до Днепра и Дона на юге. Днепровское оледенение самое мощное. Ледник полностью покрывал территорию изучаемого района, наиболее сильно переработал поверхность. Мощность льда достигала около 3,5км. Ледник существенно сгладил водоразделы и заполнил древние ложбины стока.

В период последующего межледниковья происходило формирование зандров. Талые воды отступающего днепровского и наступающего московского ледника способствовали накоплению флювиогляциальных отложений большой мощности [27].

Московский ледник. Выделяют две стадии московского оледенения. Первый раз ледник доходил до долины современной реки Клязьмы. Следовательно, на территории изучаемого района проходила краевая зона ледника, для которой характерны разнообразные морено-конечные ледниковые и водно-ледниковые образования (камы, озы), следы которых можно обнаружить в современном рельефе. В результате движения и отступания льдов московского оледенения формировался современный равнинно-волнистый и холмисто-мореный рельеф территории. Отступая к северу, ледник таял, что приводило к формированию и накоплению зандров. Вторично остановился ледник в районе города Плеса, о чем свидетельствует конечная морена (вторая стадия московского оледенения).

Талые воды московского ледника формировали обширные водноледниковые зандровые равнины. Послеледниковые остаточные озера положили начало современным болотам с мощными торфяниками. В позднемосковское микулинское и осташовское время в них, в условиях характерного плоского озерно-болотного рельефа, разбитого мореными холмами и грядами на отдельные котловины, шло накопление озерно-ледниковых и озерно-болотных отложений. В голоцене процесс торфонакопления шел интенсивно, и в результате накопились многометровые толщи торфа. Время микулинского межледниковья связывают с заложением современной гидрографической сети территории. С этим же связано образование покровных суглинков.

Валдайское оледенение не достигло границ изучаемого района. Оно было распространено лишь на северо-западе Ивановской области. Однако талые воды ледника приводили к углублению речных долин и формированию террас.

В голоценовое время продолжается углубление речных долин и образование пойменных уровней. Комплекс экзогенных и антропогенных процессов формировал современный рельеф территории изучаемого района [34].

3.4 Полезные ископаемые

Полезные ископаемые на изучаемой территории представлены месторождениями торфа, известняков, глин кирпичных, гончарных, песка строительного, стекольного, гипсоносных отложений. Полезные ископаемые приурочены к четвертичным и дочетвертичным отложениям.

Наибольший практический интерес для народного хозяйства в основном для нашего района имеют полезные ископаемые, приуроченные к четвертичным образованиям. Основными из них являются торф, легкоплавкие глины, используемые для кирпичного, реже черепичного производства, строительные пески. С дочетвертичными отложениями связаны месторождения известняков [11].

Горючие полезные ископаемые

Торф

Торфяные месторождения расположены в основном в поймах рек и надпойменных террасах, в меньшей степени на водоразделах, связаны с современными болотными отложениями. Большинство болот относят к низинному типу, к которому и приурочены наиболее крупные торфяные месторождения. Основной тип растительности этих болот: осока, пушица, гипновый мох и древесная растительность, преимущественно береза, осина, реже сосна. В соответствии с типом растительности выделяют следующие типы низинных болот: древесно-осоковые, древесно-тростниковые и лесотопяные.

На изучаемой территории месторождения торфа распределены не равномерно.

Большая часть месторождений, занимающая западную часть территории, мелкие, с запасами торфа менее 1млн. м3. Наиболее крупным является Хвастовское месторождение. Средняя мощность полезной толщи 1,8 – 2,6 м., максимальная 5,9 м. Зольность торфа 4,4 – 10,9 %. Почти все месторождения эксплуатируются.

Восточнее располагается крупный торфяник «Большое», имеющий запас торфа 5120 тыс. м3. Мощность полезной толщи изменяется от 1,0 до 3,5 м. Средняя мощность торфа составляет 1,5 – 2,0 м. Преобладают низинные болота, торф которых имеет небольшую кислотность, так как в нем встречаются прослойки и линзочки мергеля, и он может использоваться в качестве удобрений. Зольность торфа до 40 – 50 %, в среднем 15 – 30%, теплопроводная способность колеблется от 4480 – 4900 кал. В виду небольших размеров, высокой зольности торфа и довольно низкой теплотворной его способности данное месторождение не эксплуатируется [16].

Рассмотрим южную часть территории, включающей Южский и Пестяковский районы. Характерно неравномерное распределение торфяных болот. Они приурочены к зандровой равнине времени отступания московского ледника, поймам и низким террасам рек Луха и Клязьмы. Свойства торфяных залежей зависят от их положения на той или иной террасе, или на зандровой поверхности. На пойме расположены торфяники низинного типа, на первой надпойменной террасе низинного и переходного типов, на второй надпойменной террасе и на зандровой поверхности – верхового типа.

Для залежей верхового типа характерен пушициево-сфагнумовый состав торфяной массы, средняя степень разложения до 40% и небольшая зольность до 5%, что характеризует их как источники хорошего топлива. К этому типу принадлежат такие залежи как Дубовичье, Святозерское, Демидовское с запасами торфа соответственно 39257, 41566, 18016 тыс. м 3.

Переходные типы торфяников представляют собой отдельные участки древесных торфов со сфагнумом и осокой, хорошей степени разложения 42% и зольностью до 8%, расположенные среди низинной залежи торфяников. К ним относятся залежи Эстонское (западнее пос. Моста) и Жилкинское (в районе деревень Якушево, Осинки – восточная часть изучаемой территории), с запасами соответственно 2249 и 2537 тыс. м 3.

Торфяникам низинного типа свойственен осоково-древесный состав торфяной массы, невысокая степень разложения и повышенная зольность. Крупными являются месторождения в районе поселков Машная, Мургеевский (Святозерское), Ламна. Большинство торфяных массивов разрабатываются.

В южной части изучаемой территории расположено крупное по площади месторождение Костяево-Клязьменское (юго-восточнее поселка Холуй), с площадью промышленной залежи 1538 тыс. м3. Мощность торфа на месторождениях составляет в среднем 1,0 – 2,5 м., достигая на отдельных участках 7,0 – 9,0 м. (месторождения близ деревень Архиповка, Аристиха, расположенных восточнее пос. Савино). Зольность торфа низкая 4 – 10% и лишь изредка 30 – 40%. Теплотворная способность торфа колеблется от 2,5 до 5,0 тыс. кал. Часть месторождений эксплуатируется с целью топлива и удобрений [15].

Строительные материалы

Глины кирпичные

Легкоплавкие глины и суглинки широко распространены в описываемом районе. Лучшим сырьем для производства кирпича и черепицы, как по качеству, так и по условиям залегания являются покровные суглинки.

Месторождения кирпично-черепичных суглинков, связанных с покровными образованиями, расположены в северо-западной части изучаемой территории. Средняя мощность полезной толщи суглинков составляет 1,0 – 1,5 м. Покровные суглинки имеют пестрый гранулометрический состав: содержание (в %) песчаных фракции 13 -62; пылеватых фракции 7,5 – 6,9; глинистых фракции 5 – 30. Суглинки достаточно пластичны, небольшая степень засоренности природными включениями. По химическому составу довольно однородны, содержание (в %): SiO2 59 -79; Al2 O3 9 – 14; Fe 2O3 4 -8; CaO 0,6 – 2,0; MgO 0,7 – 2,0. Почти на всех месторождениях разведанные запасы не велики и изменяются от 0,2 до 0,9 млн. м3. Запасы всех месторождений могут быть увеличены за счет разведки прилегающих участков.

В восточной половине площади (Палехский район) покровные суглинки расположены не повсеместно, мощность их обычно до 1,0 м., редко больше. Кроме того, суглинки, залегающие на надморенных песках, сильно опесчанены и нередко переходят в супеси.

В местах отсутствия или слабого развития покровных суглинков для выработки кирпича используются моренные суглинки и глины. Месторождения моренных суглинков мелкие, с запасами обычно до 0,5 млн. м. По гранулометрическому составу суглинки относятся к средним и тяжелым: они засорены мелким гравием и галькой (до 30%), примесями кварца, песчаника, глинистого сланца, диабаза, окремненных пород, реже известняка, доломита. Химический состав суглинков: содержание (в %) SiО2 72 – 80; Al2 O3 9 – 14; Fe2 O3 6 – 7; CaO 0,9 – 3,0; MgO 0,6 – 1,6 [6].

Наибольшее распространение моренные суглинки получили в южной части изучаемой территории: Южский и Савинский районы.

Месторождения Южская гора и Лесной участок (в районе Южи). Полезная толща представляет собой суглинки красновато-коричневые плотные, с включениями гальки, осадочных и кристаллических пород и редких валунов. Мощность полезной толщи от 1,5 – 2 до 4 – 6 м., мощность вскрышных пород от 0,5 до 1,0 м., в редких случаях достигает 1,5 м. Химический состав следующий: SiO2 72,3 – 78,0; Al2O3 9,5 – 13,4; Fe2O3 3,0 – 7,8. Суглинки по гранулометрическому составу относятся к грубодисперсным, малопластичным; засоренность включениями размером более 0,5 мм до 5%. При температуре спекания они относятся к низкотемпературным (1100 С).

В Савинском, Южском месторождениях характерной особенностью моренных суглинков является обогащенность обломочным материалом, который при эксплуатации удаляется. Обычно мощность суглинков 5 – 10 м. Мощность вскрыши пород составляет 0,2 – 5,0 м., изредка больше.

Встречаются прослои суглинков в аллювиальных отложениях надпойменных террас. Однако здесь суглинки образуют маломощные, быстро выклинивающиеся прослои и линзы, в связи с чем,

Здесь опубликована для ознакомления часть дипломной работы "Экзогенные геологические процессы на юге Ивановской области". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 578

Другие дипломные работы по специальности "Геология":

Проект строительства наклонно-направленной нефтяной добывающей скважины глубиной 2560 м на Тагринском месторождении

Смотреть работу >>

Обоснование постановки поисково-оценочных работ на Южно-Орловском месторождении

Смотреть работу >>

Рославльское нефтяное месторождение

Смотреть работу >>

Розробка Штормового родовища

Смотреть работу >>

Запасы месторождения Денгизского района

Смотреть работу >>