Дипломная работа на тему "Исследование свойств магнитных жидкостей методом светорассеяния"

ГлавнаяФизика → Исследование свойств магнитных жидкостей методом светорассеяния




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Исследование свойств магнитных жидкостей методом светорассеяния":



ИССЛЕДОВАНИЕ СВОЙСТВ МАГНИТНЫХ ЖИДКОСТЕЙ МЕТОДОМ СВЕТОРАССЕЯНИЯ

Введение

Во второй половине прошлого века были синтезированы коллоидные растворы магнитных материалов, которые впоследствии получили название «магнитные жидкости (Magnetic fluids)» [29]. Магнитные жидкости (МЖ) – ультрадисперсные (со средним диаметром Рисунок убран из работы и доступен только в оригинальн    ом файле.нм) устойчивые коллоиды ферро - или ферримагнитных однодоменных частиц, диспергированных в различных жидкостях и совершающих интенсивное броуновское движение. В качестве дисперсной фазы используют малые частицы таких металлов как железо, кобальт, никель, гадолиний, их разнообразные ферриты, ферромагнитные окислы. Для предотвращения коагуляции коллоидного раствора, которая была бы неизбежной вследствие магнитного диполь-дипольного и ван-дер-ваальсовского взаимодействий и последующего укрупнения частиц, в качестве стабилизаторов применяют поверхностно-активные вещества (ПАВ) типа олеиновой кислоты. Адсорбируясь на поверхности микрокристаллических дисперсных частиц ПАВ образуют защитную оболочку, представляющую из себя своеобразный структурно-механический барьер [10]. Вследствие малого размера частиц МЖ она не расслаивается и сохраняют свою однородность практически неограниченное время.

Исследование таких жидкостей имеют большое теоретическое значение, так как связаны с решением фундаментальных физико-химических проблем, а также практическое значение, так как способствуют их применению в машиностроении, электронике, медицине, космической технике и т. д. [2], [6], [7], [9], [19]. Разработка устройств с применением МЖ основанные на взаимодействии их с внешним магнитным полем, воздействующим на внутреннюю структуру коллоидной системы. Поэтому наряду с разработкой новых применений МЖ ведутся теоретические и экспериментальные исследования их физических и физико-химических характеристик, которые, в свою очередь, определяются свойствами коллоидных частиц, их взаимодействием во внешних полях. Научные достижения в этой области стали возможны за счет комплексного подхода с применением классических методов статистической термодинамики, молекулярной оптики, физики магнитных явлений, физической химии, механики сплошных сред.

Существенный вклад в экспериментальное изучение физических свойств МЖ вносят оптические методы (двойное лучепреломление, дихроизм, рассеяние света и т. д.)

Весьма актуальными являются задачи исследования оптическими методами межчастичных взаимодействий, ориентационных эффектов, развивающихся в МЖ под действием электрического и магнитного полей.

По данным электронной микроскопии, размер однодоменных частиц магнетита в магнитной жидкости ~ 100 Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.. Эксперименты по двойному лучепреломлению в магнитной жидкости в магнитных и электрических полях дают значительно большие размеры частиц. Задача данной экспериментальной работы по светорассеянию состоит определении размеров наблюдаемых частиц и построении простейшей модели образования кластеров частиц, состоящих из 100 Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. частиц. Предварительные исследования кинетики спада двулучепреломления (ДЛП) в магнитной жидкости на основе Fe3O4 показывают, что кластеры состоят из 3 – 15 частиц. Модельно такие кластеры пока представляются эллипсоидами вращения.

ГЛАВА 1. МАГНИТНАЯ ЖИДКОСТЬ КАК КОЛЛОИДНАЯ СИСТЕМА МАГНИТНЫХ ЧАСТИЦ И ЕЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Физические свойства МЖ описаны в прекрасном обзоре Шлиомиса [32], следуя этому обзору, напомним статистические свойства магнитных коллоидов.

Существование магнитных коллоидов предполагает, что взвешенные в дисперсной среде твердые частицы дисперсной фазы не оседают под действием силы тяжести. Это возможно в том, случае, если скорость оседания частиц, определяемая формулой Стокса, не будет превышать скорость теплового движения этих частиц в несущей жидкости.

В поле тяжести твердая частица, взвешенная в жидкой несущей среде, испытывает действие силы Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., которая уравновешивается в стационарных условиях силой вязкого трения Стокса: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.. Отсюда

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.,

т. е. сферические частицы диаметра d образуют седиментационный поток Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., равный числу частиц, пересекающих в единицу времени единичную площадку, расположенную перпендикулярно к линии действия силы тяжести. В результате такого движения частиц возникает градиент концентрации, приводящий в свою очередь к возникновению диффузионного потока частиц, описываемого законом Фика: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., и направленного противоположно седиментационному потоку.

В равновесном состоянии эти потоки должны уравновешивать друг друга: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., откуда следует

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

С учетом того, что для сферических частиц коэффициент диффузии равен Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., получим:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Из этих формул можно сделать оценочные прикидки. В качестве оценочных параметров примем: ρ1=5200 кг/м3; ρ2=770 кг/м3; η=1,5·10-3 кг/м∙с; d=10нм; Т=300 К; k=1,38·10-3 Дж/К.

Тогда средняя скорость оседания: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле..

Заказать дипломную - rosdiplomnaya.com

Специальный банк готовых защищённых на хорошо и отлично дипломных проектов предлагает вам приобрести любые проекты по нужной вам теме. Высококлассное выполнение дипломных проектов под заказ в Иркутске и в других городах РФ.

Тепловая скорость: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле..

Характеристическая высота, на которой концентрация частиц уменьшается в е раз: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле..

Из приведенных оценок видно, что диффузионные процессы явно преобладают над седиментационными. Например, под действием силы тяжести частица d=10 нм смещается на 1 мм примерно за 70 дней, а такое же диффузионное смещение произойдет за 2,5 часа.

Броуновское движение частиц в магнитной жидкости

Для оптических исследований в макроскопических объемах магнитной жидкости ее разбавляют до очень низких концентраций порядка 5·10-3 объемных процентов (φ=5·10-5 объемной концентрации).

Объемная концентрация частиц твердой фазы в коллоидных растворах рассчитывается из следующих соображений. Объем магнитной жидкости VМЖ складывается из объема жидкой основы , объема твердой фазы и объема поверхностно-активного вещества, покрывающие частицы, VПАВ:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Соответственно масса магнитной жидкости складывается из массы твердой и жидкой фаз:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.,

где ρМЖ – плотность магнитной жидкости; ρО – плотность жидкой основы; ρТ – плотность магнитного материала; ρПАВ – плотность поверхностно-активного вещества.

Тогда

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Обозначим: Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - объемная концентрация жидкой основы;

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - объемная концентрация твердой фазы

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Плотность жидких компонент часто приблизительно равны, поэтому считая ρПАВ≈ρО, получим

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

По методике химического осаждения, предложенной Е. Е. Бибиком [3], удается получить однородную магнитную жидкость с плотностью ρМЖ=1320 кг/м3 и намагниченностью насыщения М¥=46 кА/м. Объемная концентрация частиц магнетита в таких жидкостях равна j=0,124. Число частиц в единице объема для такой жидкости составит N=2,4×1023 м-3 и, следовательно, среднее расстояние между частицами со средним диаметром d=10нм будет порядка 16 нм.

Для проведения оптических экспериментов МЖ разбавляют керосином с добавлением ПАВ до объемных концентраций магнетита ρПАВ=5×10-5. При таких концентрациях МЖ число частиц в единице объема составляет n=1020 м-3 и, соответственно, среднее расстояние между частицами возрастает до 200 нм.

В таких разбавленных малоконцентрированных коллоидных системах устойчивость обеспечивается за счет броуновского движения частиц магнетита. В соответствии с уравнением Эйнштейна средний квадрат смещения частицы за время t равен:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.,

где D – коэффициент диффузии определяется как отношение тепловой энергии T к коэффициенту сопротивления при движении в вязкой среде. Учитывая, что частицы магнетита покрыты слоем олеиновой кислоты, используемой в качестве ПАВ, и средняя толщина этого слоя по оценкам работы [38] составляет d=11,2Å, можно записать значение коэффициента диффузии как:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.,

где Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - составляет диаметр частицы вместе со стабилизующей оболочкой.

Из этой формулы можно оценить время, в течение которого частица магнетита в керосине при Т=300К сместится на расстояние, равное своему гидродинамическому диаметру:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Кроме поступательного движения, частицы магнитной жидкости участвуют во вращательном броуновском движении, среднеквадратичное угловое смещение при котором описывается формулой

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Коэффициент броуновской вращательной диффузии равен:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Можно оценить время, в течение которого частица магнетита в керосине при Т=300К повернется на Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., т. е. изменит свою ориентацию на 180˚:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Сам коэффициент вращательной диффузии для таких частиц равен

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Статистические магнитные свойства МЖ

Коллоидные частицы ферромагнетика обладают постоянным по величине магнитным моментом. Внешнее магнитное поле упорядочивает направление магнитных моментов, а тепловое движение их разориентирует. Существуют два механизма дезориентации магнитных моментов коллоидных частиц. В твердой одноосной частице происходит тепловой «переброс» магнитного момента между двумя противоположными направлениями от легкого намагничивания кристалла. При малых размерах частиц энергия магнитной анизотропии KV становится сравнимой с тепловой энергией T. Тепловые флуктуации приводят к спонтанному изменению магнитного момента с одного направления на противоположное и к исчезновению среднего магнитного момента частицы, если время наблюдения больше характеристического процесса «переброса» магнитного момента. Неель в своих работах [46], [47] показал, что этот механизм специфичен для субдоменных частиц, а вероятность такого «переброса» пропорциональна Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., т. е. сильно зависит от размера частиц. Для времени релаксации Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., характеризующего процесс Нееля, Браун [39], [40] получил асимптотическую формулу

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.),

справедливую при σ≥2, где τ0 связано с временем затухания ларморовой прецессии, зависит от σ и имеет величину порядка 10-9 с. если время наблюдения t оказывается больше времени релаксации τN, то в результате тепловых флуктуаций магнитный момент Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. успевает несколько раз изменить свое направление на противоположное и говорят, что частица является суперпарамагнитной [37]. В качестве критерия суперпарамагнетизма обычно выбирают равенство Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.. С учетом того, что первая константа кристаллографической анизотропии магнетита равна Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Дж/м3, критический объем частицы равен Vкр=4·10-25 м3, что как раз и соответствует частицам с диаметром d≈10 нм, что является средним оценочным параметром для жидкостей на основе магнетита. Критический размер свидетельствует о том, что коллоидные частицы магнетита могут проявлять как ферромагнитные, так и суперпарамагнитные свойства.

Второй механизм дезориентации магнитных моментов коллоидных частиц обусловлен броуновским (тепловым) вращением частиц относительно жидкой основы. При отсутствии магнитного дипольного взаимодействия между монодисперсными коллоидными частицами при помещении МЖ во внешнее магнитное поле в равновесном состоянии намагниченность жидкости зависит от объемной концентрации магнитного материала, величины магнитного момента частицы, приложенного поля и энергии разупорядочивающего теплового движения, и ее можно описать классическим законом Ланжевена, выведенным для намагниченности ансамбля молекул парамагнитного газа:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.,

где φТ - объемная концентрация магнитного материала; Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - ланжевеновский аргумент; для сферических частиц Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.; Z(ξ) – функция Ланжевена.

Приведем асимптотические значения Ланжевена для слабых и сильных полей (т. е. для малых и больших значений аргумента ξ).

В слабых полях (Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.) при разложении функции Ланжевена в ряд Тейлора получаем:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Обычно пользуются значением Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. и из него находят начальную магнитную восприимчивость

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (ξ<<1)

где М∞=φm·MS – намагниченность насыщения жидкости в магнитном поле, напряженность которого Н→∞. МS - намагниченность насыщения объемного магнетита.

В сильных полях (Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.) функция Ланжевена имеет вид:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. и Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.; Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (ξ>>1)

В магнитной жидкости характерна полидисперсность частиц твердой фазы, чему свидетельствуют гистограммы распределения частиц по размерам, полученные с помощью электронного микроскопа УЭМВ – 100К. Среднее арифметическое выборки определялось по формуле

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

и оказалось равным 115 Å=11,5 нм для частиц Fe3O4; 119Å=11,9 нм для частиц CoFe2O4.

Кривые намагничивания, построенные по закону Ланжевена, показывают сильное влияние размера частиц магнетита на χ0 и Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.. (см. рис.) [28].

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. 1.0

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. d=10 нм

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. 0.5 d=7.5 нм

d=5нм

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. 0 0.2 0.4 В (Тл)

Рис. 1

В основе гранулометрического метода определения размера малых магнитных частиц лежит сопоставление экспериментальных кривых намагничивания и зависимостью Ланжевена.

По зависимости М(Н-1) для сильных полей можно найти d∞, а по начальному наклону кривой намагничивания Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. в слабых полях можно найти диаметр частиц d0. Крупные частицы с относительно большими моментами легче ориентируются в слабых полях, чем мелкие, и именно они оказывают большее влияние на начальную магнитную восприимчивость. В области насыщения намагниченности в сильных полях ориентируются и особенно мелкие частицы с диаметром d∞. Средний размер, определяемый по измерениям намагниченности, лежит в пределах d∞<d<d0.

По данным зависимости намагниченности магнетитовой МЖ на основе керосина удается рассчитать эффективное значение магнитного момента mэф, для которого сумма квадратов отклонений экспериментальных и расчетных значений минимальна, и по нему найти эффективный диаметр магнетита, который составил dэф=11,7 нм, что находится в очень хорошем соответствии с данными электронной микроскопии dср=11,5.

Нужно отметить, что результаты многолетних измерений намагниченности и определение по ним объемной концентрации частиц магнетита Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. не совпадают с данными φТ, вычисленными по плотности, Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., а именно, объемная концентрация магнетита, вычисленная по магнитным измерениям, оказывается значительно меньше (примерно в 1,25 раза) концентрации, вычисленной по плотности.

В. Е. Фертман [28] указывает на несколько причин такого расхождения:

1)  некоторая доля твердых частиц сразу после получения является немагнитной;

2)  в результате химического взаимодействия с адсорбированным ПАВ возможно образование немагнитного поверхностного слоя на дисперсных частицах магнита;

3)  адсорбция на поверхности частиц молекул ПАВ и ионов, которые ориентируются так, что снижают реальный магнитный момент частиц магнетита.

Таким образом, мы приходим к выводу, что в МЖ, помещенной во внешнее магнитное поле, равновесная ориентация магнитных моментов коллоидных частиц может достигаться путем вращения частиц в окружающей жидкости (броуновский механизм) или путем движения магнитного момента относительно твердой частицы (неелевский механизм).

В зависимости от того, какой тип релаксации намагниченности реализуется в конкретной магнитной жидкости, пользуются или моделью жестких магнитных диполей, или моделью индуцированных диполей, и чаще всего приходится учитывать как броуновский, так и неелевский механизм релаксации.

Модели магнитных жидкостей

Исследования физических и химических свойств МЖ показали, что в одинаковых по внешним характеристикам МЖ (плотность, магнитная восприимчивость, вязкость и т. д.) могут наблюдаться различные по сложности явления и невозможно предположить единую модель магнитной жидкости, с позиций которой можно было бы объяснить все наблюдаемые явления.

Одночастичная модель МЖ

Простейшей моделью магнитного коллоида является одночастичная, согласно которой частицы магнитного материала представляют собой взвесь в несущей жидкости, сами частицы – сферы или эллипсоиды вращения, покрытые одним слоем ПАВ.

Для оценочных расчетов используются монодисперсные приближения сферических частиц со средним диаметром dсрРисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.10 нм, которые не взаимодействуют друг с другом, находясь в беспрерывном броуновском движении, энергия которого преобладает над энергией гравитационной и магнитной седиментации.

Коагуляция происходит под действием ван-дер-ваальсовых сил приближения между частицами при их сближении (так называемые дисперсионные силы, у которых энергия приближения с увеличением расстояния L между центрами частиц уменьшается пропорционально е-6 ).

Гамакер получил выражение для энергии взаимодействия двух сфер одинакового диаметра d в виде:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

где Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.; S – расстояние между поверхностями сфер; А – постоянная Гамакера, зависящая от диэлектрических свойств частиц и жидкой основы, которая определяет значение дисперсионных сил в данной системе.

Из этого выражения следует, что при соприкосновении сфер (S=0) энергия притяжения стремится к бесконечности и происходит объединение частиц.

В магнитном поле энергия притяжения двух сферических точечных диполей равна:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Агрегативная устойчивость коллоидных систем с магнитными частицами обеспечивается поверхностными адсорбционными слоями.

--------------------------------------------------
--------------------------------------------------

2

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- -------------------------------------------------- На рис.2 схематично изображены две частицы, покрытые адсорбционными слоями. Молекулы ПАВ имеют полярную группу 1, связанную с поверхностью частицы физическим или химическим способом. Длинноцепочечная хвостовая часть молекулы 2, расположенная в жидкой неполярной основе, подвержена беспорядочному тепловому движению.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. --------------------------------------------------
--------------------------------------------------

1

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- -------------------------------------------------- --------------------------------------------------
--------------------------------------------------

2

|
--------------------------------------------------------- --------------------------------------------------   |
--------------------------------------------------------- -------------------------------------------------- Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Рис. 2

При сближении частиц адсорбционные слои деформируются и между ними возникает стерическое отталкивание, энергия которого по оценке Розенцвейга [23] при S≤2δ равна:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

где N – поверхностная плотность адсорбционных молекул ПАВ, δ – толщина адсорбционного слоя. Из этого выражения следует, что существует максимальная энергия отталкивания для достаточно толстых адсорбционных слоев, равная:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Причин возникновения стерического отталкивания несколько. Во-первых, ему способствует ограниченность пространства, в котором происходит тепловое движение гибких концов молекул, что приводит к деформации молекул и возникновению буфера на каждой частице. Во-вторых, повышение концентрации длинноцепочечных молекул в зоне пересечения адсорбционных слоев вызывает осмотический эффект (увеличение давления в этой зоне).

Результат алгебраического суммирования энергий ван-дер-ваальсового притяжения, магнитного дипольного притяжения и стерического отталкивания монодисперсных магнетитовых частиц диаметром 10 нм приведен в справочном пособии В. Е. Фертмана [28]. Для δ=2 нм на кривой суммарной потенциальной энергии существует барьер порядка 25 кТ. Этого вполне достаточно, чтобы предотвратить коагуляцию частиц при броуновском столкновении. Кривая для Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. нм показывает, что броуновское движение не приводит к дезагрегации, если расстояние между частицами меньше 3 нм. Тем не менее, наш опыт показывает, что в лабораторных условиях хранятся магнитные жидкости различных концентраций в течение 15-20 лет и сохраняют свои свойства неизменными.

Таким образом, одночастичная модель магнитного коллоида не только имеет право на существование, но и широко применяется, особенно для описания поведения частиц в сильно разбавленных магнитных жидкостях [35].

Модель цепочечных агрегатов в МЖ

Ясно, поскольку частицы в МЖ обладают собственными магнитными моментами, то это увеличивает вероятность образования ассоциатов частиц по сравнению с немагнитными частицами [31], [43] и др. Представления о цепочечных агрегатах используются при рассмотрении магнитооптических эффектов [5], [26], [44] и др.

Исследуя взаимодействие магнитных диполей в коллоидных частицах Джордан [43] рассмотрел силы, действующие между одинаковыми частицами такого типа.

Потенциальная энергия взаимодействия U двух магнитных диполей описывается следующими выражениями:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

где Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.; Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. и Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - соответственно магнитные моменты и радиус-векторы первой и второй магнитных частиц.

Для характеристики взаимодействия двух сферических магнитных частиц удобно ввести коэффициент связи при константе между ними:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.; Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Оценка коэффициента связи двух сферических частиц магнетита диаметром d=10нм, покрытых слоем ПАВ толщиной δРисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.2нм при Т=300К дает λ>1. Следовательно, в такой жидкости могут иметь место процессы агрегирования.

Оценка энергии связи между магнитными частицами дает 25 кДж/моль, что сравнимо с энергией водородных связей (8-32 кДж/моль).

Джордан исследовал начальную стадию агрегирования, т. е. слипания нескольких магнитных частиц. Два случая объединения четырех коллоидных частиц с образованием либо двух пар, либо агрегата из трех частиц и одной отдельной частицы представлены на рис. 3.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. |
---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. | Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. |
---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. |
---------------------------------------------------------

---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

а) б)

Рис.3

В случае а) энергия связи составляет 18-4εd , а в случае б) достигает – 4,25εd, т. е. вторая конфигурация оказывается устойчивее.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.На рис.4 показаны еще два вида агрегатов, когда частицы объединяются в кластеры типа «клубок» или образуют цепочки.

--------------------------------------------------

---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. |
---------------------------------------------------------
Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. |
---------------------------------------------------------

--------------------------------------------------------- --------------------------------------------------

а) кластер «клубок» б) цепочка частиц

Рис.4

Обозначая энергию связи в этих случаях соответственно ε1 и ε2, Джордан получил следующее равенство:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Число степеней свободы в цепочечном кластере выше. Между состояниями а) и б) существует энергетический барьер. Важно, что обе структуры возникают в отсутствие внешнего магнитного поля, однако при его приложении образование цепочечных кластеров более вероятно.

Когда агрегирование затрагивает большое число частиц, Джордан, используя матричный метод вычисления, показал, что и в случае малой концентрации магнитных частиц при приложении внешнего магнитного поля происходит агрегирование частиц с образованием цепочек или линейных кластеров, поскольку именно такой процесс требует наименьших энергетических затрат.

Модель капельных агрегатов в МЖ В работе Ю. Н. Cкибина [25] указано, что усложнение модели магнитной жидкости связано с наблюдаемыми экспериментальными явлениями коалесценции и коацервации при увеличении концентрации твердых частиц и ПАВ в растворе. В МЖ микрокапельные агрегаты при малых полях не видны в оптический микроскоп, но при напряженности магнитного поля порядка 8 кА/м в поле зрения появляются тонкие цепи из множества частиц, которые после выключения поля распадаются на множество мелких капелек, которые в свою очередь очень быстро растворяются. При включении поля капли концентрированной МЖ сливаются и деформируются, вытягиваясь вдоль поля.

Впервые В. В. Чеканов в работе [34] предложил рассматривать возникновение агрегатов в магнитных коллоидах как фазовый переход дипольный газ – жидкость. Эта идея оказалась плодотворной и представления об образовании микрокапельных агрегатов получили развитие в целом ряде работ [17], [33].

Так, в работе Сано и Дюи [49] рассматривают коллоидные частицы в МЖ как молекулы газа, причем влиянием на них молекул основы пренебрегается. Состояние, когда частицы существуют в основе по отдельности, рассматривается как газ; если же частицы объединились в агрегаты, то такое состояние приравнивается к жидкой фазе.

В результате действия магнитного поля взаимодействие между частицами магнитного материала возрастает так сильно, что флуктуации концентрации приводят к спонтанному разделению коллоида на фазы с разными концентрациями частиц [33].Теория фазовых переходов в магнитных коллоидах получила развитие в работах А. Ю. Зубарева с сотрудниками [17]. В работе [33] показано, что зародышами для образования агрегатов являются наиболее крупные частицы. В работе [17] предложена модель равновесного фазового перехода “газ – жидкость ” в ансамбле парамагнитных частиц с учетом образования линейных цепочечных кластеров. Недавно [14] высказана гипотеза, что в коллоидных системах могут возникать рыхлые квазиферрические агрегаты, известные как “фрактальные кластеры”. Их главная особенность заключается в том, что концентрация агрегированных частиц Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. меняется по степенному закону в зависимости от расстояния r до формального центра кластера:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.,

где df - называется фрактальной размерностью. В МЖ такие объекты могут образовываться за счет действия молекулярных сил, аналогично классическому механизму коагуляции коллоидов.

По отношению к реальным МЖ на практике используются все вышеперечисленные модели в зависимости от задач, стоящих перед исследователями. Это связано с тем, что применение магнитных жидкостей имеет очень широкий спектр, который часто требует иногда взаимоисключающих свойств МЖ: в одних случаях требуется отсутствие в МЖ агрегатов частиц, а в других – наличие таких агрегатов является обязательным условием функционирования МЖ в конкретных условиях, например, в дефектоскопии или визуализации магнитной записи [19]. Поэтому вполне закономерен интерес исследователей к оптическим методам изучения коллоидных систем как наиболее чувствительным и информативным методам диагностики МЖ и вообще исследованию МЖ как объекта.

ГЛАВА 2. ФИЗИЧЕСКИЕ ОСНОВЫ МЕТОДА СВЕТОРАССЕЯНИЯ.

Введение

Однородная среда не способна рассеивать свет, так как вторичные световые волны, испускаемые всеми их элементарными объемами, полностью гасят друг друга при интерференции.

Все среды, за исключением вакуума являются в определенном смысле недородными. Рассеяние света в чистой жидкости, которую мы считаем однородной средой, обусловлено флуктуациями плотности в объемах, малых по сравнению с кубом длины световой волны.

Прозрачная среда, на которую падает свет, представляет из себя скопление большого числа молекул. Электромагнитное поле вблизи данной молекулы наводит в ней переменный дипольный момент, который в свою очередь приводит к появлению вторичного дипольного излучения. Жидкости являются оптически плотными, т. е. расстояние между их молекулами порядка 2-3Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (для газов при нормальных условиях порядка 30Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.), что намного порядков меньше длины падающего света (4000Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.7000Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.). Вследствие этого, каждая молекула находится под воздействием не только поля падающей волны, но и суммы вторичных полей всех остальных молекул. Само же вторичное поле молекулы зависит от того поля, в котором она находится, т. е. мы имеем дело с электромагнитной задачей многих тел: молекулы оказываются связанными. Решение задачи при допустимых приближениях состоит в том, что внутри среды вторичные волны налагаются друг на друга и на падающую волну и дают преломленную волну, распространяющуюся со скоростью Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле., где с – скорость света в вакууме, а n – показатель преломления. Падающая волна полностью гасится внутри среды; этот факт называют теоремой гашения Эвальда-Озеена. За пределами среды вторичные волны, налагаемые друг на друга, дают зеркально отображенную волну. Показатель преломления n зависит от числа молекул в единичном объеме и поляризуемости отдельной молекулы, т. е. в сущности преломление – это одно из явлений рассеяния, а показатель преломления – по существу результат рассеяния множеством молекул, из которых состоит среда.

Обычно при анализе взаимодействия пучка света с оптически гладкой границей раздела предполагается, что преломляющая среда является идеально однородной, в то время как на самом деле она однородна лишь в статистическом смысле. Среднее число молекул в данном элементе объема постоянно, однако в любой момент времени число молекул в этом элементе будет иным, нежели в другой момент времени. Именно такие флуктуации плотности приводят к рассеянию в оптически плотных средах. Нужно помнить, что хотя мы и говорим о флуктуациях плотности, но рассеивающими элементами являются именно молекулы, поэтому точнее говорить о флуктуационной теории рассеяния на молекулах, чем о рассеянии на флуктуациях.

В растворах говорят о рассеянии света на флуктуациях концентрации растворенного вещества в объемах того же порядка величины. С последним рассеянием связана интенсивность избыточного рассеяния I, представляющая разность между интенсивностями рассеяния раствора и чистого растворителя.

Важно различать рассеяние на флуктуациях и рассеяние на частицах. Хотя математические выражения часто аналогичны, физическое содержание их несколько различно: рассеяние на флуктуациях, например, описывается на основе термодинамических законов, в то время как рассеяние на частицах нет. Или, например, рассеяние на флуктуациях плотности в идеальных газах имеет такой же функциональный вид, как и рассеяние на разбавленных взвесях частиц, малых по сравнению с длиной волны. Мы будем называть последний тип рассеяния рэлеевским рассеянием, между тем в теории рассеяния на флуктуациях этот термин может иметь несколько иное значение.

Рассматриваемая нами проблема – это задачи о взаимодействии света определенной длины волны с отдельной частицей (т. е. с некоторой вполне определенной совокупностью очень большого числа молекул), которая погружена в остальном среду. Под однородной будем понимать среду, когда масштаб молекулярной неоднородности мал по сравнению с длиной волны падающего света. Мы будем пренебрегать рассеянием на флуктуациях молекул растворителя, которое обычно гораздо слабее, чем рассеяние на частицах. Несмотря на то, что частица может иметь сложную форму и состоять из нескольких компонент, предположим, что вещество частицы в каждой точке можно описывать микроскопическим образом. Это означает, что оптические частицы полностью определяются частотной зависимостью оптических характеристик, так что квантовый подход к описанию элементарных возбуждений не требуется.

В первой части нашего рассмотрения мы ограничимся случаем упругого рассеяния: частота рассеянного света такая же, как и у падающего света. Упругое рассеяние иногда называют когерентным рассеянием, однако термин «упругое» физически более нагляден, а понятие когерентности как определенной связи между фазами различных источников излучения строго устанавливается в оптике.

Понять физический механизм рассеяния отдельной частицей можно, не конкретизируя вида частицы и не прибегая к каким-либо вычислениям. Рассмотрим произвольную частицу, которую разобьем мысленно на малые области (рис. 1).

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. А

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Падающий свет

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рассеянные элементарные

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. волны

Маленькие диполи

Рис. 1. Рассеяние поля в точке А – результат сложения всех элементарных волн от областей, на которые разбита частица.

Приложенное колеблющееся поле (поле электромагнитной волны) наводит в каждой области дипольный момент. Эти диполи колеблются с частотой приложенного поля и создают вторичное излучение во всех направлениях.

Рассеяние диполями поля являются когерентными т поэтому рассеянное поле в точке А получается сложением рассеянных волн с учетом фазовых соотношений между ними. Эти фазовые соотношения зависят от направления рассеяния, поэтому рассеянное поле будет меняться с направлением рассеяния. Если частица мала по сравнению с длиной волны, то все вторичные волны находятся примерно в фазе, поэтому для такой частицы рассеяние мало меняется с направлением. С увеличением размера частицы возрастают возможности для взаимного усиления или подавления рассеянных волн, откуда следует, что чем больше частицы, тем больше пиков и провалов в индикатрисе рассеяния. Форма частицы имеет важное значение: если частицу, указанную на рис. 1 деформировать, то все фазовые соотношения изменяются, а, следовательно, изменяется и индикатриса рассеяния.

Фазовые соотношения между рассеянными волнами зависят от геометрических факторов: направления рассеяния, амплитуды и формы.

Амплитуда же и фаза наведенного дипольного момента для данной частоты зависят от свойств вещества, из которого состоит частица, поэтому для полного описания рассеяния и поглощения малыми частицами необходимо знать отклик объемного вещества на осциллирующие электронные поля.

Для некоторого класса частиц рассеянное поле можно найти приближенно путем разбиения частиц на невзаимодействующие между собой дипольные рассеиватели и сложения рассеянных волн. Такое приближения называется приближением Рэлея-Ганса.

В реальных условиях приходится иметь дело не с изолированной частицей, а с большим их числом в растворах. Строгий теоретический расчет рассеяния многими частицами является сложной задачей. Однако эти трудности можно обойти, воспользовавшись еще одним приближением.

Частицы в скоплении находятся в электромагнитном взаимодействии: каждая из них возбуждается внешним полем и суммарным полем рассеяния всех других частиц; при этом поле, рассеянное частицей, зависит от полного поля, в которое она помещена. Значительные упрощения возникают в предположении однократного рассеяния: число частиц достаточно мало, а расстояние между ними достаточно велико, так что в окрестности каждой частицы полное поле, рассеянное всеми частицами, мало по сравнению с внешним полем. При этом предположим, полное рассеянное поле представляет сумму полей, рассеянных отдельными частицами, каждая из которых находится под воздействием внешнего поля в изоляции от других частиц. В реальных лабораторных условиях можно приготовить разбавленные взвеси с частицами достаточно малого размера, чтобы обеспечить режим однократного рассеяния.

Помимо предположения об однократном рассеянии будем считать, что частиц много, и расстояние между ними случайны, что отвечает некогерентному рассеянию. Это означает, что фаза волн, рассеянных отдельными частицами, не связаны между собой каким-либо определенным соотношением, поэтому полная интенсивность рассеяния всех частиц равна сумме интенсивностей рассеяния отдельными частицами.

Уравнения Максвелла и распространение плоских волн с учетом поглощения и пространственной дисперсии.

Различные вопросы электромагнитной теории изложены в огромном количестве книг по электромагнетизму, оптике и поляризации света. Удобно собрать используемый математический аппарат в одном месте, с едиными обозначениями, чтобы избежать неизбежной путаницы в обозначениях различных авторов.

Уравнения Максвелла для макроскопического электромагнитного поля внутри вещества в системе единиц СИ могут быть записаны в виде:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (1)

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (2)

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (3)

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (4)

где Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.- напряженность электрического поля, Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.- магнитная индукция.

Электрическая индукция Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. и напряженность магнитного поля Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. определяются равенствами:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (5)

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (6)

где Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.- электрическая поляризация (средний электрический дипольный момент единицы объема), Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - намагниченность (средний магнитный дипольный момент единицы объема), Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - диэлектрическая постоянная (вакуума), Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - магнитная постоянная (вакуума).

Уравнения (1) – (6) должны быть дополнены материальными уравнениями:

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (7)

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (8)

Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. (9)

где Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле.- проводимость, Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - магнитная восприимчивость, Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. - электрическая восприимчивость.

Коэффициенты макроскопической теории Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. и Рисунок убран из работы и доступен только в оригинальн<!--more--> ом файле. зависят от свойств рассматриваемой среды, при этом будем считать, что они не зависят от полей (среда линейна), координат (среда однородна) и направления (среда изотропна).

Используя классическую теорию тер

Здесь опубликована для ознакомления часть дипломной работы "Исследование свойств магнитных жидкостей методом светорассеяния". Эта работа найдена в открытых источниках Интернет. А это значит, что если попытаться её защитить, то она 100% не пройдёт проверку российских ВУЗов на плагиат и её не примет ваш руководитель дипломной работы!
Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 553

Другие дипломные работы по специальности "Физика":

Электроснабжение завода продольно-строгальных станков

Смотреть работу >>

Математическое моделирование пластической деформации кристаллов

Смотреть работу >>

Электроснабжение фермы КРС на 800 голов в ОАО "Петелино" Ялуторовского района Тюменской области с обеспечением нормативных условий надежности

Смотреть работу >>

Электроснабжение судоремонтного завода

Смотреть работу >>

Повышение надежности электроснабжения потребителей н. п. Орлово Армизонского района Тюменской области с выбором оборудования на ПС 110/10 кВ "Орлово"

Смотреть работу >>