Дипломная работа на тему "Математическое моделирование пластической деформации кристаллов"

ГлавнаяФизика → Математическое моделирование пластической деформации кристаллов




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Математическое моделирование пластической деформации кристаллов":


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет

им. В. Н. Каразина

--------------------------------------------------

“К ЗАЩИТЕ”

Заведующий кафедры материалов реакторостроения

Проф*******

|
--------------------------------------------------------- --------------------------------------------------

ВЫПУСКНАЯ РАБОТА

МАГИСТРА ПРИКЛАДНОЙ ФИЗИКИ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И РАЗРУШЕНИЯ ГПУ КРИСТАЛЛОВ

--------------------------------------------------
Руководитель | ******** **** |
---------------------------------------------------------
Студент | ********** **** |
--------------------------------------------------------- --------------------------------------------------

Харьков

2008

Содержание

--------------------------------------------------
Введение |
---------------------------------------------------------
1 | Применения МД для исследования пластической деформации кристаллов |
---------------------------------------------------------
1.1 | Ограничения |
---------------------------------------------------------
1.2 | Потенциал |
---------------------------------------------------------
1.3 | Алгоритм интегрирования по времени |
---------------------------------------------------------
1.4 | Процедура минимизации |
---------------------------------------------------------
1.5 | Вычисление сил |
---------------------------------------------------------
1.6 | Периодичность |
---------------------------------------------------------
1.7 | Начальное состояние |
---------------------------------------------------------
1.8 | Начальное состояние для кристалла с дефектами |
---------------------------------------------------------
1.9 | Нагрузка |
---------------------------------------------------------
1.10 | Уравнение для ширины ячейки моделирования |
---------------------------------------------------------
1.11 | Контроль системы |
---------------------------------------------------------
1.12 | Вычисление физических величин |
---------------------------------------------------------
1.13 | Визуализация |
---------------------------------------------------------
2 | Моделирования пластической деформации ГПУ кристаллов |
---------------------------------------------------------
Заключение |
---------------------------------------------------------
Список использованных источников |
--------------------------------------------------------- --------------------------------------------------

Анотація

В даній роботі проведено аналіз особливостей застосування методу молекулярної динаміки для моделювання пластичності кристалів. Запропоновано новий підхід до моделювання розтягування кристалів. Запропоновано динамічне рівняння для поперечного розміру комірки моделювання. Створена програма для дослідження процесу пластичної деформації та руйнування кристалів. Проведено моделювання розвитку пластичної деформації ГЩУ кристалів при одноосному розтягуванні. Показана принципова можливість імітації за допомогою цього методу кривих розтягування досконалих кристалів, зміни температури зразка, появи дислокацій, полос ковзання, поодиноких вакансій та їх скупчень, а також процесу руйнування кристалів

Аннотация

В данной работе проведен анализ особенностей применения метода молекулярной динамики для моделирования пластичности кристаллов. Предложен новый подход к моделированию растяжения кристаллов. Предложено динамическое уравнение для поперечного размера ячейки моделирования. Создана программа для исследования процесса пластической деформации и разрушения кристаллов. Проведено моделирование развития пластической деформации ГПУ кристаллов при одноосном растяжении. Показана принципиальная возможность имитации с помощью этого метода кривых растяжения совершенных кристаллов, изменения температуры образца, появления дислокаций, полос скольжения, одиночных вакансий и их скоплений, а также процесса разрушения кристаллов.

Abstract

In the given article the analysis of features of application of a molecular dynamics for simulation of a plasticity of crystals is conducted. The new approach to simulation of strain of crystals is offered. The dynamic equation for transverse dimensions of simulation cell is offered. The code for investigation of the process of a plastic deformation and destruction of crystals is created. The simulation of development of a plastic deformation hcp crystals is carried out at monoaxial expansion. The principal possibility of imitation with the help of this method of stress-strain curves for the perfect crystals, temperature variation of a sample, appearance of dislocations, stripes of slide, single vacancies and their clusters, and also process of crystal destruction.

Введение

Бурный рост ядерной энергетики и широкое развитие работ в области термоядерного синтеза послужили мощным стимулом интенсификации исследований в области облучаемых материалов. Создана новая ветвь материаловедения – атомное, радиационное материаловедение.

Заказать написание дипломной - rosdiplomnaya.com

Новый банк готовых оригинальных дипломных проектов предлагает вам написать любые работы по желаемой вами теме. Оригинальное выполнение дипломных проектов на заказ в Челябинске и в других городах России.

Свойства материалов всегда были ключевым звеном, определяющим успех многих инженерных разработок в различных областях техники. Особенно их роль возросла в последнее время при создании сложных конструкций, работающих в экстремальных условиях. Ядерные реакторы, устройства термоядерного синтеза – яркий пример таких конструкций. Сотни различных по составу, структуре и способам изготовления материалов обеспечивают их работоспособность. Но, попадая в условия высоких потоков облучения (до 1020 нейтр/м2∙с) и больших флюенсов (до1027-1028 нейтр/м2), они претерпевают значительные структурные перестройки (радиационное повреждение). Следствием этих перестроек является резкое изменение всех физических свойств материалов. Причем эти изменения носят не совсем обычный характер. Ранее ничего подобного не встречалось в обширной практике работ с различными материалами. Так, были обнаружены абсолютно новые явления, происходящие с облученными материалами и сплавами: радиационное охрупчивание, радиационное распухание, радиационное упрочнение, ускоренная диффузия, радиационно-индуцированные фазово-структурные превращения и др.

И этот перечень, судя по всему, будет продолжен, так как исследования в области термоядерного синтеза уже выдвигают новые требования и к конструкционным материалам, которые должны будут работать в еще более жестких условиях (например, выдерживать облучение нейтронами с энергией до 14 МэВ).

Одним из основных факторов, определяющих свойства материалов, как известно, является структура. В условиях облучения она претерпевает существенные перестройки на атомарном уровне. Чтобы выявить принципиальные закономерности поведения материалов в тех или иных условиях эксплуатации, создать материалы с заданными свойствами, необходимо установить связь между изменяющейся атомарной структурой материалов и всей совокупностью их макроскопических свойств. Для решения этой важной задачи радиационного материаловедения привлекаются самые современные физические методы анализа структуры материалов, начиная с уже ставшего традиционным рентгеноструктурного анализа и кончая автоионный микроскопией, оже-спектроскопией и др.

Но в значительном числе случаев все же не удается произвести необходимые структурные изменения. Такая ситуация возможна при известных, но быстро меняющихся внешних условиях (например, ударное воздействие на материал при пролете высокоэнергетических нейтронов). Если же точно не известны изменения в структуре материала на всех этапах какого-либо технологического процесса, то трудно говорить о каком-либо надежном прогнозе его поведения.

В ряде случаев современная аппаратура из-за своего недостаточного разрешения не позволяет наблюдать атомные перестройки в материалах, например отдельные атомные скачки при диффузии, растворении и рост предвыделений второй фазы в сплавах и т. д.

Чтобы преодолеть перечисленные трудности и воссоздать быстроразвивающиеся процессы в материалах, перестройки на атомарном уровне или процессы, когда доступ к материалам ограничен или опасен, все чаще в атомном материаловедении привлекается компьютерный эксперимент. Обзор методов компьютерного моделирования используемых в радиационном материаловедении на начало 90-х годов можно найти в [1].

Метод молекулярной динамики (МД) - один из наиболее мощных методов, используемых для компьютерного моделирования в радиационном материаловедении. Он позволяет проводить детальные исследования структуры материалов исходя из первых принципов. В последние годы метод молекулярной динамики переживает второе рождение. Связано это, во-первых, с быстрым увеличением мощности компьютеров (быстродействия, объема памяти), что позволяет проводить беспрецедентные по масштабам компьютерные эксперименты. Так, сегодня уже проведены расчеты пластической деформации нанокристаллов меди, состоящих из 100 миллионов атомов [2]. С другой стороны, были разработаны более совершенные потенциалы межатомного взаимодействия, включающие в себя также многочастичные эффекты.

Данная работа является продолжением защищенной в 2003 г. бакалаврской работы, в которой были проанализировано современное состояние методов математической обработки кривых растяжения реакторных материалов, а также было проведено, на примере реакторных сталей, определение основных параметров, характеризующих пластическую деформацию.

Целью работы является изучение метода молекулярной динамики и особенностей его применения к исследованию пластичности реакторных материалов, разработка алгоритма и создание программы для изучения пластичности двумерных ГПУ-кристаллов.

1. Применения МД для исследования пластической деформации кристаллов

Для изучения пластических свойств материалов методом МД, атомы из которых состоит материал, помещают в ячейку моделирования, обычно прямоугольной формы, которую подвергают деформации. Координаты и скорости атомов находят, численно решая уравнения движения Ньютона для заданных потенциалов взаимодействия между атомами. Затем, зная координаты и скорости атомов, с помощью соответствующиго усреднения, вычисляют макроскопические величины, такие как температура, давление, тензор напряжения и т. д. Достоинство метода состоит в возможности получить физические величины из первых принципов, т. е. используя только уравнения движения и потенциал межатомного взаимодействия.

1.1. Ограничения

Укажем на ограничения, свойственные этому методу. Во-первых, можно сразу же спросить: почему мы используем законы Ньютона, чтобы двигать атомы, хотя известно, что системы на атомном уровне подчиняются скорее квантовым законам, чем классическим?

Простейшая проверка применимости классического приближения базируется на тепловой длине волны де-Бройля, определяемой как

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (1) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле. - атомная масса и Рисунок убран из работы и доступен только в оригинальном файле. - температура. Классическое приближение хорошо работает когда Рисунок убран из работы и доступен только в оригинальном файле., где Рисунок убран из работы и доступен только в оригинальном файле.- среднее расстояние между атомами. Если рассматривать, например, жидкость в тройной точке, то Рисунок убран из работы и доступен только в оригинальном файле. порядка 0.1 для легких элементов, таких как Li и Ar, уменьшаясь для более тяжелых элементов. Классическое приближение плохо работает для легких систем, таких как H2 , He, Ne.

Кроме того, квантовые эффекты становятся важными для любых систем, когда температура Рисунок убран из работы и доступен только в оригинальном файле. достаточно низка. Падение удельной теплоемкости кристаллов ниже температуры Дебая и аномальное поведение коэффициента теплового расширения есть хорошо известные примеры измеримых квантовых эффектов в твердых телах. Поэтому результаты, полученные с помощью МД должны интерпретироваться с известной осторожностью в этих областях.

Второе ограничение связано с ограниченностью используемых компьютерных ресурсов, что приводит к ограничению количества рассматриваемых атомов и, как следствие, к снижению точности вычисляемых физических величин. Частично эту проблему можно обойти, используя подходящие граничные условия (см. ниже). Постоянный рост мощности компьютеров также способствует смягчению этой проблемы. Так, в настоящее время, в печати имеются сообщения о расчетах с 100 млн. атомов.

Необходимо отметить, что современные мощные суперкомпьютеры являются параллельными. Поэтому для расчетов на них необходимо обеспечить эффективное распараллеливание вычислений. Об одной новой возможности распараллеливания в рассматриваемой здесь задаче будет сказано ниже.

Ограниченное быстродействие компьютеров накладывает ограничения на скорость деформации, используемую в вычислениях. Это связано с тем, что при решении уравнений движения шаг по времени должен составлять порядка 0,01 шага от периода колебаний атомов (по порядку величины равногоРисунок убран из работы и доступен только в оригинальном файле.сек) для обеспечения необходимой точности вычислений. Отсюда следует, что для обеспечения деформации ~100% за приемлемое время вычислений типичная скорость деформации должна составлять порядка Рисунок убран из работы и доступен только в оригинальном файле.секРисунок убран из работы и доступен только в оригинальном файле. в то время как максимально достигаемая в эксперименте скорость деформации составляет 105 сек-1. Кроме очевидной возможности достижения более низкой скорости деформации, увеличивая время вычислений, есть еще одна возможность – использовать процедуру минимизации.

При нулевой температуре система находится в локальном минимуме внутренней энергии, а из-за отсутствия тепловых колебаний она не может покинуть этот минимум.

Процедура минимизации позволяет деформируемой системе находиться вблизи локального минимума внутренней энергии. При таком моделировании время не определено, так как мы не решаем уравнений движения. Следовательно, скорость деформации не оказывает никакого влияния, если она достаточно низка чтобы исключить нагрев системы, и обеспечить сходимость процедуры минимизации. Таким образом, моделирование, основанное на процедуре минимизации, представляет собой модель идеализированного эксперимента при нулевой температуре в пределе низкой скорости деформации, когда тепло выделяемое при деформировании, удаляется.

1.2. Потенциал

Для моделирования материала необходимо задать потенциал взаимодействия составляющих его атомов. Наиболее простым является парный потенциал Леннарда-Джонса

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (2) |
--------------------------------------------------------- --------------------------------------------------

Здесь, Рисунок убран из работы и доступен только в оригинальном файле. - расстояние между атомами, Рисунок убран из работы и доступен только в оригинальном файле. - глубина потенциальной ямы и Рисунок убран из работы и доступен только в оригинальном файле. связано с положением минимума потенциала Рисунок убран из работы и доступен только в оригинальном файле.. Потенциал Леннарда-Джонса качественно правильно описывает взаимодействие между атомами – сильное отталкивание на малых расстояниях, обусловленное первым слагаемым в скобках, и притяжение на больших расстояниях, за которое отвечает второе слагаемое в скобках. Он хорошо описывает ван-дер-ваальсовское взаимодействие между атомами кристаллов благородных газов, но, вследствие своей простоты, часто используется для качественного описания взаимодействия других атомов. С потенциалом Леннарда-Джонса проведено большое количество вычислений. Он является стандартным в вычислениях методом МД.

Основными материалами реакторостроения являются металлы – сталь, цирконий и т. д. В металлах природа сил взаимодействия между атомами не двухчастичная (парная) а многочастичная. Effective Medium Theory (EMT) дает реалистическое описание металлической связи с учетом её многочастичной природы [3,4]. EMT - потенциал, с вычислительной точки зрения, не намного сложнее парного потенциала, но дает намного более реалистическое описание свойств материалов. Поскольку в данной работе не ставится задача изучения пластических свойств конкретного материала мы будем использовать модельный потенциал Леннарда-Джонса.

Удобно при этом выбрать в качестве единицы длины Рисунок убран из работы и доступен только в оригинальном файле., единицы энергии Рисунок убран из работы и доступен только в оригинальном файле. и единицы массы - массу атомов Рисунок убран из работы и доступен только в оригинальном файле. (полагаем, что материал состоит из атомов одного сорта). Это приводит к ускорению вычислений. Чтобы перейти к величинам, характеризующим конкретный материал, необходимо ввести соответствующие масштабные множители - Рисунок убран из работы и доступен только в оригинальном файле. для длины, Рисунок убран из работы и доступен только в оригинальном файле. для времени, Рисунок убран из работы и доступен только в оригинальном файле. для скорости, Рисунок убран из работы и доступен только в оригинальном файле. для силы, Рисунок убран из работы и доступен только в оригинальном файле. (Рисунок убран из работы и доступен только в оригинальном файле. в двумерном случае) для напряжения, где Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.взяты для данного материала.

Потенциал Леннарда-Джонса простирается до бесконечности. Однако на больших расстояниях он мал. И поэтому его влияние на движение далеких атомов мало. Чтобы ускорить вычисления эту несущественную часть потенциала отбрасывают, или, другими словами, вводят обрезание потенциала

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (3) |
--------------------------------------------------------- --------------------------------------------------

Радиус обрезания Рисунок убран из работы и доступен только в оригинальном файле. традиционно выбирают Рисунок убран из работы и доступен только в оригинальном файле. или Рисунок убран из работы и доступен только в оригинальном файле.. Возможные причины такого выбора будут обсуждаться ниже. В данной работе будет использоваться радиус обрезания Рисунок убран из работы и доступен только в оригинальном файле.. Другие необходимые изменения в потенциале Леннарда-Джонса будут обсуждаться в разделе, посвященном выполнению закона сохранения энергии в МД.


1.3. Алгоритм интегрирования по времени

Основным компонентом программ, использующих метод молекулярной динамики, является алгоритм интегрирования по времени. Он необходим, чтобы проинтегрировать уравнения движения взаимодействующих частиц и найти их траектории.

Алгоритм интегрирования по времени основывается на методе конечных разностей, время при этом задается на конечной сетке, шаг по времени есть расстояние между последовательными точками сетки. Зная положения и скорости в момент времени Рисунок убран из работы и доступен только в оригинальном файле. (точные детали зависят от типа алгоритма) схема интегрирования дает те же величины в более поздний момент времени Рисунок убран из работы и доступен только в оригинальном файле.. Используя процедуру интегрирования временную эволюцию системы можно прослеживать в течении длительного времени.

Конечно, эти схемы приближенными, и, поэтому, существуют ошибки, связанные с ними. Они классифицируются так:

Ошибки обрывания, связанные с точностью метода конечных разностей по отношению к истинному решению. Метод конечных разностей обычно базируется на ряде Тейлора, оборванном на некотором члене. Эти ошибки не зависят от программной реализации метода, они присущи самому алгоритму.

Ошибки округления, связаны с ошибками, возникающими при программной реализации алгоритма. Например, такие ошибки возникают из-за конечного числа цифр, используемых в компьютерной арифметике.

Оба типа ошибок можно уменьшить, уменьшая Рисунок убран из работы и доступен только в оригинальном файле.. Для больших Рисунок убран из работы и доступен только в оригинальном файле. ошибки обрывания доминируют, но они быстро уменьшаются, когда Рисунок убран из работы и доступен только в оригинальном файле. уменьшается. Например, алгоритм Верле имеет ошибки обрывания пропорциональные Рисунок убран из работы и доступен только в оригинальном файле. для каждого временного шага интегрирования. Ошибки округления падают более медленно с уменьшением Рисунок убран из работы и доступен только в оригинальном файле. и доминируют в пределе малых Рисунок убран из работы и доступен только в оригинальном файле.. Использование 64-битной точности (соответствующую “двойной точности” в Fortrane) помогает сохранить ошибки округления минимальными.

В молекулярной динамике наиболее часто используемым алгоритмом интегрирования по времени является, вероятно, так называемый алгоритм Верле [5]. Основная идея состоит в том, чтобы записать разложение Тейлора до третьего порядка вперед и назад по времени. Пусть Рисунок убран из работы и доступен только в оригинальном файле. обозначает скорость, Рисунок убран из работы и доступен только в оригинальном файле. - ускорение и Рисунок убран из работы и доступен только в оригинальном файле. - третью производную от Рисунок убран из работы и доступен только в оригинальном файле. по Рисунок убран из работы и доступен только в оригинальном файле.. Тогда имеем:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле..

| (4) |
--------------------------------------------------------- --------------------------------------------------

Складывая эти 2 выражения получаем

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (5) |
--------------------------------------------------------- --------------------------------------------------

Это основная формула алгоритма Верле. Так как мы интегрируем уравнения Ньютона, то Рисунок убран из работы и доступен только в оригинальном файле. есть просто сила, деленная на массу, и сила в свою очередь есть функция положения Рисунок убран из работы и доступен только в оригинальном файле.:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (6) |
--------------------------------------------------------- --------------------------------------------------

Видно, что ошибка обрывания алгоритма, когда система эволюционирует в течении времени Рисунок убран из работы и доступен только в оригинальном файле., есть величина порядка Рисунок убран из работы и доступен только в оригинальном файле., даже если третья производная не появляется в явном виде. Этот алгоритм в тоже время является простым для программной реализации, точным и стабильным, что объясняет его большую популярность при МД моделировании.

Проблема с этой версией алгоритма Верле состоит в том, что скорости явно не вычисляются. Хотя они не нужны для временной эволюции, но их знание иногда необходимо. Кроме того, они нужны для вычисления кинетической энергии Рисунок убран из работы и доступен только в оригинальном файле., чья оценка необходима чтобы проверить сохранение полной энергии Рисунок убран из работы и доступен только в оригинальном файле.. Это один из наиболее важных тестов, указывающих, что МД моделирование выполняется корректно. Можно вычислить скорости из положений использую формулу

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле..

| (7) |
--------------------------------------------------------- --------------------------------------------------

Однако, ошибки, которые дает это выражение, порядка Рисунок убран из работы и доступен только в оригинальном файле. а не Рисунок убран из работы и доступен только в оригинальном файле..

Чтобы преодолеть эту трудность, были развиты варианты алгоритма Верле. Они дают точно ту же траекторию и отличаются переменными, которые хранятся в памяти. Leap-frog алгоритм есть один из таких вариантов.

Лучший реализацией того же основного алгоритма есть так называемый алгоритм Верле со скоростью, когда положение скорости и ускорения в момент времени Рисунок убран из работы и доступен только в оригинальном файле. получается из тех же величин в момент времени Рисунок убран из работы и доступен только в оригинальном файле.следующим образом:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле..

| (8) |
--------------------------------------------------------- --------------------------------------------------

Заметим, что необходимо 9N ячеек памяти, чтобы сохранить 3N положений, скоростей и ускорений, но нам не нужно одновременно хранить значения любой из этих величин для двух различных времен.

1.4. Процедура минимизации

Чтобы моделировать деформацию при нулевой температуре используется процедура минимизации, которая позволяет поддерживать систему вблизи локального минимума энергии все время. Деформация и минимизация выполняются одновременно. Алгоритм минимизации представляет собой модифицированный алгоритм МД. После каждого шага по времени МД для каждого атома вычисляется скалярное произведение между импульсом и силой. Для атомов, скалярное произведение для которых отрицательно, импульс зануляется, так как эти атомы движутся в направлении, в котором потенциальная энергия возрастает. Таким образом, кинетическая энергия атомов удаляется, тогда как потенциальная энергия приближается к локальному минимуму энергии вдоль направления движения атома. Такая процедура минимизации быстро сдвигает систему в окрестность локального минимума энергии, но полной сходимости не получается, так как полная сходимость требует числа шагов по времени порядка числа степеней свободы системы. Однако, обычно увеличении числа шагов процедуры минимизации приводит лишь к малым изменениям в эволюции системы.

1.5. Вычисление сил

Наибольших вычислительных усилий требует вычисление сил, действующих между атомами. Поэтому оптимизации алгоритма вычисления сил необходимо уделить особое внимание. Один из шагов в этом направлении состоит в замене сложных для вычисления выражений для сил (например, содержащих экспоненту) на легко вычисляемые выражения (например, сплайны третьего порядка). Второй шаг состоит в использовании потенциалов с ограниченным радиусом действия, или, как указывалось выше, в обрезании несущественной области потенциала, если радиус действия потенциала бесконечен. При этом необходимо вычислить только силы, действующие со стороны ближайших атомов, т. е. находящихся внутри сферы (окружности в двумерном случае) с радиусом равным радиусу обрезания Рисунок убран из работы и доступен только в оригинальном файле..

Третий шаг состоит в оптимизации алгоритма поиска атомов, ближайших к данному атому. Дело в том, что прямолинейный перебор всех атомов, вычисление расстояний до них и отбрасывание тех атомов, расстояние до которых превышает радиус обрезания Рисунок убран из работы и доступен только в оригинальном файле., требует количества операций пропорционального Рисунок убран из работы и доступен только в оригинальном файле., где Рисунок убран из работы и доступен только в оригинальном файле. - число атомов в системе. Следовательно, с ростом Рисунок убран из работы и доступен только в оригинальном файле. число требуемых операций быстро возрастает, и поэтому выполнение вычислений сильно замедляется, а, для больших Рисунок убран из работы и доступен только в оригинальном файле., делается практически невыполнимым. Таким образом, чтобы избежать этого замедления нужен алгоритм, для которого число требуемых операций росло бы с Рисунок убран из работы и доступен только в оригинальном файле. линейно, а не квадратично. В принципе такой алгоритм прост – нужно перебирать не все атомы, а только достаточно близкорасположенные. Такое утверждение представляет собой тавтологию, пока не конкретизировано понятие близкорасположенных атомов. Чтобы сделать это, разобьем ячейку моделирования на более мелкие субячейки. Тогда близкорасположенные к данному атому будут атомы, которые расположены в субячейках, соседних с субячейкой, содержащей данный атом или в субячейках соседних с соседними.

Удобно разбить ячейку моделирования на субячейки – параллелепипеды (прямоугольники в двумерном случае). Вследствие сильного отталкивания на малых расстояниях, атомы не могут подходить близко друг к другу. Поэтому можно выбрать такие размеры субячеек, что в каждой из них будет находится не более одного атома.

Таким образом, алгоритм поиска атомов, удаленных от данного атома на расстояние не больше радиуса обрезания Рисунок убран из работы и доступен только в оригинальном файле., выглядит следующим образом. По номеру атома находим координаты атома и по ним субячейку, в которой находится атом. Затем находим субячейки, удаленные от нее на расстояние не более чем Рисунок убран из работы и доступен только в оригинальном файле.. Атомы, расположенные в этих субячейках, и будут искомыми (см. рис.1). Чтобы найти номер атома, хранящегося в заданной субячейке, удобно ввести массив, каждый элемент которого соответствует определенной субячейке. В этом элементе массива будет хранится номер атома, расположенного в этой субячейке, или нуль, если субячейка пуста. Элементы этого массива обновляются на каждом шаге по времени МД. Ясно, что изложенный алгоритм обеспечивает линейный рост числа операций с ростом числа атомов Рисунок убран из работы и доступен только в оригинальном файле. в системе. Вариации этого алгоритма используются в программах МД “Gromex”[6], “MOLDY”[7], “DL_POLY”[8] и др.

Возможна и другая организация вычислений, которая будет удобна для организации параллельных вычислений. Именно для вычисления сил, действующих на данный атом, можно перейти от суммирования по близлежащим атомам, к суммированию по близлежащим субячейкам (см рис.1). Будем двигаться последовательно по субячейкам первого ряда. Дойдя до конца первого ряда, перейдем в начало второго ряда и т. д.

--------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------
1 | 2 | 3 | 4 |
---------------------------------------------------------
5 | 6 | 7 | 8 |
---------------------------------------------------------
9 | 10 | 11 | 12 |
---------------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------

---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

Рис.1 Схема поиска ближайших атомов.

Если в субячейке находится атом, то вычисляем силу, действующую на него, со стороны ближайших атомов, расположенных в близлежащих субячейках. Если же субячейка пуста, то переходим к следующей. Отметим при этом, что, например, для атома находящегося в субячейке 6 (см. рис.1) необходимо вычислить силу, действующую со стороны атомов расположенных в субячейках 1, 2, 3, 7. Силы, действующие со стороны атомов, расположенных в субячейках 5, 9, 10, 11 в силу третьего закона Ньютона, с точностью до знака уже известны. Они были вычислены, когда вычислялись силы, действующие на атомы, расположенные в этих субячейках. Таким образом, в данной организации вычислений, необходимо рассматривать лишь половину близлежайших субячеек. Далее, при переходе к смежной субячейке 7 нет необходимости исследовать все близлежащие субячейки для поиска находящихся в них близко расположенных атомов. Необходимо лишь исследовать ячейки 4 и 8. И к найденным в них атомам, добавить атомы, найденные для ячейки 6, за исключением атомов находящихся в субячейках 1 и 6. Таким образом, информация о ближайших атомах для данной субячейки не теряется, а используется при поиске ближайших атомов для смежной субячейки. Это естественно приводит к ускорению вычислений.


1.6. Периодичность

Число атомов, помещенных в ячейку моделирования, намного меньше числа атомов входящих в состав макроскопических систем. Чтобы результаты нашего моделирования можно было распространить на макроскопические тела, делают допущение, что макроскопические системы, состоят из бесконечного числа периодически повторяющихся ячеек моделирования. Такая периодичность может быть в одном, двух и трех направлениях в трехмерном случае и в одном и двух в двумерном случае (см. рис.2). В этой работе мы будем рассматривать только двумерные системы. Это связано как с повышенными требованиями к вычислительным ресурсам в случае трехмерных систем, так и с простотой визуализации результатов расчетов в двумерном случае. В двумерном случае ячейка моделирования представляет собой прямоугольник. В случае периодичности в одном направлении пара противолежащих сторон отождествляется, т. е. ячейку моделирования можно представить теперь как боковую поверхность цилиндра. В случае периодичности в двух направлениях отождествляются обе пары противоположных сторон и ячейку моделирования можно теперь представить как боковую поверхность тора. Если атом выходит за пределы ячейки моделирования, то вследствие периодичности он входит в ячейку с противоположной стороны.

1.7. Начальное состояние

В данной работе будут исследоваться с помощью МД кристаллы. Рассмотрим размещение совершенного кристалла в прямоугольной ячейке моделирования в случае периодичности в одном направлении. Периодическая структура самого кристалла накладывает ограничения на размер ячейки моделирования в направлении периодичности. Действительно, если в вершине, находящейся на одной из сторон ячейки моделирования находится атом кристалла, то эквивалентный атом кристалла должен быть в эквивалентной вершине, находящейся на другой из тождественных сторон. Это приводит к ограничениям на возможную длину ячейки моделирования в направлении периодичности и возможные ориентации кристаллографических осей кристалла относительно сторон ячейки моделирования. Возможны такие ориентации кристалла, при которых указанное выше требование выполнить точно невозможно.

Рисунок убран из работы и доступен только в оригинальном файле.

Рис.2 Периодичность ячеек моделирования и размещение кристалла в ячейке моделирования.

Если же ориентация кристалла выбрана удачно, то длина ячейки моделирования может принимать значения кратные некоторой величине. Однако, на самом деле, эти ограничения не очень существенны. Для всех длин ячейки моделирования и ориентаций кристалла можно найти близкие к ним значения этих величин, для которых условие будет выполняться точно. Рецепт состоит в том, чтобы просто совместить указанную эквивалентную вершину с ближайшим эквивалентным атомом кристалла.

Если есть периодичность (см. рис. 2) и по второму направлению, то должно выполняться аналогичное требование и для второго направления. При этом необходимо заметить, что ориентация второй стороны для прямоугольной ячейки моделирования уже задана, поскольку она перпендикулярна первой стороне. Поэтому её длина будет кратна некоторой величине.

Если не принять специальных мер при подготовке начального состояния системы, то в ней возникают коллективные движения - колебания. Это связано с тем, что система может оказаться в сжатом или растянутом состоянии из-за несоответствия температуры системы с постоянной кристаллической решетки. Другими словами это тепловое расширение (сжатие) системы. Такие колебания имеют большой период и слабо затухают. Накладываясь на исследуемый процесс (например, деформирование системы) они смазывают картину этого исследуемого процесса. Следовательно, от этих колебаний необходимо избавиться. Это можно сделать несколькими способами. Во-первых, подождать пока колебания затухнут. Однако из-за большого периода и малого затухания это требует большого времени. Во-вторых, попытаться подогнать постоянную решетки кристалла к температуре. Опыт показывает, что, сделав несколько попыток, можно полностью исключить колебания. В-третьих, такую подгонку можно выполнить автоматически. О том, как это можно сделать, будет сказано ниже.

В МД моделировании часто возникает необходимость иметь систему в состоянии, характеризуемом определенной температурой. Однако, как мы можем получить систему с заданной температурой? Другими словами, как мы можем контролировать систему?

Для изменения температуры необходимо так изменить скорости частиц, чтобы получить желаемую температуру. В алгоритме Верле со скоростью, обсуждаемом выше, это может быть выполнено заменой уравнения

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (9) |
--------------------------------------------------------- --------------------------------------------------

на уравнение

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (10) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле. желаемая температура, и Рисунок убран из работы и доступен только в оригинальном файле. текущая температура. Такая модификация означает, что мы больше не следуем уравнениям Ньютона и, что полная энергия больше не сохраняется.


1.8. Начальное состояние для кристаллов с дефектами

С помощью МД можно исследовать деформирование, как совершенных кристаллов, так и кристаллов содержащих дефекты, например, кристаллов подвергнутых облучению. О том, как подготовить начальное состояние для совершенного кристалла, было сказано выше. Подготовка начального состояния для облученного кристалла намного более сложная задача. Однако, если известны доза и спектр первично выбитых атомов, МД позволяет выполнить моделирование каскада повреждений [9,10,11]и таким образом решить эту сложную задачу. При этом описанные выше потенциалы, необходимо дополнить, чтобы учесть отталкивание на малых расстояниях, например, гладко сшивая их с потенциалом Циглера-Бирсака-Литмарка [12]. Такой подход позволяет учесть многие явления, возникающие при облучении, но является достаточно сложным и лежит за рамками данной работы.

Можно также исследовать влияние определенных дефектов, возникающие при облучении ГПУ кристаллов на их пластические свойства. Например, можно исследовать влияние межузельных кластеров и дефектов Френкеля. Очевидно, что начальные состояния, содержащие такие дефекты, легко приготовить, стартуя с начального состояния для идеального кристалла. Для этого необходимо удалить (добавить, переместить) атомы кристалла так, чтобы получилась конфигурация кристалла с требуемыми дефектами. Кристалл при этом получается обычно в напряженном состоянии. Это справедливо особенно при добавлении атомов, так как для добавленных атомов расстояния до ближайших атомов кристалла обычно намного меньше, чем равновесные расстояния между атомами в кристалле. Из-за сильного роста потенциала межатомного взаимодействия на малых расстояниях такие атомы обладают большой потенциальной энергией. Если не принять специальных мер, это может вызвать разлет кристалла. Чтобы не допустить этого и обеспечить релаксацию напряжений можно использовать процедуру минимизации и последующий подогрев системы до нужной температуры.

1.9. Нагрузка

В данной роботе рассматривалось деформирование кристаллов путем одноосного растяжения. Поскольку вдоль направления растяжения наложены периодические граничные условия, то отсутствуют свободные границы, к которым можно было бы приложить нагрузку. Поэтому задается растяжение системы, и потом находится возникшее вследствие этого напряжение. МД и деформирование выполняются одновременно. После каждого шага по времени МД выполняется малое растяжение, обеспечивающее нужную скорость деформации (Рисунок убран из работы и доступен только в оригинальном файле. на одном шаге). Растяжение выполнялось двумя способами. В первом, традиционно используемом [13], система растягивается равномерно по длине. При этом координаты атомов вдоль направления растяжения умножаются на масштабный множитель Рисунок убран из работы и доступен только в оригинальном файле.. На этот же множитель умножается длина ячейки моделирования. Согласно второму способу, предложенному в данной работе, растяжение концентрируется только возле торцов системы. Этот способ лучше соответствует экспериментальной ситуации, когда нагрузка прикладывается к торцам системы. При этом длина ячейки моделирования умножается на масштабный множитель, а координаты атомов не умножаются.

1.10. Уравнение для ширины ячейки моделирования

Если боковые стороны системы по отношению к растяжению свободны, то нет необходимости следить за шириной ячейки моделирования. Если же на систему наложены периодические граничные условия по двум направлениям, то изменению ширины ячейки моделирования необходимо уделить особое внимание. При растяжении появляются сжимающие в поперечном направлении напряжения и поперечный размер (ширина системы) уменьшается. Если ширину ячейки моделирования не изменять, то появится зазор, который будет увеличиваться со временем - система разорвется в поперечном направлении.

Один из подходов [13] состоит в умножении ширины ячейки моделирования на Рисунок убран из работы и доступен только в оригинальном файле., при увеличении длины в Рисунок убран из работы и доступен только в оригинальном файле. раз. Здесь Рисунок убран из работы и доступен только в оригинальном файле. примерно равно коэффициенту Пуассона. Этого, однако, может оказаться недостаточно, поэтому, вводят дополнительную оптимизацию поперечного размера системы, основанную на методе Монте-Карло. После каждых ~20 шагов по времени МД предлагается изменение поперечного размера системы. Если в результате этого изменения энергия системы уменьшается, изменение принимается, в противном случае отклоняется. Вследствие этого, точное значение, выбранное для Рисунок убран из работы и доступен только в оригинальном файле., становится некритичным.

В данной работе предложен и используется другой подход, основанный на динамическом уравнении для ширины ячейки моделирования. Выше уже было отмечено, что из-за периодичности в поперечном направлении система имеет топологию цилиндра. Сжимающие в поперечном направлении напряжения приводят к уменьшению боковой поверхности цилиндра и, следовательно, к уменьшению радиуса цилиндра. Записывая 2-ой закон Ньютона для движения системы как целого вдоль радиуса, имеем

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (11) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле. - напряжение в поперечном относительно растяжения направлении, Рисунок убран из работы и доступен только в оригинальном файле. - площадь системы. Учитывая, что ширина ячейки моделирования Рисунок убран из работы и доступен только в оригинальном файле., имеем для неё уравнение

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (12) |
--------------------------------------------------------- --------------------------------------------------

Чтобы, исключить колебательные процессы, удобно ввести в правую часть уравнения слабое фиктивное затухание Рисунок убран из работы и доступен только в оригинальном файле.. Решая уравнения для Рисунок убран из работы и доступен только в оригинальном файле. на каждом временном шаге МД, мы поддерживаем ширину ячейки моделирование вблизи равновесного положения. Очевидно также, что данный подход можно использовать для демпфирования колебаний системы рассмотренных выше.

1.11. Контроль системы

Правильность работы программы МД контролировалась с помощью закона сохранения энергии:

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (13) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле. - кинетическая энергия атомов системы; Рисунок убран из работы и доступен только в оригинальном файле. - потенциальная энергия их взаимодействия; Рисунок убран из работы и доступен только в оригинальном файле.- работа, произведенная над системой. Выполнение закона сохранения энергии очень важно при исследовании пластичности твердых тел. Это связано с тем, что хотя тепловое равновесие устанавливается быстро, но установление механического равновесия требует большого времени. Поэтому при деформировании система находится в тепловом равновесии, но скорее не находится в механическом равновесии, т. е. является неравновесной. Следовательно, потеря или приход энергии, вследствие невыполнения закона сохранения энергии, может существенно повлиять на характер поведения системы при деформации.

Неточное сохранение энергии связано в основном с ошибками, возникающими из-за конечного шага интегрирования по времени, а также с ошибками, возникающими из-за конечной точности представления чисел в компьютере.

Оба типа ошибок можно уменьшить, уменьшая шаг интегрирования по времени, что, однако, увеличивает время вычислений.

Другой тип ошибок возникает из-за использования потенциала с обрезанием. Скачок потенциала на радиусе обрезания при пластической деформации, когда атомы могут двигаться друг относительно друга, приводит к значительному нарушению закона сохранении энергии. Использование потенциала без скачка (3) позволяет существенно улучшить выполнения закона сохранения энергии. Потенциал (3), однако, имеет скачок производной (силы) на радиусе обрезания Рисунок убран из работы и доступен только в оригинальном файле.. Это также приводит к несоблюдению закона сохранения энергии. Оно особенно ярко проявляется при уменьшении радиуса обрезания от канонических значений Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле.. Это связанно с тем, что канонические значения радиуса обрезания находятся в минимумах радиального распределения атомов гексагональной решетки. Когда же Рисунок убран из работы и доступен только в оригинальном файле. попадает в максимум радиального распределения число атомов, то испытывающих действие силы (при Рисунок убран из работы и доступен только в оригинальном файле.), то прекращающих испытывать ее действие (при Рисунок убран из работы и доступен только в оригинальном файле.), становиться очень большим, что и приводит к существенному несохранению энергии. Чтобы избавиться от скачка производной потенциала на радиусе обрезания Рисунок убран из работы и доступен только в оригинальном файле. потенциал был модернизирован. Пусть

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (14) |
--------------------------------------------------------- --------------------------------------------------

где

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (15) |
--------------------------------------------------------- --------------------------------------------------

и Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле.. Тогда модернизированный потенциал имеет вид

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (16) |
--------------------------------------------------------- --------------------------------------------------

Модернизированный потенциал гладко сшивается (до второй производной) с потенциалом Леннарда-Джонса на радиусе сшивки Рисунок убран из работы и доступен только в оригинальном файле. и зануляется вместе со своей первой производной на радиусе обрезания Рисунок убран из работы и доступен только в оригинальном файле.. С этим потенциалом при значениях параметров Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. были проведены все расчеты в данной работе.

1.12. Вычисление физических величин

При деформировании системы все физические величины, такие как напряжение Рисунок убран из работы и доступен только в оригинальном файле., температура Рисунок убран из работы и доступен только в оригинальном файле., кинетическая энергия Рисунок убран из работы и доступен только в оригинальном файле., потенциальная энергия Рисунок убран из работы и доступен только в оригинальном файле. характеризующие деформируемую систему меняются. Их мгновенные значения, усредненные по малым промежуткам времени чтобы исключить тепловые колебания, описывают состояние деформируемой системы. В отличие от равновесных систем мы не можем теперь использовать усреднение по времени, а должны использовать усреднение по различным начальным состояниям системы.

Кинетическая и потенциальная энергия находятся как

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (17) |
---------------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.

| (18) |
--------------------------------------------------------- --------------------------------------------------

Температура определяется как

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (19) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле. - размерность системы. В двухмерном случае Рисунок убран из работы и доступен только в оригинальном файле. - средней кинетической энергией. Выражение для тензора напряжений, основанное на вириальной теореме [14,15], имеет вид

--------------------------------------------------

Рисунок убран из работы и доступен только в оригинальном файле.,

| (20) |
--------------------------------------------------------- --------------------------------------------------

где Рисунок убран из работы и доступен только в оригинальном файле. - Рисунок убран из работы и доступен только в оригинальном файле.-компоненты тензора напряжений для атома Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле. - объем, приходящийся на атом Рисунок убран из работы и доступен только в оригинальном файле. (Рисунок убран из работы и доступен только в оригинальном файле., где Рисунок убран из работы и доступен только в оригинальном файле. - полный объем системы), Рисунок убран из работы и доступен только в оригинальном файле. - масса атома Рисунок убран из работы и доступен только в оригинальном файле., Рисунок убран из работы и доступен только в оригинальном файле. - Рисунок убран из работы и доступен только в оригинальном файле.-компонента его импульса, Рисунок убран из работы и доступен только в оригинальном файле. - расстояние между атомами Рисунок убран из работы и доступен только в оригинальном файле. и Рисунок убран из работы и доступен только в оригинальном файле. (Рисунок убран из работы и доступен только в оригинальном файле. - компонента вектора, направленного от Рисунок убран из работы и доступен только в оригинальном файле.-го атома к Рисунок убран из работы и доступен только в оригинальном файле.-му атому). Это выражение для тензора напряжений не единственное, существуют и другие его определения. Однако, когда напряжения усредняются по объему различные определения быстро сходятся к макроскопическому полю напряжений. Во время моделирования кривые напряжение - деформация строятся после усреднения атомного напряжения по всей системе.

1.13. Визуализация

МД позволяет получать огромные объемы информации, описывающие исследуемую систему во всех деталях. Поэтому возникает задача, извлечь из этого моря информации нужную информацию и предоставить ее в виде, удобном для восприятия. Например, увидеть дефекты находящиеся внутри трехмерного кристалла, невозможно, поскольку их закрывают атомы, находящиеся на том же луче зрения, но ближе к наблюдателю. Однако, оставив только атомы, окружающие дефекты и удалив все остальные, это можно легко сделать. Другая возможность состоит в использовании анимации для исследования временной эволюции деформируемой системы.

Во время деформирования кристаллов упорядоченное расположение атомов кристалла нарушается, появляются дефекты. Для исследования локального атомного порядка обычно используется алгоритм, известный как Common Neighbor Analysis (CNA) [16,17]. Для того чтобы определить структуру кристалла в этом алгоритме исследуются связи между атомами и его соседями. Два атома считаются связанными, если расстояние между ними меньше критического расстояния, выбранного между первыми двумя пиками в радиальной функции распределения. Связи классифицируются с помощью трех целых чисел Рисунок убран из работы и доступен только в оригинальном файле.. Первое из них, Рисунок убран из работы и доступен только в оригинальном файле., есть число общих соседей, т. е. атомов, связанных с обоими атомами в рассматриваемой связи. Второе, Рисунок убран из работы и доступен только в оригинальном файле., есть число связей между этими общими соседями. Третье, Рисунок убран из работы и доступен только в оригинальном файле., есть самая длинная цепочка, которую можно образовать из этих связей.

Число и тип Рисунок убран из работы и доступен только в оригинальном файле.связей, которые имеет атом, определяют локальную кристаллическую структуру. Например, атомы в совершенном ГЦК кристалле имеет 12 связей типа 421, тогда

Здесь опубликована для ознакомления часть дипломной работы "Математическое моделирование пластической деформации кристаллов". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 688

Другие дипломные работы по специальности "Физика":

Электроснабжение завода продольно-строгальных станков

Смотреть работу >>

Электроснабжение фермы КРС на 800 голов в ОАО "Петелино" Ялуторовского района Тюменской области с обеспечением нормативных условий надежности

Смотреть работу >>

Электроснабжение судоремонтного завода

Смотреть работу >>

Повышение надежности электроснабжения потребителей н. п. Орлово Армизонского района Тюменской области с выбором оборудования на ПС 110/10 кВ "Орлово"

Смотреть работу >>

Реконструкция электрической части подстанции 3510 кВ 48П "Петрозаводская птицефабрика"

Смотреть работу >>