Дипломная работа на тему "Электроснабжение комплекса томатного сока"

ГлавнаяФизика → Электроснабжение комплекса томатного сока




Не нашли то, что вам нужно?
Посмотрите вашу тему в базе готовых дипломных и курсовых работ:

(Результаты откроются в новом окне)

Текст дипломной работы "Электроснабжение комплекса томатного сока":


Министерство образования РБ

Ишимбайский нефтяной колледж

ЭЛЕКТРОСНАБЖЕНИЕ ОТРАСЛИ

Курсовой проект

Пояснительная записка

140613 ЭП2-06

Выполнил

Проверил

2009

ОТЗЫВ

руководителя курсового проекта о качестве курсового проекта

студента

Заказать написание дипломной - rosdiplomnaya.com

Новый банк готовых оригинальных дипломных проектов предлагает вам скачать лю бые работы по требуемой вам теме. Правильное написание дипломных работ на заказ в Казани и в других городах России.

Фамилия, имя, отчество студента

Специальность 140613: «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования»

Наименование темы курсового проекта «Электроснабжение комплекса томатного сока.»

Оценка…………………………………………………………………

Фамилия, И. О……………………………………………………

Подпись………………………………………………………………

« »……………………………………………………..2009г.

Письменный отзыв должен включать:

- заключение о соответствии курсовой работы (проекта) заявленной теме;

- оценку качества выполнения курсовой работы (проекта);

- оценку полноты разработки поставленных вопросов, теоретической и практической

значимости курсовой работы (проекта);

- оценку курсовой работы (проекта).

Казанский Государственный Энергетический Университет

Дата выдачи задания «…..»……………….2009г.

УТВЕРЖДАЮ:

Дата окончания проекта «…..»……….2009г. Зам. директора по учебной работе

……………………………………………………………………………..

«……..»………………………………………………………………г.

Задание

на курсовой проект по дисциплине

«Электроснабжение отрасли»

Студент

отделение дневное группа ЭП2-06

Специальность: 140613 «Техническая эксплуатация, обслуживание и ремонт электрического и электромеханического оборудования»

Тема: Электроснабжение комплекса томатного сока.

Содержание проекта

ВВЕДЕНИЕ

1 ОБЩАЯ ЧАСТЬ

1.1 Краткая характеристика электрооборудования ТП

1.2 Ведомость электрических нагрузок

2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ

2.1 Определение расчетной электрической нагрузки от силовых электроприемников на шинах 0,38 кВ цеховых ТП

2.2 Расчет и выбор компенсирующего устройства

2.3 Выбор напряжения и схемы питания силовых и осветительных нагрузок цеха

2.4 Расчет и выбор числа мощности цеховых трансформаторов

2.5 Расчет и выбор распределительной сети 0,38 кВ

2.5.1 Расчет и выбор защитной аппаратуры

2.5.2 Расчет и выбор проводов и кабелей

2.5.3 Расчет и выбор распределительных шкафов и шинопроводов

2.6 Расчет токов короткого замыкания

2.7 Расчет и выбор питающей линии

2.8 Расчет и выбор высоковольтного электрооборудования

2.9 Релейная защита

2.10 Учет и контроль электроэнергии

2.11 Расчет защитного заземления

3 ГРАФИЧЕСКАЯ ЧАСТЬ

3.1 Принципиальная однолинейная схема электрических присоединений

3.2 План расположения электрооборудование комплекса томатного сока

4 СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

5 ПРИЛОЖЕНИЕ

Лист 1 Спецификация на схему электроснабжения.

Лист 2 Спецификация на план расположения электрооборудования

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 ОБЩАЯ ЧАСТЬ

1.1 Краткая характеристика электрооборудования ТП

1.2 Ведомость электрических нагрузок

2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ

2.1 Определение расчетной электрической нагрузки от силовых электроприемников на шинах 0,38 кВ цеховых ТП

2.2 Расчет и выбор компенсирующего устройства

2.3 Выбор напряжения и схемы питания силовых и осветительных нагрузок цеха

2.4 Расчет и выбор числа мощности цеховых трансформаторов

2.5 Расчет и выбор распределительной сети 0,38 кВ

2.5.1 Расчет и выбор защитной аппаратуры

2.5.2 Расчет и выбор проводов и кабелей

2.5.3 Расчет и выбор распределительных шкафов и шинопроводов

2.6 Расчет токов короткого замыкания

2.7 Расчет и выбор питающей линии

2.8 Расчет и выбор высоковольтного электрооборудования

2.9 Релейная защита

2.10 Учет и контроль электроэнергии

2.11 Расчет защитного заземления

3 ГРАФИЧЕСКАЯ ЧАСТЬ

3.1 Принципиальная однолинейная схема электрических присоединений

3.2 План расположения электрооборудования комплекса томатного сока

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Создание энергосистем и объединение их между собой на огромных территориях стало основным направлением развития электроэнергетики мира в 20 веке. Это обусловлено отличительной особенностью отрасли, в которой производство и потребление продукции происходят практически одновременно. Невозможно накопление больших количеств электроэнергии, а устойчивая работа электростанции и сетей обеспечивается в очень узком диапазоне основных параметров режима. В этих условиях надежное электроснабжение от отдельных электростанций требует резервирование каждой станции, как по мощности, так и по распределительной сети.

Известно, что объединенная работа энергосистем позволяет уменьшить необходимую установленную мощность в основном за счет разновременности наступления максимумов электрической нагрузки объединения, включая и поясной сдвиг во времени, сокращения необходимых резервов мощности вследствие малой вероятности одновременной крупной аварии во всех объединяемых системах.

Кроме того, удешевляется строительство электростанций за счет укрупнения их агрегатов и увеличения дешевой мощности на ГЭС, используемой только в переменной части суточного графика электрической нагрузки. В объединении может быть обеспечено рациональное использование энергомощностей и энергоресурсов за счет оптимизации режимов загрузки различных типов электростанций.

Но главным преимуществом энергообъединения является возможность широкого маневрирования мощностью и электроэнергией на огромных территориях в зависимости от реально складывающихся условий. Дополнительное электросетевое строительство, связанное с созданием энергообъединений, не требует больших затрат, так как при их формировании используются в основном линии электропередачи, необходимые для выдачи мощности электростанций, а затраты на них с лихвой окупаются удешевлением строительства крупной электростанции по сравнению с несколькими станциями меньшей мощности. И, следовательно, только объединенная работа энергосистем позволяет обеспечить более экономичное, надежное и качественное электроснабжение потребителей.

Однако параллельная работа энергосистем на одной частоте требует создания соответствующих систем управления их функционированием, включая и противоаварийное управление, а также координации развития энергосистем. Это обусловлено тем, что системные аварии в большом объединении охватывают огромные территории и при современной «глубине» электрификации жизни общества приводят к тяжелейшим последствиям и огромным ущербам.

Поскольку электроэнергия «не складируется», при возникновении дефицита она не может быть свободно куплена на мировом рынке и доставлена в любое место, как и другие продукты и товары. Поэтому обеспечение надежного и экономичного электроснабжения требует заблаговременного начала строительства новых генерируемых источников и электрических сетей, так как энергетические объекты весьма дороги и трудоемки. При этом необходимо обеспечить рациональный состав этих источников по используемым энергоресурсам, их основным техническим характеристикам; их регулировочным возможностям в суточном, недельном и годовом разрезе, а также их размещение.

Для этого необходима координация развития энергосистем и энергообъединений путем прогнозирования, как на долгосрочную, так и на краткосрочную перспективу, которое должно периодически повторяться. Последнее обусловлено тем, что все исходные данные для прогнозирования весьма неопределенны даже в условиях плановой экономики страны. Очевидно, что в условиях рыночной экономики эта неопределенность многократно возрастает.

1. ОБЩАЯ ЧАСТЬ

1.1 Краткая характеристика электрооборудования ТП

Комплекс томатного сока (КТС) предназначен для производства томатного сока из исходного сырья (томатов).

КТС имеет технологический участок, в котором установлены поточные линии, а также вспомогательные и бытовые помещения.

Электроснабжение (ЭСН) осуществляется от собственной комплектной трансформаторной подстанции (КТП) 10/0,4 кВ, которая подключена и приемному пункту предприятия.

Все электроприемники по бесперебойности ЭСН – 2 категории.

В проектируемом томатном цехе выбран один трансформатор с коэффициентом загрузки Кз=0,7 типа ТСЗ 160/10. Данный выбор обусловлен преобладанием нагрузок 2 категории и наибольшей экономичностью.

На стороне 10 кВ трансформатора установлены разъединитель РВЗ-10/400 IУЗ, предохранитель ПКТ 101-10-10-31,5 УЗ.

Защита от токов короткого замыкания на стороне 0,4 кВ выполнена автоматическим выключателем серии ВА51Г-25.

Распределительная сеть выполнена шинопроводом марки ШМА 73 УЗ, двумя распределительными шинопроводами марки ШРА-1 и ШРА-2, также распределительным шкафом серии ПР85. Соединение с электроприемниками осуществляется проводами марки АПРН. Соединение шинопроводов и распределительного шкафа осуществляется кабелем АВРГ.

1.2 Ведомость электрических нагрузок

Проект выполнен для электроснабжения ЭО комплекса томатного сока. Электроснабжение осуществляется от собственной ГПП, подключенного к подстанции глубокого ввода комплекса (ГВК). Комплектная трансформаторная подстанция 10/0,4 кВ расположена внутри цеха.

Таблица 1.1 Перечень электрооборудования комплекса томатного сока

--------------------------------------------------
№ п/п | Наименование электроприемников | Кол-во ЭП, шт | Мощ-ть одного ЭП, кВт | Общая уст-ая мощ-ть, кВт |
---------------------------------------------------------
1, 24 | Конвейеры ленточные сортировочные | 2 | 0,75 | 1,5 |
---------------------------------------------------------
2, 3, 25, 26 | Унифицированные вентиляторные моечные машины | 4 | 4,1 | 16,4 |
---------------------------------------------------------
4, 27 | Конвейеры роликовые сортировочные | 2 | 1,8 | 3,6 |
---------------------------------------------------------
5 | Станки токарные | 1 | 8,5 | 8,5 |
---------------------------------------------------------
6, 7 | Станки шлифовальные | 2 | 3,6 | 7,2 |
---------------------------------------------------------
8 | Станки сверлильные (1-фазный) | 1 | 1,5 | 4,5 |
---------------------------------------------------------
9, 10 | Вентиляторы | 2 | 4,5 | 9 |
---------------------------------------------------------
11, 17, 23, 28 | Электрические подъемники передвижные ПВ=25% | 4 | 3,2 | 10,24 |
---------------------------------------------------------
12, 18 | Элеваторы подачи томатов в дробилку | 2 | 0,75 | 1,5 |
---------------------------------------------------------
13, 19 | Установки дробления томатов | 2 | 4,5 | 9 |
---------------------------------------------------------
14, 20 | Подогреватели дробленой томатной пасты | 2 | 6 | 12 |
---------------------------------------------------------
15, 21 | Установки экстракторные | 2 | 9 | 18 |
---------------------------------------------------------
16, 22 | Установки разлива сока с подогревов | 2 | 3 | 6 |
---------------------------------------------------------
Всего: | 28 | 21,2 | 107,44 |
--------------------------------------------------------- --------------------------------------------------

2. РАСЧЕТНО - ТЕХНИЧЕСКАЯ ЧАСТЬ

2.1 Определение расчетной электрической нагрузки от силовых

электроприемников на шинах 0,38 кВ цеховых ТП

1. Приводим мощности ЭП, работающих повторно кратковременном режиме работы к длительным режимам работы при ПВ=100%.

1.1Электрические подъемники передвижные ПВ=25%.

Рисунок убран из работы и доступен только в оригинальном файле. (2. 1)

Рп – паспортная мощность, кВт

ПВ – повторное включение, %

Рисунок убран из работы и доступен только в оригинальном файле.

1.2 Однофазные ЭП к 3-х фазным.

Сверлильный станок 1 фазный

Рном= 3Рном. ф. Р3ф=Рисунок убран из работы и доступен только в оригинальном файле.

2.Определяем среднесменную активную мощность за максимально загруженную смену:

Рисунок убран из работы и доступен только в оригинальном файле.,кВт (2.2)

Рисунок убран из работы и доступен только в оригинальном файле.

3. Определяем суммарную полную мощность.

Рисунок убран из работы и доступен только в оригинальном файле. (2. 3)

Рисунок убран из работы и доступен только в оригинальном файле.

4. Определяем коэффициент силовой сборки m:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. (2. 4)

5. Определяем средний коэффициент использования:

Рисунок убран из работы и доступен только в оригинальном файле. (2. 5)

Рисунок убран из работы и доступен только в оригинальном файле.

6. Определяем эффективное число ЭП, учитывая что m > 3, а

Рисунок убран из работы и доступен только в оригинальном файле. то

Рисунок убран из работы и доступен только в оригинальном файле. (2. 6)

Рисунок убран из работы и доступен только в оригинальном файле.

7. Определяем коэффициент максимума:

Рисунок убран из работы и доступен только в оригинальном файле. [1., с. 55, таб. 2.15]

8. Определяем максимальную активную мощность:

Рисунок убран из работы и доступен только в оригинальном файле. (2.7)

Рисунок убран из работы и доступен только в оригинальном файле.

9Определяем среднесменную реактивную мощность:

Рисунок убран из работы и доступен только в оригинальном файле. (2.8)

Рисунок убран из работы и доступен только в оригинальном файле.

10. Определяем максимальную реактивную мощность

Рисунок убран из работы и доступен только в оригинальном файле., то Рисунок убран из работы и доступен только в оригинальном файле.

11. Определяем полную максимальную мощность:

Рисунок убран из работы и доступен только в оригинальном файле. (2. 9)

Рисунок убран из работы и доступен только в оригинальном файле.

12. Определяем максимальный ток нагрузки.

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле. (2. 10)

2.2 Расчет и выбор компенсирующего устройства

Активная энергия, потребляемая электроприемниками, преобразуется в другие виды энергии: механическую, тепловую, энергию сжатого воздуха и т. п. Определенный процент активной энергии расходунтся на потери. Реактивная мощность Q не связана с полезной работой ЭП и расходуется на создание электромагнитных полей в электродвигателях, трансформаторах, линиях.

В цепи переменного тока, имеющей чисто активную нагрузку, ток совпадает по фазе с приложенным напряжением. Если в цепь включены электроприемники, обладающие активным и индуктивным сопротивлением (АД, сварочные и силовые трансформаторы), то ток будет отставать от напряжения на некоторый угол φ, называемый углом сдвига фаз (Рисунок 2.1). Косинус этого угла называется коэффициентом мощности.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 2.1 Векторные диаграммы

Из рисунка 2.1 видно, что с увеличением активной составляющей тока Iа и при неизменной величине реактивной составляющей Iр, угол φ будет снижаться, следовательно, значение cosφ будет увеличиваться. Наоборот, при неизменной величине Iа с увеличением реактивной составляющей тока Iр, угол φ будет увеличиваться, а значение cosφ будет снижаться.

Генераторы переменного тока и трансформаторы характеризуются номинальной мощностью Sном. Электроприемники характеризуются номинальной активной мощностью Pном и cosφ. Полная мощность источника согласно векторной диаграмме

Рисунок убран из работы и доступен только в оригинальном файле. (2.11)

Если нагрузка источника только активная, т. е. φ=0, а cosφ=1, то S=P и наибольшая активная мощность электроприемников может быть равна номинальной мощности источника. Если cosφ=0,8, то P=0,8Sном. Таким образом, величина cosφ характеризует степень использования мощности источника. Чем выше cosφ электроприемников, тем лучше используются генераторы электростанций и их первичные двигатели; наоборот, чем ниже cosφ, тем хуже используются электрооборудование подстанций и электростанций и всех других элементов электроснабжения.

Компенсация реактивной мощности, или повышение cosφ электроустановок, имеет большое народно-хозяйственное значение и является частью общей проблемы КПД работы систем электроснабжения и улучшения качества отпускаемой потребителю электроэнергии.

Повышение cosφ, или уменьшение потребления реактивной мощности элементами системы электроснабжения, снижает потери активной мощности и повышает напряжение; кроме того, увеличивается пропускная способность элементов электроснабжения.

Величина cosφ задается энергоснабжающей организацией и находится в пределах cosφэ=0,92

Для повышения коэффициента мощности потребителей электроэнергии предполагается провести следующие мероприятия, которые не требуют применения специальных компенсирующих устройств:

1.Упорядочение всего технологического процесса, что приводит к улучшению энергетического режима оборудования, а следовательно, и к повышению коэффициента мощности;

2.Переключение статорных обмоток асинхронных двигателей с треугольника на звезду, если их нагрузка составляет менее 40%;

3.Устранение режима работы асинхронных двигателей без нагрузки (холостого хода) путем установки ограничителей холостого хода;

4.Замена малозагруженных двигателей меньшей мощности при условии, что изъятие избыточной мощности влечет за собой уменьшение суммарных потерь активной энергии в двигателе и энергосистеме;

5.Замена асинхронных двигателей синхронными двигателями той же мощности, где это возможно по технико-экономическим соображениям;

6. Повышение качества ремонта двигателей с сохранением их номинальных данных.

В качестве компенсирующего устройства в курсовом проекте применяется комплектная конденсаторная установка напряжением 0,38 кВ, что обусловлено следующими преимуществами:

1.Небольшие потери активной энергии в конденсаторах;

2.Простота монтажа и эксплуатации;

3.Возможность легкого изменения мощности комплектной конденсаторной установки в результате увеличения или уменьшения числа конденсаторов в фазе;

4.Возможность легкой замены поврежденного конденсатора;

Недостатки комплектной конденсаторной установки:

1.Конденсаторы неустойчивы к динамическим усилиям, возникающим при коротких замыканиях;

2.При включении конденсаторной установки возникают большие пусковые токи до 10Iном;

3.После отключения конденсаторной установки от сети на ее шинах остается заряд, который может быть опасен для обслуживающего персонала;

4.Конденсаторы весьма чувствительны к повышению напряжения (повышение напряжения допускается не более, чем на 10% от номинального);

5.После пробоя диэлектрика конденсаторы довольно трудно ремонтировать, чаще всего их приходится заменять новыми.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок 2.2 Присоединения конденсаторов к шинам на напряжение 0,38 кВ, где HL – лампа накаливания служит для разряда конденсаторных батареек.

1.  Рассчитываем Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.(2.12)

Рисунок убран из работы и доступен только в оригинальном файле.

2. Рассчитываем мощность компенсирующего устройства

Рисунок убран из работы и доступен только в оригинальном файле.(2,13)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.(2,14)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.(2,15)

Рисунок убран из работы и доступен только в оригинальном файле.

Подбираем стандартные значение мощности каждой батарее и тип ее по таблице:

КЭ1-0,38-20-2У1 (ЗУ1)Sном=20 кВАр. [2, с 382, табл 6,21]

3Рассчитываем полную максимальную мощность с учетом мощности каждой батарее

Рисунок убран из работы и доступен только в оригинальном файле.(2,16)

Рисунок убран из работы и доступен только в оригинальном файле.

4. Определяем коэффициент мощности Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.(2,17)

Рисунок убран из работы и доступен только в оригинальном файле.

2.3 Выбор напряжения и схемы питания силовых и осветительных

нагрузок цеха

Питание линии осветительной сети присоединяют к групповым щиткам через установленные на них аппараты защиты и управления. Групповые щитки устанавливают в местах доступных для обслуживания. В отдельных производствах, где перегрев питания освещения недопустим, а также где требуется эвакуация рабочих, применяют питание групповых щитков аварийного освещения от двух источников.

Учитывая особенности радиальных и магистральных сетей, обычно применяют смешанные схемы электрических сетей в зависимости от характера производства, условий окружающей среды и т. д. Например, в механических цехах машиностроительной

промышленности при системе блока «трансформатор - магистраль» электроснабжение выполняют магистральным шинопроводом ШМА, к которому присоединяют распределительные шинопроводы ШРА. На некоторых участках цеха устанавливают распределительные пункты для питания электроприемников, которые присоединяют к ближайшим магистральным или распределительным шинопроводам.

Подключение ШМА к распределительным устройствам КТП (шкафам) подстанции производится «напрямую» или через присоединительные секции ШМА.

Присоединение распределительных шинопроводов к КТП производится кабелем или проводом, который подводится к вводной коробке ШРА.

Осветительные нагрузки цехов при радиальных схемах силовой сети питаются отдельными линиями от щитов подстанций; при магистральных схемах и схемах подстанций, выполненных по системе блока «трансформатор - магистраль», - от головных участков магистралей.

В крупных цехах при радиальной или магистральной схеме от щита подстанции до распределительного щита, установленного в цехе, прокладывают самостоятельную осветительную сеть, которую называют, так же как и в силовых сетях, питающей. От распределительных щитов осуществляется питание групповых щитков. В небольших цехах распределительные щиты можно не устанавливать, а питающую сеть от источника питания подводить непосредственно к групповым щиткам.

Выбор напряжения выше 1 кВ производится в зависимости от мощности электроустановок предприятия одновременно с выбором всей схемы электроснабжения. Для питания предприятия малой мощности и в распределительных сетях внутри предприятия используются напряжения 6-10 кВ. Причем напряжения 10 кВ большинстве случаев является более предпочтительным. Напряжение 6 кВ целесообразно тогда, когда нагрузки и ТП предприятия получают питание от шин генераторов промышленной ТЭЦ, а предприятие на минимальное напряжение.

При проектировании новых и реконструкций действующих промышленных предприятий следует стремиться к ликвидации напряжения 6 и 35 кВ путем перевода существующих сетей 6 кВ на напряжение 10 кВ и создание питающих сетей – напряжением 110-220 кВ вместо сетей 35 кВ.

Для внутрицеховых сетей наиболее распространение имеет напряжение 380/220 В, основным преимуществом которого является возможность совместного питания силовых и осветительных ЭП. Наибольшая единичная мощность трехфазных ЭП, получающих питания питание от системы напряжений 380/220 В, как правило, не должна превышать 220-250 кВт, допускающих применение компенсирующей аппаратуры на ток 630 А.

Исходя, из вышесказанного на высокой стороне трансформатора используется напряжение 10/0,4 кВ.

В данном курсовом проекте на стороне 10 кВ трансформатора установлены: разъединитель, предохранитель, трансформатор тока и напряжения. На стороне 0,4 кВ установлен автоматический выключатель.

Разъединитель — это коммутационный аппарат, предназначенный для коммутации цепи без тока; для создания надежного видимого разрыва цепи для обеспечения безопасного проведения ремонтных работ на оборудовании и токоведущих частях электроустановки.

Предохранитель - это коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи разрушением специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

Трансформатор напряжения предназначен для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины (5 или 1 А) и для отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Автоматический выключатель — это контактный коммутационный аппарат (электротехническое или электроустановочное устройство), способный включать, проводить и отключать токи при нормальном состоянии электрической цепи, а также включать, проводить в течение определённого устанавливаемого времени и отключать токи в определённом аномальном состоянии цепи электрического тока. Автоматический выключатель предназначен для защиты кабелей, проводов и конечных потребителей от перегрузки и короткого замыкания.

2.4 Расчет и выбор числа мощности цеховых трансформаторов

Выбор типа, числа и схем питания подстанций должен быть обусловлен величиной и характером электрических нагрузок, размещением нагрузок на генеральном плане предприятия, а также производственными, архитектурно-строительными и эксплуатационными требованиями.

ТП должны размещаться как можно ближе к центру размещения потребителей. Для этого должны применяться внутрицеховые подстанции, а также встроенные в здание цеха или пристроенные к нему ТП, питающие отдельные цехи (корпуса) или части их.

ТП должны размещаться вне цеха только при невозможности размещения внутри его или при расположении части нагрузок вне цеха.

Однотрансформаторные цеховые подстанции применяются при питании нагрузок, допускающих перерыв электроснабжения на время доставки «складского» резерва, или при резервировании, осуществляемом по перемычкам на вторичном напряжении.

Двухтрансформаторные цеховые подстанции применяются при преобладании потребителей 1-й и 2-й категорий, а также при наличии неравномерного суточного или годового графика нагрузки.

Цеховые подстанции с числом трансформаторов более двух используются лишь при надлежащем обосновании необходимости их применения, а также в случае установки раздельных трансформаторов для питания силовых и осветительных нагрузок.

Радиальное питание небольших однотрансформаторных подстанций (до 630 кВ • А) производят по одиночной радиальной линии без резервирования на стороне высшего напряжения при отсутствии нагрузок 1-й категории.

Взаимное резервирование в объеме 25-30% на однотрансформаторных подстанциях следует осуществлять при помощи перемычек на напряжении до 1000 В (при схеме «трансформатор—магистраль») для тех отдельных подстанций, где оно необходимо.

При выборе числа и мощности трансформаторов подстанций рекомендуется:

трансформаторы мощностью более 1000 кВ-А применять при наличии группы электроприемников большой мощности (например, электропечей) или значительного числа однофазных электроприемников, а также при наличии электроприемников с частыми пиками нагрузки (например, электросварочных установок) и в цехах с высокой удельной плотностью;

стремиться к возможно большей однотипности трансформаторов цеховых подстанций;

при двухтрансформаторных подстанциях, а также при однотрансформаторных подстанциях с магистральной схемой электроснабжения мощность каждого трансформатора выбирать с таким расчетом, чтобы при выходе из строя одного трансформатора оставшийся в работе трансформатор мог нести всю нагрузку потребителей 1-й и 2-й категорий (с учетом допустимых нормальных и аварийных нагрузок); при этом потребители 3-й категории могут временно отключаться.

Для этого номинальная мощность трансформаторов двухтрансформаторной подстанции принимается равной 70% от общей расчетной нагрузки цеха. Тогда при выходе из строя одного из трансформаторов второй на время ликвидации аварии оказывается загруженным не более чем на 140%, что допустимо в аварийных условиях.

Ориентировочно выбор числа и 'мощности трансформаторов может производиться по удельной плотности нагрузки (кВА/м2) и полной расчетной нагрузке объекта (кВА).

Число и мощность трансформаторов выбираются с учетом перегрузочной способности трансформатора.

1.Задаемся количеством трансформаторов «n» в зависимости от мощности и категории ЭП.

U=10-0.4 кВ, II категория, S ‘max= 73.44 кВА, Кз=40%., n = 1.

2.В зависимости от этих же величин задаемся коэффициентом загрузки Кз=0,7.

3.Определяем расчетные значения мощности трансформатора

Рисунок убран из работы и доступен только в оригинальном файле.(2.18)

Рисунок убран из работы и доступен только в оригинальном файле.

где S ‘max – мощность с учетом компенсации.

Находим стандартные значения номинальной мощности трансформатора и тип трансформатора в таблице

Sном=160 КВА ТСЗ160/10 [2, с 120, табл 3,3]

4. Проверяем выбранный трансформатор по Кз

Рисунок убран из работы и доступен только в оригинальном файле.(2,19)

Рисунок убран из работы и доступен только в оригинальном файле.

2.5 Расчет и выбор распределительной сети 0,38 кВ

2.5.1 Расчет и выбор защитной аппаратуры

Электрические предохранители (Автоматы) предназначены для автоматического отключения нагрузки от электрической сети при перегрузках в сети или короткого замыкания.

Автоматы снабжены специальным исполнительным механизмом расцепителем, который непосредственно осуществляет размыкание электрической цепи. Большинство этих современных бытовых устройств – комбинированные. Они имеют электромагнитный и тепловой расцепитель, и могут одновременно защитить и от перегрузки сети, и от короткого замыкания.

Электромагнитный расцепитель – это электромагнит, способный защитить цепь от короткого замыкания, когда ток мгновенно возрастает до критических значений, в 5-10 раз превышающий номинальные показатели. Автомат при этом должен отключить цепь за время порядка 0,01 секунды.

Тепловой расцепитель – биметаллическая пластина, изменяющая свою форму при нагреве. Этот элемент предупреждает критические перегрузки, сопровождающиеся значительным разогревом проводников, оплетка которых может воспламенится.

Важно отметить, что номинал автомата выбирается исходя из допустимой токовой нагрузки проводников. То есть, должно быть достигнуто соответствие характеристик автомата и сечений проводников той потребляемой мощности, которая заложена в проекте электроустановки.

1. Выбираем автоматический выключатель к распределительному шинопроводу ШРА-1.

Рисунок убран из работы и доступен только в оригинальном файле.(2,20)Рисунок убран из работы и доступен только в оригинальном файле.(2,21)

Рисунок убран из работы и доступен только в оригинальном файле.(2,22)

Рисунок убран из работы и доступен только в оригинальном файле.(2,23)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.(2,24)

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле., n – берем равное 3.

50А Рисунок убран из работы и доступен только в оригинальном файле. 45,78А

150А Рисунок убран из работы и доступен только в оригинальном файле. 1,25 101=126,25А

Выбираем автомат ВА51Г-25

2. Выбираем кабель к распределительному шинопроводу ШРА-1

. Рисунок убран из работы и доступен только в оригинальном файле.(2,25)

Рисунок убран из работы и доступен только в оригинальном файле., Iзащ = Iэ(2,26)

Кзащ=1[1, с 46, табл 2,10]

60А Рисунок убран из работы и доступен только в оригинальном файле.45,79 А

60А Рисунок убран из работы и доступен только в оригинальном файле.1 50 А

Выбираем 4-х жильный кабель сечением (16x3+1x10) АВРГ.

3. Выбираем автоматический выключатель к распределительному шинопроводу ШРА-2.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле., n – берем равное 3.

50А Рисунок убран из работы и доступен только в оригинальном файле. 45,78А

150А Рисунок убран из работы и доступен только в оригинальном файле. 1,25 101=126,25А

Выбираем автомат ВА51Г-25

4. Выбираем кабель к распределительному шинопроводу ШРА-2

Рисунок убран из работы и доступен только в оригинальном файле. 60А Рисунок убран из работы и доступен только в оригинальном файле. 46,3А

Рисунок убран из работы и доступен только в оригинальном файле.60А Рисунок убран из работы и доступен только в оригинальном файле. 1 50А

Выбираем 4-х жильный кабель сечением (16x3+1x10) АВРГ.

5. Выбираем автоматический выключатель к распределительному щиту РЩ.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле., n – берем равное 7.

Рисунок убран из работы и доступен только в оригинальном файле. 31,5А Рисунок убран из работы и доступен только в оригинальном файле. 26,5А

Рисунок убран из работы и доступен только в оригинальном файле. 220,5А Рисунок убран из работы и доступен только в оригинальном файле. 1,25 78,5=98,13А

Выбираем автомат ВА51-31

6. Выбираем кабель к распределительному щиту РЩ.

Рисунок убран из работы и доступен только в оригинальном файле. 60А Рисунок убран из работы и доступен только в оригинальном файле. 26,5А

Рисунок убран из работы и доступен только в оригинальном файле.60А Рисунок убран из работы и доступен только в оригинальном файле. 1 31,5А

Выбираем 4-х жильный кабель сечением (16x3+1x10) АВРГ.

7. Выбираем автоматический выключатель к магистральному шинопроводу ШМА

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле., n – берем равное 3.

Рисунок убран из работы и доступен только в оригинальном файле. 125А Рисунок убран из работы и доступен только в оригинальном файле. 118,59А

Рисунок убран из работы и доступен только в оригинальном файле.375А Рисунок убран из работы и доступен только в оригинальном файле. 1,25 36,45=45,56А

Выбираем автомат ВА51-33

2.5.2 Расчет и выбор проводов и кабелей

Ток, проходя по проводнику, вызывает его нагрев. Каждое сечение должно быть рассчитано определенную величину тока, которая не допускает нагрева этого проводника. Это величина тока называется нормально допустимым током (Iнорм доп), то есть должно соблюдаться условие. Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле. Iдл

Кроме этого выбранное сечение проводника должно соответствовать выбранному защитному аппарату, то есть

Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле.Кзащ Iзащ,

где Iзащ – это номинальное напряжения расцепителя, Iэ.

Таким образом, условие выбора сечения записывается

Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле. Iдл(2,27)Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле.Кзащ Iзащ(2,28)

Для взрыва опасных помещений сечение провода увеличивается на 1,25 раза для того, чтобы сделать запас сечению и исключить перегрев.

Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле. 1,25 Iдл

Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле.Кзащ Iзащ

Для взрыва опасных помещений выбираем только медные проводники.

1. Выбираем автоматический выключатель к ЭП1 – конвейер ленточный сортировочный.

Рисунок убран из работы и доступен только в оригинальном файле. Iдл (2,29)

Iср. р Рисунок убран из работы и доступен только в оригинальном файле. 1,25 Iкр(2,30)

Рисунок убран из работы и доступен только в оригинальном файле.Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

6,3А Рисунок убран из работы и доступен только в оригинальном файле. 1,52А

18,9А Рисунок убран из работы и доступен только в оригинальном файле. 1,25 3,84=4,8А

Выбираем автомат ВА51-31

2. Выбираем провод к ЭП1.

Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле. Iдл65А Рисунок убран из работы и доступен только в оригинальном файле. 1,52А

Iнорм доп Рисунок убран из работы и доступен только в оригинальном файле.Кзащ Iзащ65А Рисунок убран из работы и доступен только в оригинальном файле. 6,3 1= 6,3А

Выбираем провод сечение (10х3+1х6) АПРН.

2.5.3 Расчет и выбор распределительных шкафов и шинопроводов

Шинопроводом – называется жесткий токопровод заводского изготовления напряжением до 1кВ, поставляемый комплектными сексиями.

Шинопроводом применяются для питания электроприемников одной технологической линии (например, сборочный конвейер), сосредоточенного большого числа электроприемников, выделенных в группу. Для удобства эксплуатации шинопроводы прокладываются над оборудованием, крепятся стойках или на тросах на высоте 2,5-3 м.

Шинопроводы по исполнению могут быть:

˜  Открытыми

˜  Шины на изоляторах

˜  Защищенными

˜  Закрытые

˜  Комплектные шинопроводы.

Электроприемники подключаются к ответвленным коробкам, равномерно распределенными по длине шинопроводов.

Распределительные шинопроводы с алюминовыми шинами типа ШРА предназначены для распределения электроэнергии между электроприемниками. Шинопроводы ШРМ 75 и предназначен для использования в четырехпроводных сетях с напряжением 0,38 кВ, а так же в качестве осветительного.

Распределительные шкафы. На участках цеха для распределения электроэнергии, поступающей по питающим линиям, между группами силовых электроприемников, ус-танавливаются распределительные силовые шкафы.

При питании от магистральных шинопроводов одновременно силовых и осветительных нагрузок указанная предельная длина шинопроводов снижается примерно в 2 раза.

При магистральной схеме ЭП могут быть подключены в любой точке магистрали.

Рассчитываем распределительный шинопровод ШРА-1

Таблица 2.2

--------------------------------------------------
№ | Наименование | Установленная мощность при ПВ=100% |

Коэффиц.

использ.

Ки

|

Рисунок убран из работы и доступен только в оригинальном файле.

|
---------------------------------------------------------
Одного ЭП. |
---------------------------------------------------------
1 | Конвейеры ленточные сортировочные | 0,75 | 0,5 | 0,75 |
---------------------------------------------------------
2,3 | Унифицированные вентиляторные моечные машины | 4,1 | 0,46 | 0,65 |
---------------------------------------------------------
4 | Конвейеры роликовые сортировочные | 1,8 | 0,5 | 0,75 |
---------------------------------------------------------
11 |

Электрические подъемники передвижные

ПВ=25%

| 3,2 | 0,05 | 0,5 |
---------------------------------------------------------
12 | Элеваторы подачи томатов в дробилку | 0,75 | 0,56 | 0,75 |
---------------------------------------------------------
13 | Установки дробления томатов | 4,5 | 0,54 | 0,8 |
---------------------------------------------------------
14 | Подогреватели дробленой томатной пасты | 6 | 0,5 | 0,35 |
---------------------------------------------------------
15 | Установки экстракторные | 9 | 0,6 | 0,78 |
---------------------------------------------------------
16 | Установки разлива сока с подогревов. | 3 | 0,6 | 0,78 |
--------------------------------------------------------- --------------------------------------------------

1. Определяем среднесменную активную мощность за максимально загруженную смену:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

1.2 Определяем суммарную полную мощность.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

1.3 Определяем коэффициент силовой сборки m:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

1.4 Определяем средний коэффициент использования:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

1.5 Определяем эффективное число ЭП, учитывая что m > 3, а Рисунок убран из работы и доступен только в оригинальном файле. то

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

1.6 Определяем коэффициент максимума nэ=8, Ки=0,51:

Рисунок убран из работы и доступен только в оригинальном файле. [1., с. 55, таб. 2.15]

1.7 Определяем максимальную активную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

1.8 Определяем среднесменную реактивную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

1.9 Определяем максимальную реактивную мощность

Рисунок убран из работы и доступен только в оригинальном файле., то Рисунок убран из работы и доступен только в оригинальном файле.

1.10 Определяем полную максимальную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

1.11 Определяем максимальный ток нагрузки.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2. Рассчитываем распределительный шинопровод ШРА-2

Таблица 2.3

--------------------------------------------------
№ | Наименование | Уст-ая мощ-ть при ПВ=100% |

Коэффиц.

использ.

Ки

|

Рисунок убран из работы и доступен только в оригинальном файле.

|
---------------------------------------------------------
Одного ЭП. |
---------------------------------------------------------

17,23

28

|

Электрические подъемники передвижные

ПВ=25%

| (3,2) 1,6 | 0,05 | 0,5 |
---------------------------------------------------------
18 | Элеваторы подачи томатов в дробилку | 0,75 | 0,56 | 0,75 |
---------------------------------------------------------
19 | Установки дробления томатов | 4,5 | 0,54 | 0,8 |
---------------------------------------------------------
20 | Подогреватели дробленой томатной пасты | 6 | 0,5 | 0,95 |
---------------------------------------------------------
21 | Установки экстракторные | 9 | 0,6 | 0,78 |
---------------------------------------------------------
22 | Установки разлива сока с подогревов | 3 | 0,6 | 07,8 |
---------------------------------------------------------
Всего: | 24,85 | 2,85 | 4,56 |
--------------------------------------------------------- --------------------------------------------------

2.1 Определяем среднесменную активную мощность за максимально загруженную смену:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.2 Определяем суммарную полную мощность.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.3 Определяем коэффициент силовой сборки m:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

2.4 Определяем средний коэффициент использования:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.5 Определяем эффективное число ЭП, учитывая что m > 3, а Рисунок убран из работы и доступен только в оригинальном файле. то

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.6 Определяем коэффициент максимума nэ=9, Ки=0,5:

Рисунок убран из работы и доступен только в оригинальном файле. [1., с. 54, таб. 2.13]

2.7 Определяем максимальную активную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.8 Определяем среднесменную реактивную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.9 Определяем максимальную реактивную мощность

Рисунок убран из работы и доступен только в оригинальном файле., то Рисунок убран из работы и доступен только в оригинальном файле.

2.10 Определяем полную максимальную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

2.11 Определяем максимальный ток нагрузки.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

3. Рассчитываем распределительный щит РЩ

Таблица 2.4

--------------------------------------------------
№ | Наименование | Уст-ая мощ-ть при ПВ=100% |

Коэффиц.

использ.

Ки

|

Рисунок убран из работы и доступен только в оригинальном файле.

|
---------------------------------------------------------
Одного ЭП. |
---------------------------------------------------------
5 | Станки токарные | 8,5 | 0,12 | 0,4 |
---------------------------------------------------------
6,7 | Станки шлифовальные | 3,6 | 0,12 | 0,4 |
---------------------------------------------------------
8 | Станки сверлильные (1-фазный) | (1,5) 4,5 | 0,12 | 0,4 |
---------------------------------------------------------
9,10 | Вентиляторы | 0,6 | 0,6 | 0,8 |
---------------------------------------------------------
Всего: | 17,2 | 0,96 | 2 |
--------------------------------------------------------- --------------------------------------------------

3.1 Определяем среднесменную активную мощность за максимально загруженную смену:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

3.2 Определяем суммарную полную мощность.

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

3.3 Определяем коэффициент силовой сборки m:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

3.4 Определяем средний коэффициент использования:

Рисунок убран из работы и доступен только в оригинальном файле. Рисунок убран из работы и доступен только в оригинальном файле.

3.5 Определяем эффективное число ЭП, учитывая что m > 3, а

Рисунок убран из работы и доступен только в оригинальном файле. то

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

3.6 Определяем коэффициент максимума:

Рисунок убран из работы и доступен только в оригинальном файле. [1., с. 54, таб. 2.13]

3.7 Определяем максимальную активную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

3.8 Определяем среднесменную реактивную мощность:

Рисунок убран из работы и доступен только в оригинальном файле.

Рисунок убран из работы и доступен только в оригинальном файле.

3.9 Определяем максимальную реактивную мощность

Рисунок убран из работы и доступен только в оригинальном файле., то Если у вас нет возможности самостоятельно написать дипломную - закажите её написание опытному автору»


Просмотров: 799

Другие дипломные работы по специальности "Физика":

Электроснабжение завода продольно-строгальных станков

Смотреть работу >>

Математическое моделирование пластической деформации кристаллов

Смотреть работу >>

Электроснабжение фермы КРС на 800 голов в ОАО "Петелино" Ялуторовского района Тюменской области с обеспечением нормативных условий надежности

Смотреть работу >>

Электроснабжение судоремонтного завода

Смотреть работу >>

Повышение надежности электроснабжения потребителей н. п. Орлово Армизонского района Тюменской области с выбором оборудования на ПС 110/10 кВ "Орлово"

Смотреть работу >>